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Abstract

Many mathematical models used in science and technology often contain parameters
that are not known a priori. In order to match a model to a physical phenomenon, the
parameters have to be adapted on the basis of the available data. One of the most im-
portant statistical concepts applied to inverse problems is the Bayesian approach which
models the a priori and a posteriori uncertainty through probability distributions, called
the prior and posterior, respectively. However, computational methods such as Markov
Chain Monte Carlo (MCMC) have to be used because these probability measures are
only given implicitly. This thesis deals with two major tasks in the area of Bayesian
inverse problems: the improvement of the computational methods, in particular, differ-
ent kinds of MCMC algorithms, and the properties of the Bayesian approach to inverse
problems such as posterior consistency.

In inverse problems, the unknown parameters are often functions and therefore ele-
ments of infinite dimensional spaces. For this reason, we have to discretise the underlying
problem in order to apply MCMC methods to it. Finer discretisations lead to a higher
dimensional state space and usually to a slower convergence rate of the Markov chain.
We study these convergence rates rigorously and show how they deteriorate for standard
methods. Moreover, we prove that slightly modified methods exhibit a dimension inde-
pendent performance constituting one of the first dimension independent convergence
results for locally moving MCMC algorithms.

The second part of the thesis concerns numerical and analytical investigations of the
posterior based on artificially generated data corresponding to a true set of parameters.
In particular, we study the behaviour of the posterior as the amount of data increases or
the noise in the data decreases. Posterior consistency describes the phenomenon that a
sequence of posteriors concentrates around the truth. In this thesis, we present one of the
first posterior consistency results for non-linear infinite dimensional inverse problems.
We also study a multiscale elliptic inverse problem in detail. In particular, we show that
it is not posterior consistent but the posterior concentrates around a manifold.
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Chapter 1

Introduction

In many areas of science and technology, it is often the case that important parameters

cannot directly be observed in an experiment. A prime example is x-ray computed

tomography. For diagnostic purposes, the patient lies down in an x-ray tube, x-rays are

sent through the body and their intensity is measured at the rim of the tube. In fact,

using the laws of physics, we can construct a mathematical model, known as forward

model, that allows us to predict the intensity of the x-rays at the rim of the tube on

the basis of certain input data. However, in order to produce tomographic images, the

interest lies in the properties of the body and therefore in the reconstruction of the input

data from these measurements. Mathematically, this is known as the corresponding

inverse problem. This thesis is devoted to the mathematical theory for a particular

approach to inverse problems, called the Bayesian approach. The key idea is that not

all parameter choices are equally likely. Instead, the a priori uncertainty is modelled as

a probability measure called the prior. Given the forward model and the distribution of

the observational noise, the parameters and the data can be treated as jointly varying

random variables. Under mild assumptions on the quantities involved, the conditional

distribution of the parameters, given the data, exists and can be represented as an

unnormalised density with respect to the prior. This distribution is called the posterior

and is an update of the prior using the data modelling the a posteriori uncertainty.

Compared to the classical regularisation approach, that estimates the parameters as the

minimiser of an appropriate functional, this approach has three major advantages in the

1



Chapter 1. Introduction

infinite dimensional case:

1. The assumptions are clearly modelled in the prior.

2. The posterior is continuous in the data.

3. A precise quantification of uncertainty is given.

On the basis of this concept, many interesting mathematical questions arise. For

which models does the posterior exist and how can it be represented? Can the difference

between the infinite dimensional posterior and the posterior based on a finite dimensional

model be bounded in some way? How efficient are computational tools in approximating

posterior expectations, the posterior mean or the MAP estimator for a finite dimensional

model? If the data is generated for a fixed parameter, does the posterior concentrate

around this parameter as the amount of data tends to infinity?

In this work, we discuss the results presented in the research Articles I, II, III and

IV which are contained in Part B of this thesis. These results address the last two

questions. All four articles are concerned with either the theory of Bayesian inverse

problems or the computational methods that can be applied to it. The contributions of

this work fall naturally into three categories:

1. The ability to approximate posterior expectations is crucial in order to make in-

ference about the parameters with respect to which the problem is formulated.

This is not straightforward as the posterior is only given as unnormalised density

with respect the prior. Evaluating the density is computationally expensive as

each time of the forward model has to be simulated. Markov Chain Monte Carlo

(MCMC) algorithms are one of the most important computational methods that

can be used to approximate posterior expectations. The approximation is obtained

as the sample average of the steps of the corresponding Markov Chain.We study

how the number of necessary samples depends on the dimension of the discretised

state space.

2. We assume that the data is generated by the model for a fixed parameter called

the truth. It is then of interest to show that the posterior concentrates around the

2



Chapter 1. Introduction 1.1. Summary of the Original Research Articles

truth. We study properties of the prior and the fixed parameter that guarantee

this property of the model, known as posterior consistency, to hold.

3. For an inverse problem with a multiscale structure, we consider the problem of

characterising different multiscale structures giving rise to the same effective prob-

lem and how it can be used to approximate the posterior.

In the remainder of this chapter, we summarise the work presented in the research

Articles I, II, III and IV contained in Part B of this thesis before we give an outline of

the structure of this work and a more detailed exposition to the framework of Bayesian

inverse problems.

1.1 Summary of the Original Research Articles

Bayesian inverse problems often involve continuum forward models. For numerical simu-

lations, a discretised version on a high dimensional state space is used. Articles I and II

address the question of how the performance of MCMC methods depends on an increase

of the dimension. The research Article III studies the posterior consistency properties

of nonlinear inverse problems describing the asymptotic behaviour as the noise goes to

zero or the amount of data goes to infinity. In Article IV, we investigate how the pos-

terior concentrates around a manifold for an under-determined elliptic multiscale inverse

problem.

Article I: Spectral Gaps for a Metropolis-Hastings Algorithm in Infinite Di-

mensions

We consider MCMC algorithms applied to finite dimensional approximations of infinite

dimensional measures given by a density with respect to a Gaussian reference meas-

ure. We compare the convergence of the standard Random Walk Metropolis (RWM)

algorithm and a slight modification that is known as the preconditioned Crank-Nicolson

algorithm (pCN). Heuristics in [131] and [151] suggest that the convergence of the RWM

deteriorates as the dimension increases and that there is a dimension independent lower

bound on the convergence rate of the pCN. We make these heuristics rigorous by bound-

3



Chapter 1. Introduction 1.1. Summary of the Original Research Articles

ing the L2-spectral gap giving rise to bounds on the asymptotic variance of the CLT and

non-asymptotic bounds on the mean square error. Our results are the first dimension

independent convergence results for a locally moving MCMC algorithm.

Article II: Dimension-Independent MCMC Sampling for Inverse Problems

with Non-Gaussian Priors

We show that a Metropolis-Hastings algorithm has an L2-spectral gap if the target

measure has a density that is bounded from above and below with respect to a reference

measure and if the proposal kernel has an L2-spectral gap with respect to the reference

measure. We use this result in order to obtain an efficient Metropolis-Hastings algorithm

for an elliptic inverse problem by constructing a proposal accordingly. As the proposal

of the pCN algorithm, considered in Article I, has a spectral gap with respect to the

Gaussian reference measure, this can be seen as generalisation. However, the results in

Article I also apply to unbounded densities.

Article III: Posterior Consistency for Bayesian Inverse Problems through

Stability and Regression Results

We develop a method that proves posterior consistency for non-linear inverse problems.

In particular, we consider a sequence of posteriors arising from an increasing amount of

artificial data generated for a fixed parameter called the truth. As the prior is a sub-

jective choice, it is desirable to characterise priors leading to posteriors that concentrate

around this truth. Whereas there are simple conditions in finite dimensions, the choice

of the prior has more impact in infinite dimensions because of almost sure properties of

the prior. This work is one of the first to address this question for nonlinear inverse prob-

lems in infinite dimensions. In order to illustrate the result, we apply our method to an

elliptic inverse problem which is well-known for its application in subsurface geophysics.

However, we would like to mention that the method is generally applicable.

Article IV: Notes on a Bayesian Elliptic Multiscale Inverse Problem

We study the inverse problem of reconstructing a multiscale diffusion coefficient. The set

of additive multiscale diffusion coefficients, giving rise to the same homogenised diffusion

4



Chapter 1. Introduction 1.2. Outline of this Thesis

coefficient, is investigated analytically. We show that this set forms a manifold given by

a graph structure. The inverse problem is considered from the Bayesian perspective and

MCMC simulations for artificial data are performed. These simulations show that the

posterior concentrates around the level set containing parameters used to generate the

data. Moreover, we show that the posterior based on the homogenised model is close to

that of the multiscale problem.

1.2 Outline of this Thesis

This thesis is divided into two parts. Part A contains an overview of Bayesian inverse

problems and a description of the results obtained in Articles I, II, III and IV. Part B

incorporates the original research articles.

Chapter 2 - Bayesian Inverse Problems

We review the Bayesian framework by first giving an overall exposition in Section 2.1

before applying it to an elliptic inverse problem which forms the guiding example for

later chapters. We go into more detail about the existence and representation of the

posterior in Section 2.3. Continuity and approximation results for the posterior are

reviewed in Section 2.5. We introduce the concept of posterior consistency in Section

2.4 and survey computational methods probing the posterior in Section 2.6.

Chapter 3 - Markov Chain Monte Carlo Algorithms for Bayesian Inverse

Problems

In this chapter, we introduce the Metropolis-Hastings algorithm on general state spaces.

We provide an in-depth literature review considering both heuristic and rigorous con-

vergence results for the resulting Markov chains. This review sets the stage for the

presentation of our results from the research Articles I and II. Moreover, we would like

to point the reader to Section 3.3.1.1 which contains a detailed description of how the

conductance can be used in order to bound the spectral gap from above for MCMC

algorithms. This presentation is more general and in much more detail than the descrip-

tion contained in Article I.

5



Chapter 1. Introduction 1.2. Outline of this Thesis

Chapter 4 - Posterior Consistency for Bayesian Inverse Problems

We introduce posterior consistency for Bayesian inverse problems and relate it to the

concept of posterior consistency in non-parametric statistics. This is followed by a

detailed literature review which is used as a background for our introduction to the

results from Article III.

Chapter 5 - An Under-Determined Multiscale Elliptic Inverse Problem

We consider a particular elliptic inverse problem for which the diffusion coefficient has

an additive structure consisting of a fast and slow scale. After reviewing the basics of

homogenisation of elliptic PDEs, we present the results from Article IV.

6
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Chapter 2

Bayesian Inverse Problems

The intention of this chapter is to summarise the framework of Bayesian inverse problems

which is the common topic of the results presented in this thesis. In particular, Articles

III and IV address this framework directly whereas Articles I and II study Markov

Chain Monte Carlo (MCMC) algorithms, a computational method that can be used for

approximations of the posterior, the central probability distribution in Bayesian inverse

problems.

This chapter is organised as follows. We start by giving a short exposition of the

main idea of the Bayesian approach to inverse problems in Section 2.1. In a nutshell, that

is to treat the input of a mathematical model as a random variable based on subject-

ive a priori knowledge. The conditional probability distribution of the input given the

data is called posterior distribution and is the main quantity of interest in this area. In

Section 2.2, we illustrate the Bayesian approach using the example of an elliptic inverse

problem. This example also guides us through most of the results given in Articles II

and III even though they are more generally applicable. In contrast, Article IV focuses

on a multi-scale version of this example. In Section 2.3, we review the literature on

the well-definedness of the posterior. Moreover, the posterior is continuous in the data

which is one of the crucial benefits of the Bayesian framework. In Section 2.5, we give

details about this fact and a finite dimensional approximation result justifying numerical

simulations. This framework can be evaluated by investigating posteriors arising from

artificial data which is generated using a fixed input. Closely related is the concept of

9



Chapter 2. Bayesian Inverse Problems 2.1. Exposition

posterior consistency which is only briefly introduced in Section 2.4 because Chapter 4 is

devoted to this subject. We close this chapter by reviewing different computational tech-

niques for making inference based on the posterior. MCMC, one of the most important

computational methods for approximating expectations with respect to the posterior, is

the subject of Chapter 3.

This thesis concentrates on the Bayesian approach to inverse problems. For a survey

of the main other approach to inverse problems, the so-called frequentist approach, we

refer the reader to [31]. The research article [31] introduces estimators based on regular-

ised least-squares problems, their minimax error rates and estimators that adapt to the

unknown smoothness of the underlying truth. frequentist methods and Bayesian meth-

ods can be combined in the so called empirical Bayes’ method. We refer the interested

reader to [111].

2.1 Exposition to Bayesian Inverse Problems

We follow [177] and [176] for an introduction to some basic notations and definitions in

order to set stage for our results and the forthcoming literature reviews in Chapters 3,

4 and 5. This allows us to put our contributions in the context of the literature and its

development.

The area of inverse problems is concerned with estimating some unknown parameter

u ∈ X on the basis of a given data set. The data y ∈ Y is usually modelled as

y = G(u) + η, (2.1)

with G denoting the forward operator representing the mathematical model, η being the

additive noise with distribution Q0 and X as well as Y being Banach spaces.

The key idea of the Bayesian approach to inverse problems is to treat the input u of a

mathematical model, for example the initial condition of a PDE, as a random variable.

Its distribution µ0(du) is called the prior and is a modelling choice incorporating a

priori knowledge. The Bayesian approach allows us to treat u and y as jointly varying

10



Chapter 2. Bayesian Inverse Problems 2.1. Exposition

random variables. The regular conditional probability distribution µy of u given the

data y, which exists under weak conditions (c.f. Section 2.3), represents the a posteriori

knowledge and is henceforth called the posterior. It is in the focus of the Bayesian

approach to inverse problems.

As the posterior models the a posteriori uncertainty, a concentrated posterior cor-

responds to a high amount of certainty. It is possible for the posterior to have multiple

modes, an example in Lagrangian data assimilation has been provided in [6]. Another

important aspect of the posterior is that it can be used to estimate the unknown u

through the posterior mean or the maximum a posteriori (MAP) estimator. The latter

is given by the location of an infinitesimal ball with maximum probability and can be

linked to the Tikhonov regularisation as demonstrated in [45]. Moreover, the posterior

can be used to quantify the uncertainty of such an estimate in terms of, for example,

the posterior variance or the posterior probability of a neighbourhood of an estimate.

An appropriate representation of the posterior is needed in order to approximate the

quantities above. In particular, the posterior can be represented through Bayes’ rule

posterior ∝ prior × likelihood (2.2)

which is valid if all involved quantities have probability densities. Under appropriate

assumptions, Bayes’ formula can be generalised in the following way (see Section 2.3).

For observational noise η that has a density ρ with respect to the Lebesgue measure λ,

the posterior takes the form

dµy

dµ0
(u) ∝ ρ (G(u)− y) . (2.3)

In case of Gaussian noise η ∼ N (0,Γ), that is ρ(η) ∝ exp
(
−1

2 ‖η‖
2
Γ

)
, where

〈x, y〉Γ =
〈
Γ−1x, y

〉

‖x‖2Γ = 〈x, y〉Γ .

11



Chapter 2. Bayesian Inverse Problems 2.1. Exposition

In this case, we obtain that

dµy

dµ0
(u) ∝ exp

(
−1

2

∥∥G(u)− y
∥∥2

Γ

)
∝ exp

(
−1

2

∥∥G(u)
∥∥2

Γ
+ 〈y,G(u)〉Γ −

∥∥y
∥∥2

Γ

)
(2.4)

∝ exp

(
−1

2

∥∥G(u)
∥∥2

Γ
+ 〈y,G(u)〉Γ

)
.

The last line also holds when η is an infinite dimensional Gaussian random variable

as for example has been shown in [177]. In this case, ‖·‖Γ denotes the norm of the

Cameron-Martin space (HQ0 , 〈·, ·〉Γ) of Q0. If ρ > 0, both cases can be written as

dµy

dµ0
(u) ∝ exp (−Φ(u; y)) . (2.5)

In order to approximate the MAP estimator or posterior expectations, such as the

mean or the variance, the posterior has to be discretised as it is supported on an infinite

dimensional function space. The resulting error can be quantified by a difference in the

total variation or the Hellinger distance. This quantity can be bounded in terms of the

forward difference, for details consider Section 2.5. The last obstacle for computational

methods is that the normalising constants in the Equations (2.3) and (2.4) are unknown.

However, there are appropriate computational methods such as Markov Chain Monte

Carlo algorithms reviewed in Section 2.6. These algorithms create approximate samples

that can be used to approximate posterior expectations. Asymptotic confidence inter-

vals for these approximations can be derived by bounding the convergence rate of the

underlying stochastic process. This is one of the main aspects addressed in this thesis.

Details are contained in Chapter 3 reviewing the results of Articles I and II. Deriving

more efficient computational methods is a very active area of research as all methods

are based on evaluating the posterior density each of which requires a run of the usually

expensive forward model.

In general, the literature that is not addressing computational topics falls naturally

into the following three parts:

1. the existence and representation of the posterior presented in Section 2.3;

2. continuity and approximation of the posterior with respect to the forward model,

12
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the noise distribution and the data which is addressed in Section 2.5. Even though

this is not in the focus of this thesis, these results justify the approximations arising

from discretised models on computers;

3. posterior consistency and its relation to the frequentist approach to inverse prob-

lems which is dealt with in Chapter 4. It is of interest to study posteriors arising

from artificially generated data corresponding to a fixed true parameter. A se-

quence of posteriors arising from diminishing noise is called posterior consistent if

the posteriors concentrate around this truth.

We close this section by commenting on some recent developments before sketching

briefly the history of Bayesian inverse problems. The frequentist approach to inverse

problems studies estimators that adapt to the smoothness of the underlying truth. In

this setting, the empirical Bayes’ methods introduce hyper parameters that are then

estimated from the data. A proper Bayesian approach to this problem places another

prior on the hyper parameters resulting in a hierarchical prior. Both the empirical Bayes’

methods as well as hierarchical methods for inverse problems have been studied in [111].

The idea to approach an infinite dimensional linear inverse problem by modelling the

unknown as random variable in a way to represent ’a-priori conviction concerning the size

and the smoothness’1 goes back to Franklin [70]. A proper Bayesian approach followed

shortly afterwards in a series of papers by Backus [9, 8, 10]. Tarantola developed these

ideas further by putting them into a general framework applying Bayesian statistics to

finite dimensional discretised versions of the underlying model, an account of this has

been, for example, presented in [179]. His approach included the use of MCMC methods

to sample from the posterior. A real cornerstone is the book by Kaipio and Somersalo

[99]. The authors create an algorithmic framework and demonstrate that the resulting

methods are competitive with state-of-the-art regularisation methods, for example, for

limited angle tomography, also known as dental x-ray imaging.

1p. 690 in J. N. Franklin. Well-posed stochastic extensions of ill-posed linear problems. J. Math.
Anal. Appl., 31:682–716, 1970
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2.2 The Guiding Example - An Elliptic Inverse Problem

Most results presented in this work are illustrated by an application of the Bayesian

approach to a nonlinear elliptic inverse problem. This particular inverse problem is

concerned with the reconstruction of the diffusion coefficient a from measurements of

the pressure P . The relation between a and P is modelled by the following elliptic

partial differential equation





−∇ · (a∇P ) = g in D

P = 0 on ∂D
(2.6)

where g denotes the forcing and D is a Lipschitz domain in Rd. Notice that the map

a 7→ P (a)

is a nonlinear map. For ease of presentation, we abbreviate this inverse problem by

(EIP) in our subsequent discussions. The (EIP) has many important applications, for

example in subsurface geophysics. The reason for its importance is that Equation (2.6)

is a good model for groundwater flow. The derivation is based on Darcy’s law which

can be derived by homogenising the porous medium equation, for which we refer the

reader to [14]. This book also illustrates the use of this model of groundwater flow in

nuclear waste management. A review of the (EIP) is contained in [134]. For the model

of groundwater flow, the Bayesian approach can be described as conditioning knowledge

of the permeability on measurements of the hydraulic head.

Moreover, we would like to point the reader to article [128] containing a comparison

of MCMC algorithms and other computational methods, such as the ensemble Kalman

filter, by applying them to generalisations of the (EIP).

Because of its importance for many applications and the simplicity of the equation,

we use the (EIP) as a guiding example in the following ways:

• In Article III, we develop a method to show posterior consistency for nonlinear

14
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inverse problems and apply it to the (EIP). Details can be found in Chapter 4.

• In Article II, we prove convergence results for Metropolis-Hastings algorithms

in infinite dimensions and construct proposals for the posterior arising from the

(EIP). We summarise these results in Section 3.3.2.

• In Article IV, we study the strongly under-determined problem if a has an additive

multi-scale structure. The corresponding results are reviewed in Chapter 5.

This section is organised as follows. First we set up the corresponding inverse problem

following [177] and [92] imposing a prior based on a series expansion with i.i.d. uniformly

on [−1, 1] distributed coefficients. We conclude this section by presenting simulations

with artificial data and demonstrate the behaviour of the posterior using MCMC samples

in Section 2.2.3.

2.2.1 A Literature Review on the Bayesian Approach to the EIP

For the noiseless inverse problem, we refer the reader to [154] and references therein.

It has been shown in the article that a can be reconstructed from P under appropriate

assumptions on g, D and the class of a under consideration in Equation (2.6). These

results are used in Article III.

Whereas we concentrate on the Bayesian approach below, we refer the interested

reader to [117] for a survey on regularisation techniques for this particular inverse prob-

lem. Convergence results for the Tikhonov regularisation of this problem have been

obtained in [188].

In the uncertainty quantification literature it has been studied how uncertainty

propagates from a to P . The uncertainty is again represented as a probability measure

and the resulting uncertainty on P then corresponds to the push-forward measure on P .

The Bayesian method have been applied to the discretisations of the (EIP), see for

example [134]. The well-posedness of the posterior in the infinite dimensional problem

has been established recently first for log-Gaussian priors in [46]. Besov priors followed

shortly afterwards in [44]. Well-definedness of the posterior for a prior based on a
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series expansion with i.i.d. uniformly distributed coefficients has been shown in [92].

In the same setting, article [170] provides a sparse general Polynomial Chaos (gPC)

representation of the posterior density. Data-adaptive Smolyak integration algorithms

can then be used in order to approximate posterior expectations [168].

In [92], the IS algorithm has been compared with two speeded up versions thereof for

the posterior arising from the (EIP). One is the multi-level approach which expresses the

expectation as difference of posterior expectations corresponding to finer and finer tri-

angulations of the finite-element forward problem. Under a fixed computational budget,

more and more samples can be used for coarser discretisations reducing the overall error,

see also [103]. The second approach considered in [92] is based on sparse representations

of the forward model using gPC method. This representation of the forward model can

be evaluated at a reduced computational cost but the representation has to be precom-

puted resulting in additional fixed computational costs. Some of the above references

are considered in more detail in Section 2.6 and Chapters 3 and 4.

2.2.2 The Bayesian Approach with Uniform Series Prior

We apply the Bayesian approach, as presented in Section 2.1, to the (EIP). For suffi-

ciently regular priors, we present formulae for the posterior that are used in simulations

in Section 2.2.3. We introduce the uniform series prior which has been used for Bayesian

inverse problems in [170] and [92]. It is given through the following parametrisation of

the diffusion coefficient a

au(x) = ā(x) +
∑

j≥1

ujψj(x), with x ∈ D (2.7)

where u ∈ U = [−1, 1]∞, ψj ∈ L∞(D) and ā ∈ L∞ are subject to the subsequent

assumption.

Assumption 2.1. There is a positive constant κ such that

∑

j≥1

‖ψj‖L∞(D) ≤
κ

1 + κ
K̄min

16
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where āmin = ess infx∈Dā(x).

In particular, this assumption implies that there are amax > amin > 0 such that

0 < amin ≤ a(x) ≤ amax ∀x ∈ D

and that the bi-linear form associated with the weak formulation of Equation (2.6) on

V = H1
0 (D) is uniformly coercive implying the existence of a solution to Equation (2.6)

using the Lax-Milgram lemma [68, 77]. Moreover, it can be shown that the solution

operator satisfies the following property.

Proposition 2.2. Under Assumption 2.1, the map K 7→ P (K) is Lipschitz as a mapping

from the appropriate subset of {Ku|u ∈ U} to V .

Proof. See [92].

We use the parametrisation in Equation (2.7) to construct a prior on a. In fact, we

place a prior on

u = (u1, . . . ) ∈ U = [−1, 1]N

resulting in a simpler presentation which is, by Theorem Appendix B.1 in Article III,

equivalent to placing a prior on a. Following [170, 92, 177], we choose

µ0 =

∞⊗

j=1

U(−1, 1) (2.8)

such that ui
i.i.d∼ U(−1, 1). We denote by G : U → V the solution operator

G(u) = P (a(u))

and consider forward operators of the form

G(u) = O (G(u)) (2.9)

where O : V →W is the observation operator. Subsequently, we consider either
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1. O = Id or

2. O = (l1(P ), . . . , lk(P )) where li ∈ V ?.

The data is supposed to be modelled based on the forward operator with additive noise

y = G(u) + η

where η ∼ N (0,Γ). According to Equation (2.4), the posterior takes the form

dµy

dµ0
(u) ∝ exp

(
−1

2

∥∥G(u)
∥∥2

Γ
+ 〈y,G(u)〉Γ

)
.

We conclude this section by summarising the formulae for the (EIP)

Model −∇ · (a∇P ) = g in D, P = 0 on ∂D (2.6)

Prior µ0 = ⊗∞j=1U(−1, 1) on u

Data y = G(u) + η

Posterior dµy

dµ0
(u) ∝ exp

(
−1

2

∥∥G(u)
∥∥2

Γ
+ 〈y,G(u)〉Γ

)
.

(2.10)

For more details about this derivation, we refer the reader to [177].

2.2.3 Markov Chain Monte Carlo Simulations

We perform MCMC simulations for the posterior associated with the inverse problem

described by Equation (2.10) on the one dimensional domain D = (0, 1). The main

purpose of these simulations is to illustrate the property of posterior consistency and to

present an application of an MCMC algorithm to a particular Bayesian inverse problem.

In order to implement our simulations, we have to specify the parametrisation of the

problem and the prior which is, in the general case, given by the Equations (2.7) and

(2.8). In the following, we recall the parametrisation of the diffusion coefficient K of

Equation (2.8)

Ku(x) = K̄(x) +
J∑

j=0

ujψj(x) where uj
i.i.d.∼ U(−1, 1).
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For the subsequent simulations, we set

K̄(x) = 3.5,

ψ2j−1(x) =
1

j3
cos(2πjx), , J0 ≥ j ≥ 1,

ψ2j(x) =
1

j3
sin(2πjx), γ2j−1, J0 ≥ j ≥ 1ψ0(x) = 1,

g(x) = 10π cos(2πx) + 6 cos(0.6πx) + 2.

We notice that this choice implies a(x) ≥ 0.1 independent of J = 2J0 + 1. The data

corresponds to evaluations of the pressure uniformly spaced at a distance ∆y apart from

each other, that is

y = G(K†) + η = (P (K†)(i∆y) + ηi)
b1/∆yc
i=0

where η ∼ N (0, σ2I). The diffusion coefficient K†, which we call the truth, is generated

according to the prior and is fixed for all subsequent simulations. The posterior given

in Equation (2.10) involves the solution operator to the PDE which has to be approx-

imated for simulations. In this one dimensional case, the elliptic PDE becomes an ODE

which can be explicitly integrated. The resulting ODE has been implemented using the

trapezoidal rule.

We visualise the distribution of the pressure, the diffusion coefficient and its constant

mode with respect to the prior in Figure 2.1 and with the posterior for a different number

of observations (∆y) and magnitude of the observational noise (σ) in the Figures 2.2-

2.4. The prior is approximated through Monte Carlo samples of u whereas the posterior

is given through MCMC samples. The particular MCMC algorithm used for these

simulations is the Reflection Standard Random Walk Metropolis (RSRWM) algorithm

which we have constructed in Article II. More details about this algorithm can be found

in Section 3.3.2.3.

We notice that the posterior variation and in particular, the density become more

peaked as the amount of observation (∆y) increases and the magnitude of the observa-

tional noise (σ) decreases. If the priors of a sequence of inverse problems converge to a
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point mass, this sequence is called posterior consistent. We have studied the posterior

consistency of the (EIP) and related problems in Article III. The results are summarised

in Chapter 4.

2.3 Existence and Representation of the Posterior

In the following, we sketch how the formulae for the posterior (c.f. Equations (2.2), (2.3)

and (2.4)) arise from the notion of regular conditional probability distributions. We recall

the definition of a conditional probability distribution for a standard probability space

(Ω,F ,P) and random variables X : (Ω,F)→ (S,A) and Y : (Ω,F)→ (T,B).

Definition 2.3. (From [63]) A collection of probability measures PX|Y=y on S is a

conditional distribution of X given Y = y under P if

1. for A ∈ A the map y 7→ PX|Y=y(A) is measurable from (T,A) into (R,B(R) and

2. for A ∈ A and B ∈ B P(A×B) =
´

B PX|Y=y(Y?P)(dy).

Regular conditional probability distributions exist under quite weak conditions, see

for example [63, 100, 27]. However, in order to use computational methods, an appro-

priate presentation of the posterior is needed, for example as density with respect to

the prior. For this reason, we focus on the representation of the conditional probability

distribution and illustrate how the representations in the Equations (2.2), (2.3) and (2.4)

can be obtained from the following general conditioning lemma.

Lemma 2.4. (Lemma 5.3 in [85]) Let ν and π be two probability measures on (Ω,F).

Assume that π has a density ϕ with respect to ν and that the conditional distribution

νX|Y=y exists. Then πX|Y=y exists and is given by

dπX|Y=y

dνX|Y=y
(x) =





1
c(y)ϕ(x, y) if c(y) > 0

1 otherwise

with c(y) =
´

S ϕ(x, y)νX|Y=y(dx) for all y ∈ T .
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(a) The prior variation of the pressure P

(b) The prior variation of diffusion coefficient
K

(c) The prior density of constant Fourier
mode u0 of diffusion coefficient K

Figure 2.1: Visualisation of the prior

(a) The pressure P corresponding to the
truth (orange), the observations (red), the
posterior mean (green, MCMC approxim-
ated) and the posterior variation (blue)

(b) The diffusion coefficient K correspond-
ing to the truth (orange), the posterior mean
(green, MCMC approximated) and the pos-
terior variation (blue)

(c) The constant Fourier mode u0 of the
diffusion coefficient K corresponding to the
truth (red), posterior density (blue given by
smoothed histogram of MCMC samples)

Figure 2.2: MCMC Simulations for
σ = 0.05 and ∆y = 0.05
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(a) Pressure P corresponding to the truth
(orange), the observations (red), the pos-
terior mean (green, MCMC approximated)
and the posterior variation (blue)

(b) The diffusion coefficient K correspond-
ing to the truth (orange), the posterior mean
(green, MCMC approximated) and the pos-
terior variation (blue)

(c) The constant Fourier mode u0 of the
diffusion coefficient K corresponding to the
truth (red) and the posterior density (blue
given by smoothed histogram of MCMC
samples)

Figure 2.3: MCMC Simulations for
σ = 0.03 and ∆y = 0.03

(a) The pressure P corresponding to the
truth (orange), the observations (red), the
posterior mean (green, MCMC approxim-
ated) and the posterior variation (blue)

(b) The diffusion coefficient K correspond-
ing to the truth (orange), the posterior mean
(green, MCMC approximated) and the pos-
terior variation (blue)

(c) The constant Fourier mode u0 of the
diffusion coefficient K corresponding to the
truth (red) and the posterior density (blue
given by smoothed histogram of MCMC
samples)

Figure 2.4: MCMC Simulations for
σ = 0.01 and ∆y = 0.01
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We use the above lemma to derive a Bayes’ rule for inverse problems as introduced

in Section 2.1. We recall that the data is modelled as

y = G(u) + η (2.1)

for u and y being elements of the Banach spaces X and Y , respectively. By placing a

prior µ0 on u and assuming that η ∼ Q0 is independent of u, the joint distribution π of

(u, y) takes the form

(u, y) ∼ µ0(du)
(
TG(u)?Q0

)
(dy) =: ν

where

Ty(x) := x+ y.

is the translation operator. In the following, we postulate that Q0 is quasi-translational

invariant with respect to translations by G(u) for a.e. u with respect to µ0.

Assumption 2.5. (Quasi-translational invariance of the noise measure) We assume

there is Φ(u; y) : X × Y → R such that

d
(
TG(u)?Q0

)

dQ0
(y) = exp (−Φ (u; y)) . (2.11)

This assumption allows us to derive Bayes’ rule on the basis of Theorem 2.4.

Theorem 2.6. (Bayes’ rule from [177]) Assume Φ (u; y) is ν-measurable and that for

Q0-a.e. y

Z :=

ˆ

x
exp (−Φ(u; y))µ0(du) > 0.

Then the conditional distribution µyof u given y exists and for ν-a.e. y it takes the form

dµy

dµ0
(u) =

1

Z
exp (−Φ (u; y)) .

A very important special case of this result corresponds to Q0 = N (0,Γ) which is
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also mentioned in Section 2.1. In this case Assumption 2.5 holds with

Φ (u; y) = −‖G(u)‖2Γ + 〈G(u), η〉Γ

because of the Cameron-Martin theorem which can be found in [40] and [82]. Moreover,

it is worth mentioning that Lemma 2.4 can be used to derive the standard finite dimen-

sional Bayes’ rule. The joint law can be written as a density with respect to a product

probability measure by introducing an artificial probability measure with everywhere

positive density for normalisation.

A more general discussion of representing the posterior in infinite dimensions is

available in [118]. The author also discusses the problem of choosing a version of the

conditional distribution based on the continuity of y 7→ PX|Y=y.

2.4 Posterior Consistency

The Bayesian method can be assessed by fixing a true input u† and by considering the

posterior µy resulting from artificial data y = G(u†) + η. As the aim of inverse problems

is to reconstruct u, it is desirable that µy concentrates around u† for a large class of u†.

This property is called posterior consistency. In Article III, we present one of the first

posterior consistency results for nonlinear infinite-dimensional inverse problems. We

give a thorough overview about the existing literature on posterior consistency and our

own contribution in more detail in Chapter 4.

2.5 Approximation and Continuity of the Posterior

In Section 2.3 we justify Bayes’ rule for the posterior density in different infinite dimen-

sional settings. However, infinite dimensional forward models have to be approximated

by discretised versions for simulations. The simulations are only reasonable if the bias in-

troduced by the discretisation can be quantified. The appropriate approximation results

along with continuity of the posterior in data are the subject of this section.

The Bayesian framework is particularly appealing as under appropriate conditions,
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see for example [36] or [177], the posterior µy depends in a Lipschitz continuous way on

the data, that is

dHell(µ
y1 , µy2) ≤ C ‖y1 − y2‖

where dHell is the Hellinger distance. For two probability measures µ1 and µ2 with

common reference measure, the Hellinger distance is given by

dHell(µ1, µ2) :=

√√√√1

2

ˆ

(√
dµ1

dν
−
√
dµ2

dν

)2

dν.

For a function f ∈ L2
µ1
∩ L2

µ1
a bound on the Hellinger distance gives rise to

|Eµ1f − Eµ2f | ≤ 2
(
Eµ1f2 + Eµ2f2

) 1
2 dHell (µ1, µ2) (2.12)

which can be found in Lemma 6.37 in [176].

Similar results are available for perturbing or approximating the forward model G by

a discretised version GN , for example, based on finite element methods for the (EIP) in

[92] or spectral methods for the Navier-Stokes equation in [37]. More generally, Φ(u; y)

is approximated by ΦN (u; y) in Equation (2.5). A very important special case is when

ΦN (u; y) represents a finite dimensional approximation to a continuum model. If the

forward model can be diagonalised by a spectral representation in a Hilbert space, a

natural option is ΦN (u; y) := Φ(ΠNu; y) where ΠNu is the projection onto the space

spanned by φ1, . . . , φN ∈ X. The approximated posterior then corresponds to

dµyN
dµ0

(u) ∝ exp
(
−ΦN (u; y)

)
.

If there is an appropriate bound of the form

∣∣Φ(u; y)− ΦN (u; y)
∣∣ ≤ ψ(N)M(u),

such that M(u) ∈ L1
µ0
, then

dHell(µ
y, µyN ) ≤ Cψ(N).
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This crucial result justifies the application of computational methods to the discretised

posterior in order to approximate posterior expectations. For more details on these ap-

proximation results, we refer the reader to [177]. The first results of this type have been

obtained in [37]. We also refer the reader to [119] which studies finite dimensional approx-

imations to posterior distributions in quite generality. However, this article quantifies

the convergence in distribution and the total variation distance which do not guarantee

that the conditional variance converges as the dimension increases.

The references presented in this section contain important approximation results

justifying computational methods presented in the next section for discretised forward

models.

2.6 Computational Methods for Bayesian Inference

Making inference based on the posterior is not straightforward since it is only represented

as an unnormalised density with respect to the prior and it involves evaluations of the

usually expensive forward model, for details consult the Equations (2.3) and (2.4). In

this section, we review appropriate computational methods for probing the posterior.

These methods aim to approximate

1. the Maximum A Posteriori (MAP) estimator,

2. posterior expectations or

3. minimisers of posterior expectations.

We do not go into detail about the computational methods approximating minimisers of

posterior expectations but just remark that they can be obtained by combining compu-

tational methods for approximating posterior expectations and stochastic optimisation

algorithms as the Robbins-Monro algorithms. This algorithm has been introduced in

[155] and we recommend [28] and [5] for further reading.

In finite dimensions, the MAP estimator corresponds to finding the maximum of the

Lebesgue density of the posterior. This is equivalent to determining the location of an

infinitesimal ball with maximal a posteriori probability. This formulation generalises to

26



Chapter 2. Bayesian Inverse Problems 2.6. Computational Methods

the infinite dimensional setting. Recently, it has been shown rigorously that the MAP

estimator for posteriors arising from Gaussian priors and noise corresponds to minimisers

of an appropriate Tikhonov L2-regularisation functional [45]. In this way, the choice of

norms in the functional can be related to the prior and the noise covariance. For the

same reason, all optimisation methods that can be used for Tikhonov functionals can

also be used for approximating the MAP estimator. We refer the reader to [90] for an

introduction and overview of PDE-based optimisation which is a suitable method for

the resulting functional.

Posteriors with the same MAP estimator can look quite differently. They might be

unimodal, multimodal, concentrated or not concentrated around the MAP estimator at

all. For this reason, it is important to consider computational methods that approxim-

ate posterior expectations which characterise the posterior. Posterior expectations also

contain meaningful information such as how likely it is that the unknown lies in a cer-

tain set or characterises the a posteriori uncertainty, for example through the posterior

variance. Approximating posterior expectations by evaluating the posterior on a grid is

only possible in low dimensions as the computational complexity increases exponentially

in the dimension. Sampling algorithms constitute a large class of algorithms that under

appropriate assumptions suffer less from the dimension and often do not need a separate

estimation of the normalising constant. The common idea is to generate samples and

to approximate the expectation using appropriate averages. Subsequently, we present

a brief overview of different sampling algorithms such as the Monte Carlo, the Markov

Chain Monte Carlo (MCMC), the Sequential Monte Carlo (SMC), the Quasi Monte

Carlo (QMC) algorithms. We also briefly mention general Polynomial Chaos (gPC) al-

gorithms which are not based on sampling. The purpose of the remainder of this chapter

is to review all major computational methods for approximating posterior expectations

before concentrating on MCMC algorithms in the following chapter.

Monte Carlo Algorithms

A prime example are Monte Carlo methods which use i.i.d. samples from the target

measure in order to approximate its expectation using the sample average [7]. The cent-
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ral limit theorem guarantees that the difference between the expectation and the average

based on n samples is of order O( 1√
n

). Importance sampling consists in sampling from

an importance distribution different from the target distribution, and then replacing the

sample average by a weighted average to cancel the influence of the importance distri-

bution. Both methods rely on the ability to produce i.i.d. samples with appropriate

distributions. A common strategy is to apply a transformation random variables which

can be sampled easily in order to obtain samples from the desired distribution. Whereas

it is difficult to construct functions exactly, a recent approach to Bayesian inverse prob-

lems is to construct a function that approximately maps the prior to the posterior [66].

Another reason why it is difficult to create independent samples is that for many meth-

ods, precise bounds on the density are needed for them to be feasible. For example, this

is the case for rejection sampling as described in [156].

Even if it is not possible to sample from the target measure directly it is often possible

to sample from an arbitrary close approximation. A typical example is the solution of

an SDE. It is possible to sample from the Euler-Maruyama with arbitrary small step

size. However, each step size introduces a bias. For a fixed computational budget there

is therefore a trade off between both errors. In this case it is also possible to express the

expectation of interest as a telescopic sum of expectation with respect ti a sequence of

increasingly finer step-size. This benefits in two ways:

1. more samples can be used for summands with large step size leading to small

Monte Carlo error

2. summands corresponding to small step sizes the integrand is quite small leading

to small Monte Carlo error even for a small amount of samples.

This is the so called multilevel approach which has been introduced in article [78].

Markov Chain Monte Carlo Algorithms

The limited applicability of standard Monte Carlo algorithms can be overcome by allow-

ing the samples to be dependent on each other. One of the simplest ways for samples

to be dependent is that of a Markov chain as the next in the sequence is conditionally
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independent of all the previous given the current. Under appropriate conditions on the

Markov chain, the resulting samples can be used to approximate expectations through

averages. Algorithms providing the appropriate Markov chains are called Markov Chain

Monte Carlo (MCMC) algorithms. They are much more generally applicable than stand-

ard Monte Carlo algorithms which can be seen as special cases. For a prescribed target

measure, there are many suitable algorithms. Choosing a ’fast’ one is difficult as it is

hard to obtain an error bound, that is a confidence set for the expectation of interest.

For a prescribed confidence set, the complexity of an MCMC algorithm can be quantified

as follows

number of necessary steps × cost of one step. (2.13)

Whereas the cost of one step is usually problem dependent and straightforward to

quantify, the number of necessary steps for a prescribed confidence bound is not. The

difference between expectation and sample average is partly due to the finite sample

size, the Monte Carlo error and partly due to the bias which arises because a discretised

model is used for approximating the posterior density. The latter can be bounded using

the approximation results from Section 2.5 and the former decreases asymptotically as

O( 1√
n

) if a Markov chain CLT holds, see [29, 122]. It is of interest to show how the

leading constant in O( 1√
n

) depends on relevant problem parameters. For Bayesian in-

verse problems, it is of interest to characterise the dependence on the noise level and

the dimension of the approximations. In particular, the dependence on the dimension

is studied in Articles I and II and is the subject of Chapter 3.

One way to speed up an MCMC algorithm is to reduce the cost of evaluating the

target density. For Bayesian inverse problems this can be achieved by an application of a

representation of the model which can be precomputed. If an appropriate representation

is available, each evaluation is cheaper at the expense of an initial cost. This approach

has been taken in [92] using a sparse-tensor representation of the forward model based

on general Polynomial Chaos (gPC) for the (EIP).

Another possibility to speed up an MCMC algorithm for Bayesian inverse problems

is to split the expectation of interest into a telescopic sum of expectations corresponding
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to increasingly precise approximations of the forward model. In this way, more samples

can be used in order to decrease the Monte Carlo error for the coarser models and less

samples are then needed as the difference of the expectations is comparatively small.

This is the multi-level approach which has originally been introduced for SDEs and has

recently been applied to the (EIP) in [92] and [103].

Sequential Monte Carlo Algorithms

Whereas we just discussed extensions of the standard Monte Carlo method, it is also

possible to extend importance sampling by considering a sequence of probability dis-

tributions using each as the importance distribution for the next. These methods are

called Sequential Monte Carlo (SMC) methods and are reviewed in [62]. Recently, these

methods have been applied to the inverse problem of reconstructing the initial condition

of the Navier-Stokes equations in [101].

Quasi-Monte Carlo Algorithms

All sampling methods discussed previously are based on constructing a sequence of

random quantities such that an appropriate average converges to the expectation of

interest. The idea of Quasi-Monte Carlo (QMC) methods is to consider a deterministic

series instead. For this theory, the model problem is to integrate a function on the unit

cube against the Lebesgue measure. Depending on the smoothness of the integrand

using a space filling sequence, these methods are able to beat the algebraic order O( 1√
n

)

of the Monte Carlo error. For an introduction, we refer the reader to an overview in [58].

An interesting recent approach is to combine QMC and MCMC methods into MCQMC.

So far, theoretical results only guarantee the existence of a deterministic driver sequence

with a rate that agrees with the standard Monte Carlo rate of O( 1√
n

), for which we

refer the reader to [57]. Another drawback is that both QMC and MCQMC are not as

generally applicable as SMC or MCMC algorithms. So far, neither QMC or MCQMC

has been tested with posteriors arising in Bayesian inverse problems.
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General Polynomial Chaos Algorithms

The method of general Polynomial Chaos (gPC) is not limited to speeding up MCMC

by representing the forward model as described above more efficiently, it can also be

used to represent the posterior density. Deterministic integration schemes, like adaptive

Smolyak quadrature, can be applied to gPC representation of leading convergence rate

that beats the usual O(n−
1
2 ) of Monte Carlo algorithms. For a recent account of the

theory, we refer the interested reader to [168].

Whereas the purpose of this section is to review all major computational methods

probing the posterior, we concentrate on MCMC algorithms in the following chapter.

Even though MCMC algorithms are well-studied and their qualitative convergence rate

is often of order O(n−
1
2 ), statistical error bounds that are relevant for practice are still

rare. We present results contained in Articles I and II quantifying the dependence of

the statistical error bound on the dimension of a discretisation of a Bayesian inverse

problem in a rigorous way.
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Chapter 3

Markov Chain Monte Carlo Algorithms for

Bayesian Inverse Problems

Markov Chain Monte Carlo (MCMC) algorithms are one of the most widely used compu-

tational methods for approximating expectations with respect to a given target probab-

ility measure µ on the space E. In particular, MCMC algorithms play an important role

in dealing with Bayesian inverse problems. For this reason, we have briefly introduced

them in Section 2.6. In addition, this chapter is devoted to summarising the deeper

analysis of MCMC algorithms provided in Articles I and II and to relate them to the

existing literature.

The common idea of MCMC algorithms is to approximate Eµf for some function

f : E → R by the sample average

Sn,n0(f) =
1

n

n+n0∑

i=n0

f(Xi) (3.1)

where {Xi}i∈N denotes the evolution of an appropriate Markov chain, n is the sample

size and n0 is called the burn-in which aims at reducing the bias. This approximation

is based on the ergodicity of the underlying process guaranteeing that the time average

converges to the space average as the time tends to infinity. In this chapter as well as

in Articles I and II, we focus on a particular subclass of MCMC algorithms known as

Metropolis-Hastings algorithms. The basic idea of Metropolis-Hasting algorithms is to
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obtain an appropriate Markov chain by accepting or rejecting a move from the proposal

kernel in a way such that the resulting Markov chain is invariant with respect to the

target measure. Under mild conditions (we refer the reader to Theorem 3.5), the sample

average converges to the expectation of interest that is

lim
n→∞

Sn,n0(f) = µ(f).

However, as the stochastic error term can converge to zero arbitrarily slowly, it is of

interest to derive (asymptotic) confidence intervals for the error

EXn,n0
(f) = Eµf − Sn,n0(f).

For standard Monte Carlo methods corresponding to i.i.d. Xi ∼ µ, the central limit

theorem (CLT) guarantees that the size of the asymptotic confidence interval for a

prescribed level decays like O( 1√
n

) for f ∈ L2
µ. These considerations can be turned

into rigorous statistical error bounds for standard Monte Carlo algorithms. It is worth

pointing out that the confidence intervals for MCMC algorithms also often exhibit an

O( 1√
n

) behaviour.

In this chapter, as well as in Articles I and II, we consider target measures of the

form

µ(dx) = M exp(−Φ(x))γ(dx), (3.2)

where γ is a reference probability measure on an infinite dimensional Banach or Hilbert

space, and approximations to the measure µ. These d-dimensional approximations are

given by

µd(dx) = M exp(−Φd(x))γd(dx).

Target measures of this kind arise as posteriors in Bayesian inverse problems described

in Section 2.3 and 2.5.

We concentrate on the subclass of Metropolis-Hastings algorithms as many MCMC

algorithms used in practice and most of the algorithms known to be well-defined on
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infinite dimensional state spaces exhibit this particular form. One exception has been

presented in [147]. For most MCMC algorithms, it is natural to expect that the cost

per step of the algorithm increases when applied to µd for an increasing dimension

d. However, in order to satisfy a fixed stochastic error bound on EXn,n0
(f), in general,

the number of necessary steps increases as well. This leads to tremendously higher

computational costs constituting a major problem for application for Bayesian inverse

problems.

In Article I, we provide the first dimension independent convergence result for an

appropriately modified random-walk type Metropolis-Hastings algorithm, reviewed in

Section 3.3.1.2. While there are some heuristic arguments quantifying the increase in

the number of steps, for example, for the RWM algorithm, we also quantify this in a

rigorous way using the method of conductance. For many algorithms, the dimension

dependence has been quantified in terms of the acceptance probability and diffusion

limits [22]. Using the method presented in Section 3.3.1.1, many of these results can be

turned into rigorous upper bounds on the rate of convergence.

The remainder of this chapter is organised as follows. In Section 3.1, we give a

brief overview of Metropolis-Hastings algorithms on general state spaces allowing us to

consider abstract MCMC algorithms on an infinite dimensional Hilbert space H. We

provide a thorough literature review on both heuristic and rigorous convergence results

for the resulting Markov chain in Section 3.2. Using this background, we summarise the

results obtained in Articles I and II which are contained in Part B of this thesis.

Research Article I

We study the standard Random Walk Metropolis (RWM) algorithm, a Metropolis-

Hastings algorithm with a particular Random Walk proposal, and a slight modification

of it, known as the preconditioned Crank-Nicolson (pCN) algorithm. We apply both al-

gorithms to d-dimensional approximations µd of the target measure µ given in Equation

(3.2) with γ being Gaussian. We pose conditions on the target measure such that the

L2
µd
-spectral gap of the pCN does not depend on the dimension d. Standard results then

imply confidence bounds for the sample average of any L2
µd
-function f independent of
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the dimension d. In contrast, we show that the spectral gap of the RWM deteriorates

as the dimension increases.

Research Article II

We show that the lazy version of the Metropolis-Hastings algorithm has an L2-spectral

gap with respect to a target measure if it has a density with respect to a reference

probability measure for which the proposal kernel has an L2-spectral gap. Prior to this

result, the independence sampler has been the only sound MCMC algorithm applicable,

for example, to the Bayesian inverse problem considered in Section 2.2. For this reason,

only the independence sampler has been considered in [92]. Moreover, we construct

a class of algorithm which we call the Reflection Random Walk Metropolis (RRWM)

algorithms which have explicitly been tailored for the (EIP) with uniform series priors

as introduced in Section 2.2.

In order to present this work in more detail in Section 3.3, we review Metropolis-

Hastings algorithms and provide a detailed literature review in the following sections.

3.1 Exposition of Metropolis-Hastings Algorithms

The most relevant subclass of MCMC algorithms are the Metropolis-Hastings algorithms

[136, 89]. For an extensive overview of standard MCMC algorithms, we refer the reader

to [29] and for a concise survey we recommend [156]. Metropolis-Hastings algorithms

are given by a Markov chain which is constructed on the basis of a given homogeneous

proposal Markov chain by accepting or rejecting its moves. The aim is that the resulting

Metropolis-Hastings Markov chain can be used to sample from a given target measure.

Under appropriate assumptions on the target measure and the proposal Markov chain,

the acceptance probability can be chosen in a way that the target measure is an invari-

ant measure of the Metropolis-Hastings Markov chain. Following [181], we introduce the

Metropolis-Hastings algorithm in full generality in this section. This allows us to con-

sider abstract algorithms for the full infinite dimensional posterior arising in Bayesian

inverse problems. Numerical simulations suggest that these algorithms perform well
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when applied to high dimensional discretisations of the target measure.

First, we introduce Metropolis-Hastings algorithms for arbitrary proposal Markov

kernels and present the common proposal choices corresponding to

• the independence sampler (IS),

• the Random Walk Metropolis (RWM) algorithm and

• the Metropolis-Adjusted-Langevin (MALA) algorithm

for target measures that have a density with respect to the Lebesgue measure. In a

second step, we discuss modifications of these algorithms that perform better as the

dimension of the approximations increases. This type of target measure is considered

in Article I and arises from Bayesian inverse problems if the prior is chosen to have a

density with respect to a Gaussian measure. More details about the target measures

and algorithms considered in Article II can be found in Section 3.3.2.

All MCMC algorithms give rise to a particular Markov chain. Therefore we present

the relevant notions first before concentrating on Metropolis-Hastings algorithms.

3.1.1 Time Homogeneous Markov Chains

In this thesis, we only consider time homogeneous Markov chains on a Polish space E.

Homogeneous Markov chains are uniquely determined through their initial distribution

L(X0) and their transition probability kernel P , which we recall in the following.

Definition 3.1. (From [137]) P : E × B(E)→ R is a probability transition kernel if

• for each A ∈ B(E), P (·, A) is a non-negative measurable function on E;

• for each x ∈ E, P (x, ·) is a probability measure on B(E).

We use the standard notation Pn(x, y) for the n-step kernel. Moreover, P acts on a

function f : E → R and a measure ν on (E,B(E)) as follows

(µP )(dz) :=

ˆ

E
P (x, dy)µ(dx)

Pf(x) :=

ˆ

E
f(y)P (x, dy).
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3.1.2 The Abstract Metropolis-Hastings Algorithm

The Metropolis-Hastings algorithm accepts a move from the proposal kernel Q(x, dy)

with probability α(x, y), specified below, giving rise to the following abstract algorithm.

Algorithm 3.2 (Metropolis-Hastings algorithm). Initialise X0. For i=0,. . . ,n do:

Generate Y ∼ Q(Xi, ·) and U ∼ U(0, 1) independently, then set

Xi+1 =





Y α(Xi, Y ) ≥ U

Xi otherwise
.

It is straightforward to show that the resulting sequence is again a Markov chain

with transition kernel

P (x, dz) = α(x, z)Q(x, dz) + δx(dz)

(
1−
ˆ

E
Q(x, dv)α(x, v)

)

where δx denotes the Dirac measure centred at x. The main idea is to choose the

acceptance probability in a way that makes the target measure invariant for P , that is

µP = µ.

Note that a strong law of large numbers holds because of Birkhoff’s ergodic theorem if

µ is the unique invariant measure of P . The corresponding result can be found in [100].

If the Radon-Nikodym derivative d(µ(dy)Q(y,dx))
d(µ(dx)Q(x,dy)) exists, this measure µ is invariant for P

if

α(x, y) : = min

(
1,
d (µ(dy)Q(y, dx))

d (µ(dx)Q(x, dy))

)
. (3.3)

In fact, this choice implies that P is reversible with respect to µ, that is

µ(dx)P (x, dy) = µ(dy)P (y, dx). (3.4)

For an explicit calculation we refer the reader to [181]. So far, we have introduced the
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Metropolis-Hastings algorithm in an abstract setting. In the next section, we present

particular algorithms based on choices for the proposal distribution and derive their

acceptance probability α.

3.1.3 The IS, RWM and MALA Algorithm for Target Measures with

Lebesgue Density

We consider basic Metropolis-Hastings algorithms for target measures µ given as a dens-

ity π with respect to the Lebesgue measure λ. In this case, common choices for the pro-

posal distribution are those of the Independence Sampler (IS), the Random Walk Met-

ropolis (RWM) and the Metropolis-Adjusted-Langevin (MALA) algorithm. Whereas

these algorithms are well-known, see for example [156, 29], we concentrate on modified

versions which are more suitable for target measures arising in Bayesian inverse prob-

lems. We introduce the standard algorithms in this section and their modified versions

in Section 3.1.4. However, before introducing their modifications, we devote this section

to the standard IS, RWM and MALA algorithm in the following assuming that the tar-

get measure takes the form µ ∝ πdλ. For the standard IS, RWM and MALA algorithm,

we state the proposal and corresponding acceptance probabilities according to Equation

(3.3). They are given by a Metropolis-Hastings algorithm (see Algorithm 3.2) with the

appropriate choices for Q and α.

Independence Sampler (IS)

The IS gets its name because the proposals do not depend on the current state of the

chain and are given by ρ(y)dy where ρ is an appropriate density. In this setting, the IS

sampler takes the form

QIS(x, dy) = ρ(y)dy (3.5)

αIS(x, y) =
π(y)ρ(x)

π(x)ρ(y)
∧ 1.

Subsequent steps of the resulting Markov chain only depend on the current state through

the acceptance probability. This leads to a fast decorrelation of the samples if the

acceptance probability is large enough.
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Random Walk Metropolis (RWM)

In contrast to the IS algorithm, the RWM is based on the random walk proposal which

consists of local moves based on a normal distribution centred at the current sample.

For a covariance matrix C and a step-size parameter δ the proposal and acceptance

probabilities are given by

QRWM(x, dy) = N (x, 2δC)(dy)

αRWM(x, y) =
π(y)

π(x)
∧ 1. (3.6)

It is worth mentioning that the proposal QRWM, as any symmetric random walk, is

reversible with respect to the Lebesgue measure.

Metropolis-Adjusted-Langevin (MALA)

Another common Metropolis-Hastings algorithm, known as MALA algorithm, is based

on the continuous time dynamics of the over-damped Langevin stochastic differential

equation (SDE)

dXt = C∇ log πdt+
√

2C
1
2dBt.

The resulting continuous time dynamics preserve the target measure which can be veri-

fied using the forward Kolmogorov equation, for details consider [149]. However, just

using the steps of a numerical approximation as samples introduces a non-vanishing bias

which is demonstrated and quantified in [162, 132, 133]. This can be overcome by using

the steps of a numerical integrator such as the Euler-Maruyama algorithm as the pro-

posal for a Metropolis-Hastings algorithm. Following [109], the Euler-Maruyama time

step takes the form

Xt+∆t = Xt + C∇ log π(Xt)∆t+
√

2C
1
2 (Bt+∆t −Bt+∆t).
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According to this, the resulting Metropolis-Hastings algorithm takes the form of Al-

gorithm 3.2 with the following proposal kernel and acceptance probability

QMALA(x, dy) = N (x+ δC∇ log π, 2δC)(dy)

αMALA(x, y) =
π(y) exp

(
−1

2 ‖x− y − δC∇ log π(y)‖2C
)

π(x) exp
(
−1

2 ‖y − x− δC∇ log π(x)‖2C
) ∧ 1.

It is possible to apply the RWM and the MALA algorithm to discretisations of

Bayesian inverse problems of the measures. However, it is well-known from simulations,

for example in [173], that the performance of the RWM and MALA deteriorate if the

dimension increases. We present heuristic arguments based on [159], [131] and [152]

in Section 3.2.2 suggesting that the number of steps for a prescribed confidence level

increases like O(d) and O(d
1
3 ) for the RWM and the MALA algorithm, respectively.

We make this rigorous in terms of the L2
µ-spectral gap which is one of our major con-

tributions of Article I and is reviewed in Section 3.3.1.1. Because of the undesirable

dimension dependence of the RWM and the MALA algorithm, we consider appropriate

modifications in the following section.

3.1.4 Metropolis-Hastings Algorithms for Target Measures based on

Gaussian Probability Measures

Subsequently, we present appropriate modifications of the RWM and the MALA al-

gorithm that are not only well-defined for Gaussian based infinite dimensional target

measures arising from Bayesian inverse problems, but also outperform the standard al-

gorithms for high-dimensional discretisations. For this presentation, we briefly recall

the structure of the posteriors arising in Bayesian inverse problems, see Chapter 2, with

Gaussian-based priors and finite dimensional approximations based on a Karhunen-

Loeve expansion. These measures take the form

µ(dx) = M exp(−Φ(x))γ(dx) (3.2)
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where γ is a Gaussian reference probability measure. These measures do not only arise

in Bayesian inverse problems, but also in sampling conditioned diffusions [87, 86, 85].

In the case of Bayesian inverse problems, it might be a helpful illustration to assume

that γ coincides with the prior and µ with the posterior. For more details, we refer the

reader to Section 2.1. For ease of presentation, we consider a central Gaussian reference

measure γ = N (0, C) on a Hilbert space H. At this point, we would like to remark that

even though this exposition only considers Gaussian reference measures, the results from

Article II apply also to non-Gaussian reference measures, consider also Section 3.3.

In the Gaussian case, γ can be represented through the Karhunen-Loeve expansion

γ(dx) = L
( ∞∑

i=1

γiϕiξi

)
(dx), (3.7)

where
(
(γi)2, ϕi

)
is an orthogonal eigensystem of the trace class covariance operator.

This expansion motivates the following finite dimensional approximation

µd(dx) = Md exp(−Φd(x))γd(dx) with (3.8)

γd(dx) = L
(

d∑

i=1

γiϕiξi

)
(dx)

on the space

Hd = span {φ1, . . . , φd} ,

where Φd denotes a d-dimensional approximation of Φ. A natural choice for Φd is, for

example, Φ(Πd·) where Πd denotes the orthogonal projection onto Hd. Note that the

covariance operator Cd of γd on Hd can be represented as a diagonal matrix with entries
(
(γ1)2, . . . , (γd)2

)
with respect to the basis {φ1, . . . , φd}. Under appropriate assumptions

on Φ, the finite dimensional approximations of µm converge weakly to the target measure

µ. Results of this type are contained in [38], [177] and [180]. We abuse the notation by

writing µ∞ = µ and γ∞ = γ. In this way, we obtain the same notation for the MCMC

algorithm on Hd and H∞ := H.

The algorithms presented in Section 3.1.3 can be applied to the target specified by
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Equation (3.8). For example, the acceptance probability for the RWM algorithm takes

the form

α(x, y) = exp

(
Φ(x) +

1

2

〈
C−1
d x, x

〉
− Φ(y)− 1

2

〈
C−1
d y, y

〉)
∧ 1.

Whereas for each finite d this acceptance probability results in a well-defined algorithm,

an application of the RWM to µ is not well-defined because
〈
C−1y, y

〉
is γ-a.s. infinite.

The reason for this is that the Cameron-Martin norm associated to a Gaussian measure

of a draw of the same measure is almost surely infinite, consider also [82, 26]. This fact

underlies the development in[22] and is explained further in the recent review [38]. This

suggests that the RWM algorithm does not perform well for large d. In Article I, we

have made this fact rigorous which is also reviewed in Section 3.3.1. Subsequently, we

discuss appropriate modifications for the IS, the RWM and the MALA algorithm.

The Independence Sampler (IS)

It is straightforward to modify the IS algorithm by choosing a proposal distribution

ν that has a density ρ with respect to γd such that the proposal and the acceptance

probability are given by

QIS(x, dy) = ρ(y)dγd(dy) (3.9)

αIS(x, y) = exp[Φ(x)− Φ(y)]
ρ(x)

ρ(y)
∧ 1.

Note that this construction of the independence sampler does not depend on the fact that

γd is Gaussian. One of the first applications of this algorithm to an infinite dimensional

state space has been presented in [161] by considering for the problem of sampling

diffusion bridges.

The independence sampler proposes independent moves based on ργd such that the

next step of the Markov chain only depends on the previous step through the acceptance

probability. In this way, the independence sampler usually performs global moves.
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The Preconditioned Crank-Nicolson (pCN) Algorithm

Locally moving Metropolis-Hastings algorithms that are well-defined on infinite dimen-

sional spaces are considered much later. The following modification of the random walk

is specific to Gaussian reference measures and consists of centring the proposal around

(1 − 2δ)
1
2x instead of x. This construction gives rise to the following proposal kernel

and acceptance probability

QpCN(x, dy) = N
(

(1− 2δ)
1
2x, 2δCd

)
(dy) (3.10)

αpCN(x, y) = exp (Φ(y)− Φ(x)) ∧ 1.

It is interesting to note that the proposal corresponds to the steps of an Ornstein-

Uhlenbeck process. Moreover, the proposal can also be derived as the preconditioned

Crank-Nicolson discretisation of an appropriate SPDE, for more details we refer the

reader to [38]. For target measures as in Equation 3.7, this algorithm has been first

considered in [22] (and has previously been called P-RWM and PIA algorithm with

(α, θ) = (0, 1
2)). Articles [22],[18] and [38] review different algorithms that are valid on

function spaces and present numerical simulations. Moreover, the proposal in Equation

(3.10) has already been used in the finite dimensional context, for example in [140].

Note that the proposal kernel QpCN is reversible with respect to γd (this is also the

case for d =∞). This follows from the fact that

N (0, C)(dy)N
(

(1− 2δ)
1
2 y, 2δC

)
(dx) = N (0, C) (dx)N

(
(1− 2δ)

1
2x, 2δC

)
(dy)

which can be checked by calculating the mean and the covariance operator on both sides.

In this way, the pCN can be seen as natural generalisation of the standard random walk

which is reversible with respect to the Lebesgue measure.

In general, if the proposal kernel Q is reversible with respect to the reference measure

γ, the acceptance probability takes a particularly simple form

α(x, y) = 1∧dµ(dy)Q(y, dx)

dµ(dx)Q(x, dy)
= 1∧ exp (−Φ(y))

exp (−Φ(x))

dγ(dy)Q(y, dx)

dγ(dx)Q(x, dy)
= 1∧exp (Φ(x)− Φ(y)) .
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The Preconditioned Crank-Nicolson Langevin (pCNL) Algorithm

The standard MALA algorithm is based on the Langevin SDE, likewise its generalisation

is based on the preconditioned Crank-Nicolson discretisation of the following appropriate

SPDE
dx

dt
= −x− CDΦ +

√
2C

dw

dt
. (3.11)

The ∆t-time step of the Crank-Nicolson algorithm is given by

xt+∆t − xt = (−1

2
xt −

1

2
xt+∆t − CDΦ)∆t+

√
2∆tξ

with ξ ∼ N (0, C). Rearranging gives rise to

xt+∆t =
1− 1

2∆t

1 + 1
2∆t

xt − CDΦ
∆t

1 + 1
2∆t

+

√
2∆t

1 + 1
2∆t

ξ.

This presentation goes back to [22] and [38]. The Metropolis-Hastings algorithm based

on this proposal is called preconditioned Crank-Nicolson-Langevin proposal (pCNL) and

can be summarised as

QpCNL(x, dy) = N (x+ δC∇ log π, 2δA)(dy)

αpCNL(x, y) = 1 ∧ ρ(y, x)

ρ(x, y)
with

log p(x, y) = c− Φ(x) +
1

2
〈v − u,DΦ〉+

∆t

4
〈u+ v,DΦ〉+

∆t

4

∥∥∥C 1
2DΦ

∥∥∥
2
.

Note that the algorithm has also been called PIA algorithm with (α, θ) = (1, 1
2) in [22]

and a semi-implicit MALA scheme in [64].

The pCN algorithm can also be derived from Equation (3.11) for Φ = 0 . This can

also be seen by substituting ∆t =
2(−δ−

√
1−2δ+1)
d for the pCNL giving rise to

xt+∆t = (1− 2δ)
1
2xt − CDΦ(1− (1− 2δ)

1
2 ) +

√
2δξ

which agrees with the pCN for Φ = 0. We would like to mention that there are also

non-preconditioned versions of the pCN and the MALA algorithm [22, 38].

45



Chapter 3. MCMC Algorithms 3.2. Literature Review

3.2 Heuristics and Convergence Rates -

A Literature Review

One major focus of the research on Metropolis-Hastings algorithms is the quantification

and improvement of their performance. We describe different notions of Markov chain

convergence, their implications for the sample average and describe conditions on the

target measure under which a given MCMC algorithm converges with respect to a specific

notion of convergence. In particular, we focus on the concepts of geometric ergodicity,

L2
µ-spectral gaps and Wasserstein convergence. We close this section by presenting

heuristic convergence results in terms of diffusion limits and the expected squared jump

distance (ESJD) as they motivate some of the results given in Article I.

There exist many different MCMC algorithms that can be used to approximate ex-

pectations for a given target measure. However, the performance of each algorithm can

vary dramatically depending on parameters of the algorithm and the target measures.

There are different ways to quantify the performance of an algorithm, for example, con-

vergence rates to equilibrium, spectral gaps, expected squared jump distance considered

subsequently. As the main aim of MCMC algorithms is to approximate expectations

computationally, on way to quantify their performance is to compare their computa-

tional costs for a given level of accuracy. More precisely, statistical bounds on the error

EXn,n0
(f) for a function f : E → R are expressed in terms of confidence sets. The aim is

to obtain a small confidence set for a high confidence level for a small number of steps.

In this way, the computational costs can be measured as

number of necessary steps × cost of one step. (2.13)

In general, the number of necessary steps for a prescribed confidence level depends both

on the Monte Carlo error and the bias due to approximations of the posterior dens-

ity. This relation is described in more detail in Section 2.6 along with ways to speed

up MCMC using multi-level methods or appropriate parametric representations of the

forward model. However, in the following, we concentrate on the Monte Carlo error of
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a single Markov chain given by an MCMC algorithm. Whereas this is straightforward

for standard Monte Carlo methods, due to the central limit theorem, much of theoret-

ical research on Metropolis-Hastings algorithms concentrates on obtaining qualitative or

quantitative bounds on the error. Under appropriate assumptions on the Markov chain

and a function f : E → R, f(Xi) satisfies a CLT

√
nEXn,n0

(f)
w→ N (0, σ2

f,X). (3.12)

In this setting, σf,X is called the asymptotic variance and depends on the Markov chain

and f . We refer the reader to [81] for explicit expressions for the asymptotic variance in

terms of the integrated autocorrelation or the spectral measure and remark that these

expressions can usually not be evaluated.

Asymptotic confidence intervals can be obtained using CLTs. However, the asymp-

totic variance σ2
f,P is usually unknown and has to be estimated. Different estimators are

reviewed in Chapter 7 of [29]. Non-asymptotic confidence intervals recently became the

focus of the research on MCMC algorithms. Good references are [121, 120] and [167] for

results based on geometric and polynomial ergodicity and results based on L2
µ-spectral

gaps, respectively. It is also possible to determine confidence intervals on the basis of

bounds on the Mean Square Error (MSE) given by

EEXn,n0
(f)2. (3.13)

Whereas a CLT only provides asymptotic confidence intervals, the MSE can be used to

construct non-asymptotic confidence intervals using Chebyshev’s inequality. Moreover,

we note that the size of the confidence intervals can be improved by the median trick

which estimates Ef through the median of multiple shorter runs leading to exponential

tight bounds. This trick has been developed for MCMC algorithms in [142]. Another

good reference is given by [121] (consider Remark 4.6 for the variance of the same

estimator).

We focus on error estimates in terms of CLTs and MSEs in the following which are

usually obtained through:
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1. a formulation of appropriate conditions on the Markov Chain implying the desired

properties of EXn,n0
(f). These include convergence rates of the Markov chain to

equilibrium for different notions of convergence;

2. a formulation of appropriate conditions on the target measure such that Markov

chains resulting from an MCMC algorithm satisfy the conditions above.

For a given target measure, there are many different Markov chains satisfying a CLT.

Even for the subclass of Metropolis-Hastings algorithms, there is great freedom of picking

the proposal distribution. It is then of interest to choose the proposal or the parameters

in the proposal, such as the variance of the proposal in the random walk, in a way that

reduces En,n0(f). It is usually quite difficult to relate the choices in the proposal kernel

to the confidence bound En,n0(f). Therefore heuristics have been developed to indicate

the performance of MCMC algorithms reviewed in Section 3.2.2.

For Bayesian inverse problems, it is of particular interest to study the dependence

of the error on the dimension of the approximation to the forward model. The first

theoretical results addressing the performance of MCMC algorithms with increasing

dimension have been obtained in terms of diffusion limits in [157]. More and more steps

are needed in order to approximate the diffusion up to a time of order O(1). In this way,

it is possible to quantify heuristically how many additional steps are needed in order to

obtain fixed confidence bounds for an increasing dimension of the state space.

We review the literature accordingly by first describing different notions of Markov

chain convergence and how they apply to MCMC algorithms before describing optimal

scaling results.

3.2.1 Convergence to Equilibrium

We introduce different notions of convergence of a Markov chain to its equilibrium.

In particular, we deal with geometric ergodicity and related concepts as the theory is

used for a large part of the literature on MCMC. We also present L2-spectral gaps and

Wasserstein convergence because these concepts play an important role for the derivation

of our results presented in Articles I and II.
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In each subsequent section, we introduce a different notion of convergence, how it

applies to general Markov chains and what implications arise for the Monte Carlo error

En,n0(f). In the next step, we discuss sufficient conditions for the target measure of

an MCMC algorithm in order for the corresponding chain to satisfy the appropriate

conditions. We conclude this section by briefly relating these notions of convergence to

others available in the literature. In the following, we employ the notation introduced

in Section 3.1.1.

3.2.1.1 Convergence in the Total Variation Distance and Geometric Ergodi-

city

Most of the theory on MCMC algorithm is formulated with respect to the total variation

distance. In this section, we introduce the key concept of geometric ergodicity of Markov

chains. We discuss both the implications and how this property can be verified.

For the presentation, we follow [160] containing a concise introduction to geometric

ergodicity and CLTs for Markov chains and in particular, how they apply to MCMC

algorithms. For a full development of the theory and historical remarks, we point the

reader to [137]. A Markov chain with transition kernel P is defined to be geometrically

ergodic if

‖Pn(x, ·)− µ‖TV ≤M(x)tn with 0 ≤ t < 1 (3.14)

where the total variation distance is given by

‖ν1 − ν2‖TV = sup
A
|ν1(A)− ν2(A)| .

A very useful characterisation of the total variation distance is given by

‖ν1 − ν2‖TV = inf
Xi∼νi

P(X1 6= X2). (3.15)

In this way, the total variation can be bounded from above by constructing a coupling

between ν1 and ν2. The concept of geometric ergodicity has been introduced in [102]

for a finite state space and has been extended to general state spaces in [145]. We
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refer the reader to [137] for many sufficient conditions and equivalent characterisations

of geometric ergodicity. Most often these are formulated under the assumptions of

irreducibility and aperiodicity.

Definition 3.3. (Adapted from [160]) A Markov chain is φ-irreducible if there exists a

non-zero σ-finite measure φ on E such that for all measurable sets A ⊆ E with φ(A) > 0

and for all x ∈ E there exists a positive integer n = n(x,A) such that Pn(x,A) > 0.

Definition 3.4. (Adapted from [160]) A Markov chain with stationary distribution µ is

aperiodic if there do not existm ≥ 2 disjoint subsets E1, . . . , Em ⊆ E with P (x,Ei+1) = 1

for all x ∈ Ei (1 ≤ i ≤ m) and P (x,E1) = 1 for all x ∈ Em such that µ(E1) > 0.

As most Metropolis-Hastings chains used in practice are aperiodic and this simplifies

the presentation, we only concentrate only on aperiodic chains subsequently. For an

example of periodic chains in the MCMC literature, we refer to [139].

Implications of Geometric Ergodicity for the Sample Average

Establishing both properties, irreducibility and aperiodicity, is already sufficient to guar-

antee that the Monte Carlo error of the sample average goes to zero with probability

1 for µ-almost every deterministic starting point. For this result, we refer the reader

to Chapter 7 of [156] and Chapter 17 of [137]. For Metropolis-Hastings algorithms, we

quote the following result.

Theorem 3.5. (Theorem 7.2 in [156] and Theorem 4 and Fact 5 in [160]) Suppose that

the Metropolis-Hastings Markov chain (Xn)n∈N is φ-irreducible.

1. If h ∈ L1
µ, then for µ-a.e. deterministic starting point X0 = x0

lim
N→∞

1

N

N∑

i=1

h(Xi) = Eµh.

2. If, in addition, (Xn)n∈N is aperiodic, then

lim
n→∞

‖Pn(x, ·)− µ‖ .
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Under the assumption of irreducibility, geometric ergodicity implies a CLT for Sn,n0(f)

for all f ∈ L2+δ
µ with δ > 0 as shown for example in [137] and [160]. For reversible

Markov chains, in particular, those arising as a Metropolis-Hastings chain, this also

holds for δ = 0 as geometric ergodicity in this case implies an L2
µ-spectral gap. A more

detailed discussion of this fact is presented in Section 3.2.1.2. In fact, if the Markov

chain is reversible, an L2
µ-spectral gap and geometric ergodicity are equivalent, see also

[164]. Even though CLTs allow the derivation of asymptotic confidence intervals, it is

a priori not clear how geometric ergodicity, which measures the convergence to equilib-

rium, directly translates into the sample error En,n0(f). This relation has rigorously been

established in [121]. Even if the Markov chain is started at equilibrium, conditionally

the first sample is a point mass and fast convergence to equilibrium therefore causes a

fast decay of the autocorrelation. This in turn indicates that the Monte Carlo error is

small.

Quantitative bounds on the rate of geometric ergodicity have been obtained in [165]

on the basis of a small set and drift condition and are reviewed in [166]. Sharper bounds

have been obtained using renewal theory in [13]. Recent progress in renewal theory and

a detailed comparison of results of this type can be found in [16].

In particular, these quantitative bounds can be used in order to obtain bounds on the

MSE in [121]. Confidence intervals are then obtained using Chebyshev’s inequality or

the median trick as described at the beginning of Chapter 3. However, working directly

with small sets and drift conditions, as has been done in [120], seems to yield better

bounds on the Monte Carlo error.

Conditions for Geometric Ergodicity

The most well-known condition geometric ergodicity is based on drift conditions and

small sets.

Definition 3.6. A subset S ⊆ E is small if there exists a positive integer n0, ε > 0 and

a probability measure ν on E such that the following minorisation condition holds

Pn0(x, ·) ≥ εν(·) ∀x ∈ S. (3.16)
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The idea of small sets is due to [59] and has been introduced to unbounded state

spaces by Harris in [88]. It is instructive to study the case S = E and n0 = 1. Notice

that the small set condition implies that P can be written as

P (x, ·) = εν(·) + (1− ε)P̃ (x, ·).

Thus, the transition kernel can be implemented by throwing an ε-coin. If it comes up

heads, Xn+1 is drawn from ν and otherwise from P̃ (x, ·). As P preserves µ, Pn(x, ·) can

be coupled to µ by running a chain Xn started at x and a chain Y started at a random

draw from µ. We couple the two chains by using the same coin and the same draw of

ν. The characterisation of the total variation distance through coupling allows us to

conclude that

‖Pn(x, ·)− µ‖TV ≤ P(Xn 6= Yn) ≤ (1− ε)n.

It follows that in this caseM(x), as in Equation (3.14), does not depend on x, a property

called uniform ergodicity. If S 6= E, the following drift condition ensures that both Xn

and Yn are sufficiently often in S.

Definition 3.7. A Markov chain satisfies a drift condition for the set S if there is a

function V : E → [1,∞), 0 < l < 1, b ∈ R such that

PV ≤ lV + b1S .

Theorem 3.8. (Harris theorem, see also [160] or [84]) If a Markov chain is φ-irreducible

and aperiodic, then having a small set and satisfying a drift condition is equivalent to

the Markov chain being geometrically ergodic.

Whereas the proof in [160] is based on the coupling argument, this theorem is clas-

sically proved using renewal theory by splitting the evolution of the Markov chain into

excursions from the small set and analysing their return times, see [137].

Metropolis-Hastings Algorithms
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On the basis of the Markov chain convergence theory presented above, it is possible to

derive necessary and sufficient conditions on the target measure µ and the proposal Q

such that the Metropolis-Hastings algorithm is geometrically ergodic. This in turn gives

rise to CLTs and bounds on the MSE as described above. This approach has, for example,

been taken in [135], [163], [93] and [95]. For distributions on R and under appropriate

assumptions on a random-walk proposal, it is both sufficient and necessary for the target

measure to have exponential tails [135]. In higher dimensions, this condition is necessary

but not sufficient [95]. One of the most general sufficient conditions for appropriate

random walk proposals has been formulated in [93] and reads as follows

lim sup
|x|→∞

x

|x| ·
∇π
|∇π| < 0 (3.17)

lim
|x|→∞

x

|x| · ∇ log π = −∞.

An interesting approach is an application of a transformation h to µ such that h?µ

satisfies the conditions in Equation (3.17). This approach has been taken in [97].

In this section, we concentrated on geometric ergodicity, that is exponential conver-

gence of P (x, ·) to µ in the total variation distance with a constant depending on x.

Polynomial ergodicity is a weaker assumption only assuming that the convergence in

the total variation happens at a polynomial rate. Similar to Theorem 3.8, this can be

verified in terms of small sets and a weakened version of the drift condition. The seminal

paper [94] contains results (c.f. Theorem 3.6) that simplified the existent theory by only

assuming one drift condition. Moreover, polynomial ergodicity also implies a CLT for

the Monte Carlo error En,n0(f) under stronger assumptions on f . An appropriate result

can be found in Theorem 4.2 [94].

At the beginning of Section 3.3, we explain why the total variation distance is not

well-suited to study convergence to equilibrium on infinite dimensional state spaces.

Therefore we study the convergence with respect to the L2
µ-spectral gap and the Wasser-

stein distance in the following section.
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3.2.1.2 Spectral Gaps

The entire Section 3.2.1 is devoted to summarising the main convergence results for

Markov chains, especially for MCMC algorithms, to their equilibrium. An early focus of

the subject has been on Markov chains with finite state spaces for which the transition

kernel P can be represented as a matrix. Because convergence concerns the limits of

Pn, it is natural to study its eigenvalues. One reason is that the powers of P can

be more easily expressed through an eigenvalue decomposition. In particular, if P is

reversible, then its transition matrix is symmetric in an appropriate basis and can be

diagonalised. We would like to point out the reader to the interesting example of card

shuffling that has been studied through the eigenvalues of P in [53]. Moreover, research

on card shuffling has lead to a fruitful development in mathematics reviewed in [55]. For

a standard introduction to convergence of Markov chains on discrete state spaces, we

refer the reader to [126].

A central concept introduced in this section is the notion of L2-spectral gaps. For

a transition kernel P the L2-spectral gap is given by the absolute difference of largest

two elements in the spectrum. It is crucial because not the whole spectrum but just the

L2-spectral gap is sufficient to characterise the convergence speed of a Markov chain.

The remainder of this section is structured as follows. First, we introduce the appro-

priate spectral theory for the transition kernel allowing us to define L2-spectral gaps. In

a second step, we review the implications for the sample average. We close this section

by introducing the method of conductance which is a crucial tool for the results obtained

in Articles I.

If the transition kernel P of a Markov chain Xn is reversible with respect to the

invariant measure µ, then Jensen’s inequality implies that P can be identified as a self-

adjoint linear operator from L2
µ to itself. The convergence properties of the Markov

chain can now be formulated in terms of the spectrum of the operator P . We setup our

notation for the basic concepts but assume that the reader is familiar with the spectral

theory of bounded linear operators, the relevant material can be found in [107]. In
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general, the spectrum σ(P ) is defined as

{
λ ∈ C

∣∣P − λI is not invertible
}
.

It is well-known that a self-adjoint operator P satisfies σ(P ) ⊆ R. We consider Markov

operators for which Jensen’s inequality implies that σ(P ) ⊆ [−1, 1]. Moreover, the

property P1 = 1 implies that 1 is the largest eigenvalue of P . The spectral gap 1− β is

the difference between 1 and the modulus of the second largest element of σ(P ). This can

be expressed as difference between 1 and the spectral radius of the operator P restricted

to the orthogonal complement of the space of constant functions denoted by L2
µ,0.

Definition 3.9. (The L2
µ-spectral gap) A Markov operator P with invariant measure µ

has an L2
µ-spectral gap 1− β if

β = sup
f∈L2

µ

‖P (f − µ(f))‖2
‖f − µ(f)‖2

= sup
f∈L2

µ,0

‖Pf‖2
‖f‖2

< 1. (3.18)

Observe that for discrete state spaces, one can decompose f in an eigenbasis of P . It

follows that all coefficients corresponding to basis elements with eigenvalues in (−1, 1)

decay exponentially if P is applied repeatedly.

Note that because of the self-adjointness, we can express the smallest and largest

eigenvalue of P |L2
µ,0

by

λ = inf
‖f‖

L2
µ,0

=1
〈Pf, f〉 and Λ = sup

‖f‖
L2
µ,0

=1
〈Pf, f〉 (3.19)

respectively which allows us to express the spectral gap as

1− β = min{1− |λ| , 1-Λ}. (3.20)

Definition 3.10. For a Markov kernel P , we refer to the quantities 1− |λ| and 1-Λ as

the lower and upper L2
µ-spectral gap, respectively.

These notions are introduced because in Article II we only obtain a lower bound on

the upper L2
µ-spectral gap. In some sense, an upper L2

µ-spectral gap is sufficient as it
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is possible to modify the chain resulting in an L2
µ-spectral gap of almost the same size.

The modification consists of adding an additional rejection step resulting in the so-called

lazy-chain reviewed in Section 3.3.2. Before reviewing conductance and other methods

to bound the L2
µ-spectral gap from below, we give an overview of the implications of

such a bound.

Implications of L2-Spectral Gaps for the Sample Average

The importance of lower bounds on the L2
µ-spectral gap lies in the fact that it implies

a CLT as well as a bound on the MSE. As introduced at the beginning of Section 3.2,

both can be used to quantify the Monte Carlo error of the sample average.

Proposition 3.11. (From [106]) Consider an ergodic Markov chain with transition

operator P which is reversible with respect to a probability measure π. Let f ∈ L2 be

such that

σ2
f,P =

〈
1 + P

1− P f, f
〉
≤ 2µ((f2 − µ(f)))

(1− Λ)
≤ 2µ((f2 − µ(f)))

(1− β)
<∞,

then for X0 ∼ µ the expression
√
n(Sn − µ(f)) converges weakly to N (0, σ2

f,P ).

A lower bound on the L2-spectral gap can also be used to bound the MSE form

above which can be seen in the following proposition.

Proposition 3.12. (From [167]) Suppose that we have a Markov chain with Markov

operator P which has an L2
µ-spectral gap 1− β. For p ∈ (2,∞], let n0(p) be the smallest

natural number which is greater or equal to

1

log(β−1)





p
2(p−2) log( 32p

p−2)
∥∥∥ dνdµ − 1

∥∥∥
p
p−2

p ∈ (2, 4),

log(64)
∥∥∥ dνdµ − 1

∥∥∥
p
p−2

p ∈ [4,∞].

(3.21)

Then

sup
‖f‖p≤1

E
[
(µy(g(u))− Sn,n0(g))2

]
≤ 2

n(1− β)
+

2

n2(1− β)2
.
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We notice that for this proposition it is not enough to know that Λ < 1. Moreover,

we observe that these MSE bounds only hold if the Markov chain is started from an

appropriately distributed random point. In contrast, the results obtained in [121] and

[120] formulated in terms of geometric ergodicity, small sets and drift conditions can be

used even if an MCMC algorithm is started from a deterministic point.

Both results hold under the assumption of a lower bound on the L2
µ-spectral gap.

We review methods to obtain such a bound in the next section.

Bounding the L2
µ-Spectral Gap

Except for special cases, the L2
µ-spectral gap cannot be bounded in a straightforward

manner. Our main interest lies in the lower bounds because they imply upper bounds

on the Monte Carlo error of the sample average which can be seen form the Propositions

3.11 and 3.12. Instead, there are mainly four commonly used methods for obtaining

(lower) bounds on the L2
µ-spectral gap:

1. The rate of geometric ergodicity, see Section 3.2.1.1, allows us to bound the L2
µ-

spectral gap from below. Details on this result can also be found in [158].

2. Functional inequalities can be used to bound the L2-spectral gap [187]. In partic-

ular, we would like to mention Poincaré inequalities which have a similar structure

as Equation (3.2.1.2) for the generator of a continuous time process. For a com-

parison to the approach based on Lyapunov-functions, we recommend [11].

3. The L2
µ-spectral gap can also be bounded in terms of exponential convergence in

a Wasserstein distance reviewed in Section 3.2.1.3.

4. The method of conductance reviewed on the following two pages.

Depending on the Markov kernel P , different methods are applicable and yield bounds

with different qualities.

The Method of Conductance

57



Chapter 3. MCMC Algorithms 3.2. Literature Review

Following [184], we define the conductance of a Markov chain with transition probability

P and invariant distribution µ by

C = inf
µ(A)≤ 1

2

´

A P (x,Ac)dµ(x)

µ(A)
. (3.22)

Note that this quotient can be interpreted as the quotient of how likely it is in equilibrium

to go from a set A to its complement Ac compared to the equilibrium probability mass

of A. A small conductance means that an algorithm can be trapped in some part of the

state space for a long while. For this reason a lower bound on the conductance seems

desirable. This fact can be made explicit by an application of Cheeger’s inequality which

allows to bound the upper L2
µ-spectral gap in the following way

C2

2
≤ 1− Λ ≤ 2C. (3.23)

The name Cheeger’s inequality is due to a related result in differential geometry which

can be found in [32].

For general state spaces, this inequality has been proved in [123] (note that their

notion of conductance k satisfies C ≤ k ≤ 2C ). This way of bounding the spectral gap

has been mainly used for discrete state spaces. We recommend [54] for an application

to Markov chains on graphs whereas we refer the reader to [175] for an approximation

of counting in computer science. In the discrete setting, it is possible to introduce the

notion of local conductance. Bounds on the local conductance can be combined in order

to obtain a bound on the conductance. This idea has been introduced in [129] and

has been used in [96] to prove convergence of Metropolis-Hastings algorithms applied to

measures on R with monotone and log-concave tails.

Conductance has also been used to study the complexity of integrating a function

over a convex domain. Article [184] surveys a sequence of articles on this question

concentrating on the ball-walk and the hit and run algorithm. This particular problem

has also been addressed in an adaptive fashion in [130].

For reversible transition kernels, a lower bound on the L2
µ-spectral gap is implied by

58



Chapter 3. MCMC Algorithms 3.2. Literature Review

exponential convergence in different Wasserstein distances. As this type of convergence

is important in its own right, we have devoted Section 3.2.1.3 to a summary and detailed

literature review.

3.2.1.3 Exponential Convergence in Wasserstein Distances

The analysis of Markov processes in terms of the Wasserstein distance has become in-

creasingly popular. This can be seen in the areas of optimal transport and Wasserstein

gradient flows for which we refer the reader to [185]. For many infinite dimensional

stochastic processes, convergence to equilibrium can be quantified naturally in a Wasser-

stein distance. One interesting example is the stochastic 2d Navier-Stokes equation [83].

In contrast to the total variation convergence or the convergence in L2, the Wasserstein

distance depends on a metric d of the state space E. For two measures ν1 and ν2, the

1-Wasserstein distance is given by

dW (ν1, ν2) = inf
π∈Γ(ν1,ν2)

ˆ

E×E
d(x, y)π(dx, dy). (3.24)

Note that for R with the standard metric, this implies dW (δ0, δε) = ε as opposed to

dTV (δ0, δε) = 1. In fact, d does not need to be a metric. It is sufficient to require that

d : E ×E → R is symmetric and lower semi-continuous so that d(x, y) = 0 is equivalent

to x = y. However, if d is a metric, the Monge-Kantorovich duality [185]

dW (ν1, ν2) = sup
‖f‖Lip(d)=1

ˆ

fdν1 −
ˆ

fdν2

holds. We would like to point out that the Wasserstein distance coincides with the

total variation distance for the discrete metric. Details for this result can be found

in [160]. Convergence of the Markov chain can then be quantified through a decay

of dW (Pn(x, ·), µ) to zero. Note that geometric ergodicity postulates an exponential

decay of the same expression for the total variation as can be seen in Equation (3.14).

The following notion of the Wasserstein spectral gap is the natural generalisation for

Wasserstein distances.
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Definition 3.13. A Markov chain with transition kernel P (x, dy) is said to have a

Wasserstein spectral gap if there are λ > 0 and C > 0 such that for any probability

measures ν1 and ν2

d(ν1Pn, ν2Pn) ≤ C exp(−λn)d(ν1, ν2) for all n ∈ N. (3.25)

Using results from the literature, we demonstrate that this notion is very useful for

MCMC algorithms because

1. it implies appropriate bounds on the Monte Carlo error

2. can be verified using the weak Harris theorem from [84].

Implications of the Wasserstein Spectral Gap for the Sample Average

Because we concentrate on Metropolis-Hastings algorithms in this thesis, all the resulting

Markov chains are reversible with respect to the target measure µ. In this case, the

Wasserstein spectral gap implies an L2
µ-spectral gap and therefore a CLT and a bound

on the mean square error for the sample average as reviewed in the previous section.

This implication has been stated in continuous time in Theorem 2.1 in [186]. We also

refer the reader to Article I which contains a short proof that has been shown to the

author by F. - Y. Wang for the discrete case.

Articles [146] and [98] assume a stronger condition than the one stated in Equation

(3.25). More precisely, they consider

d (P (x1, ·), P (x2, ·)) ≤ c d(x, y)

for some c ∈ [0, 1) which they call a Ricci curvature condition. Under this condition, they

derive results for the Monte Carlo error of the sample average for Lipschitz functions

such as bounds on the MSE. Furthermore, a CLT for the Lipschitz functional can be

derived under appropriate assumptions formulated in [114].

The Weak Harris Theorem - A Condition for Wasserstein Spectral Gaps
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Verifying a Wasserstein-spectral gap has become much easier with the emergence of the

weak Harris theorem stated in [84]. The following can be seen as generalisation of the

Harris theorem 3.8. The key idea is that the notion of small-sets can be weakened to

that of a d-small set.

Proposition 3.14. (Weak Harris theorem [84]) Let P be a Markov kernel in a Polish

space E and assume that

• there is a Lyapunov function V : E → [1,∞) such that

PnV (x) ≤ lnV (x) +K for all x and n; , (3.26)

• P is d-contracting for a distance-like function, that is there is a c ∈ (0, 1) such

that for all x, y with d(x, y) < 1

d(P(x, ·),P(y, ·)) ≤ c · d(x, y); (3.27)

• the set S = {x ∈ E : V (x) ≤ 4K} is d-small, that is there is ε > 0 such that

d(P(x, ·),P(y, ·)) ≤ 1− ε ∀x, y ∈ S. (3.28)

Then there exists ñ such that for any two probability measures ν1 and ν2 on E we have

d̃(ν1P ñ, ν2P ñ) ≤ 1

2
d̃(ν1, ν2)

where d̃(x, y) =
√
d(x, y)(1 + V (x) + V (y)) and ñ(l,K, c, s) is increasing in l, K, c and

s. This result also implies that there is at most one invariant measure. Moreover, if

there exists a complete metric d0 on E such that d0 ≤
√
d and P is Feller on E, then

there exists a unique invariant measure µ for P .

Remark 1. It is possible to trace the constants through the result and to optimise the

overall bound. However, it seems that the resulting bounds do not bear practical relev-

ance as they are only a crude lower bound on the convergence rate. Nevertheless, it is
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important to obtain a quantitative theory for exponential convergence in a Wasserstein

metric. These results would be in analogy to the quantitative exponential convergence

results that are available for the total variation distance. More details can be found in

Section 3.2.1.1.

In this thesis, we only consider exponential Wasserstein convergence as stated in

Definition 3.13. Recently, sub-exponential convergence results have been obtained for

example in [30]. However, so far, it is not clear what the significance of subgeometric

convergence in a Wasserstein distance has for the sample average. This is in contrast to

the exponential convergence in a Wasserstein distance for which the implications for the

sample average have been discussed in the previous section. We would like to mention

again that for reversible chains, a Wasserstein spectral gap in fact implies an L2
µ-spectral

gap. Therefore the consequences for the sample average from Section 3.2.1.2 hold, too.

Using the weak Harris theorem, we have shown in Article I that the pCN algorithm

has a dimension independent Wasserstein spectral gap. As the Wasserstein spectral gap

implies an L2
µ-spectral gap of the same size, the latter is dimension independent, too.

3.2.1.4 Relations and Other Notions

For completeness, we would like to mention other notions of convergence to equilibrium

briefly in the following. Closely related to the L2
µ-spectral gap and equivalent for re-

versible chains are L2
µ-exponential convergence and L2

µ-geometric ergodicity. The thesis

[167] shows that all three notions are equivalent for reversible Markov chains. These no-

tions can be generalised to Lpµ-exponential convergence and Lpµ-geometric ergodicity. In

particular, L1
µ and L∞µ -exponential convergence imply an L2

µ spectral gap for reversible

Markov chains. The corresponding definitions and results can be found in [167]. We

also like to mention the log-Sobolev inequality which constitutes a stronger notion than

the L2
µ-spectral gap. It can be formulated in terms of the action of the transition kernel

P on a class of functions. For this and related notions, we refer the reader to [80], [52]

and [187].
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3.2.2 Heuristics for the Choice of the Proposal Distribution

In using Metropolis-Hastings algorithms, there is a great freedom in choosing the pro-

posal distribution. However, this does also include a burden as the performance varies

dramatically. For example, the performance of the standard RWM with N (0, σ2I) for

target measures with a continuous density on Rd deteriorates as σ → {0,∞}. On the one

hand, very large proposal variances σ lead to a rejection rate close to one as the proposal

typically lies in the tails of the target measure. On the other hand, very small proposal

variances σ lead to an acceptance rate close to one but the samples are very correlated.

Thus, the problem is to choose σ in a way that is appropriate for the target measure.

Because we focus on the case when d → ∞, we consider a sequence of target measures

µd and proposal variances σ2
d. In this case, it is of interest to study the choice of σd in

an asymptotic way. In order to characterise the choice of σd, which is optimal for the

performance of the Markov chain, its performance has to be quantified. At this point,

the heuristic comes into play. As it is seldom possible to find an explicit expression for

the convergence rate for a given σd, a proxy is used. Typical proxies are the expected

squared-jump-distance (ESJD) or the convergence rate of a limiting diffusion process.

In the following, we review the heuristic scaling methods first for general high dimen-

sional target measures before specialising on target measures arising in Bayesian inverse

problems.

Heuristics for General High Dimensional Target Measures

For general target measures, we start from the seminal paper [157] by Roberts, Gelman

and Gilks. In this article, the authors study quantitatively the optimal choice of σ for

the proposal N (0, σ2I) in the limit of the dimension d → ∞ . They consider sequence

of RWM chains Xd with proposal variance σ2
d for target measures of the form µ(dx) =

π(x)dx where

πd(x) =
d∏

i=1

f(xi).

It is shown that the correct scaling is σd = l
d and give guidance for the choice of l in

terms of the acceptance probability. We can state the result of [157] more precisely by
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introducing Td : Rd → R denoting the projection onto the first coordinate. Then it

follows that

Zd(t) = Td(X
d
bt·dc) (3.29)

converges to the appropriate Langevin diffusion equation

dUt = (h(l))
1
2 dBt + h(l)

1

2

f ′(Ut)
f(Ut)

dBt.

In this equation, h(l) can be seen as linear rescaling of the time. This suggests a larger

h(l) corresponding to a faster exploration of the state space in equilibrium and therefore

to a small error of the estimator Sn(f). It has been shown in [157] that h(l) is maximised

for the choice of l corresponding to an acceptance probability of 0.234. Moreover, in

order to define Zd on the interval [0, 1], d steps of Xd are needed suggesting that the

number of steps needed to explore the state space grows like O(d1). For the MALA

algorithm the same approach suggests that the steps have to increase like O(d
1
3 ) and

the acceptance rate should be tuned to 0.574.

Even though this was only shown in a very special context, this fact has been verified

later for more general cases under much weaker assumptions, see [159] and [15] for the

case of target measures that do not have a product structure. This scaling method can,

for example, also be used to study the behaviour of MCMC algorithms for targets that

concentrate closer and closer around a manifold [180].

A more direct approach is to consider the expected squared jump distance (ESJD)

ESJD = E ‖Xn+1 −Xn‖2

as an indicator for the performance of an MCMC algorithm. Considering the problem

of choosing σ, the ESJD behaves qualitatively in the right way. On the one hand,

for a too large proposal variance, the Metropolis-Hastings algorithm rejects with large

probability leading to a small ESJD. On the other hand, a small proposal variance leads

to a small ESJD as the ESJD can trivially be bounded in terms of the proposal variance.

It has been justified that the 0.234 acceptance rule is asymptotically optimal in greater
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generality by showing that in this case the ESJD is optimised. For details we refer

the reader to [174] and [172]. Moreover, we recommend Chapter 4 of [29] for a recent

overview of optimal scaling results.

Heuristics for Target Measures Arising in Bayesian Inverse Problems

The remainder of this section discusses diffusion limits and the ESJD available in the

literature for target measures arising in Bayesian inverse problems (see also Section 2.3

and 3.1.4 and ). The ESJD has been studied for the RWM and the MALA algorithm

applied to target measures similar to those in Equation (3.8) in article [21]. They

considered diagonalised covariance matrices with eigenvalues λ2
i decaying algebraically

like i−2κ and they assumed that the proposal variance of the RWM and the MALA

algorithm is of the form i−ρ. Imposing these conditions, they have proved that if ρ is

larger or smaller than i−2κ−1 for the RWM and i−2κ− 1
3 for the MALA algorithm, then

the expected acceptance probability goes to 0 or 1. If the ρ is correctly chosen, then the

ESJD is optimised if the acceptance probability is scaled to 0.234 and 0.574, respectively.

Both results have also been obtained in terms of diffusion limits in articles [131] for the

RWM algorithms and [152] for the MALA algorithm. These results indicate more clearly

that the number of necessary steps for a prescribed level of accuracy increases like d1

for the RWM algorithm and d
1
3 for the MALA algorithm. In contrast to early scaling

results like [157], these results also apply to non-product measures and the diffusion limit

is obtained in the Hilbert space on which the Gaussian reference measure is defined.

Moreover, it has been shown in [150] that a diffusion limit for the pCN exists with a

scaling that is independent of the dimension.

However, the heuristic results in terms of scaling limits and ESJD do not replace

rigorous results that quantify the convergence rates. In the next section, we fill this gap

by providing rigorous results for the RWM and pCN algorithm through a quantification

of their L2
µ-spectral gaps.
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3.3 Contributions of Articles I and II

Reviewing both the literature on rigorous convergence results in Section 3.2.2 and the

literature on heuristic scaling results in Section 3.2.1, it is apparent that the heuristic

results are much more generally applicable and that they quantify the performance in a

much more explicit way. In particular, for infinite dimensional target measures arising

from Bayesian inverse problems and approximations thereof, many scaling results are

available. For a deeper discussion, we refer the reader again to [22], [131] and [151]. One

of the major contributions of Articles I and II is to provide rigorous convergence results

in this setting.

A large part of the available literature on MCMC algorithms is formulated with re-

spect to the total variation distance which relies on small sets and more fundamentally

on the irreducibility of the underlying chain. We have reviewed this approach also in

Section 3.2.1.1. It is interesting to observe that the most recent handbook [29] does not

even mention other approaches based, for example, on L2
µ-spectral gaps or the Wasser-

stein distance. However, locally moving Markov chains on infinite dimensional spaces

often do not exhibit a small set and are not irreducible. This can be illustrated for

the pCN algorithm which has been introduced in Section 3.1.4 as follows. Consider the

algorithm started at x1 and x2. In this case, the transition kernel of the underlying

Markov chain takes the form

P (xi, dy) = α(xi, y)N
(

(1− 2δ)
1
2xi, 2δCd

)
(dy) + riδxi(dy), i = 1, 2.

For x1−x2 not being an element of the Cameron-Martin space HN (0,2δCd) of N (0, 2δCd),

the P (xi, dy) are mutually singular ruling out both irreducibility and existence of the

small set. The singularity of the transition kernels is due to the Feldman-Hajek theorem

[40, 82]. Moreover, we note that Pn(xi, ·) takes the form of Gaussian mixtures. Then the

same argument can be used to see that measures in the mixture for P (x1, ·) and P (x2, ·)

are mutually singular if x1−x2 is not an element of the Cameron-Martin space. This does

not rule out the small set approach that can be used for d-dimensional approximations.
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However, it is difficult to obtain lower bounds on the convergence using small sets that

do not or only decay slowly as d increases except for the independence sampler. For

this reason, we use both the method of L2 and Wasserstein spectral gaps to tackle

convergence issues of the Metropolis-Hastings algorithm in infinite dimensions in Articles

I and II. Subsequently, we introduce these results under consideration of the literature

reviewed in Section 3.2.

3.3.1 Article I

In Article I, we consider the standard RWM and the pCN algorithm, which is a slight

modification of the former, for target measures that arise as approximations to measures

that have a density with respect to infinite dimensional Gaussian reference measures.

We show that

1. the L2
µd
-spectral gap of the RWM deteriorates with the dimension of the approx-

imation and

2. that the pCN algorithm has a dimension independent L2
µd
-spectral gap.

In the following, we give an outline of these contributions in detail. First, we recall

the form of the target measures arising from Gaussian-based priors from Section 3.1.4

before describing the deterioration of the RWM in more detail using the conductance.

In contrast, we show that the pCN has a dimension independent L2
µd
-spectral gap. This

is established by first proving a Wasserstein spectral gap which implies an L2
µd
-spectral

gap of the same size.

A more direct and explicit approach is taken in [64]. The author considers the pCN

algorithm (which is called Ornstein Uhlenbeck proposal in the article) and a function

space version of the MALA algorithm. Instead of considering an explicit bound version

of a given normed space, a general weaker norm is considered. The bound on the Wasser-

stein distance is obtained by bounding the rejection probability and its dependence on

the current state from above. However, their main results only show the Wasserstein

contraction property for starting points in a bounded set and for log-concave measures.
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Target Measures

In Article I, we consider Metropolis-Hastings algorithms applied to measures with a

density with respect to an infinite dimensional Gaussian reference measure and approx-

imations thereof. These measures arise in Bayesian inverse problems as described in

Chapter 2 and in the area of conditioned diffusion [85, 22, 18]. As described in Section

3.1.4, these measures are of the form

µ(dx) = M exp(−Φ(x))γ(dx) (3.2)

and natural finite dimensional approximations are given by the truncated Karhunen-

Loeve expansion

µd(dx) = Md exp(−Φ(x))γd(dx) with (3.30)

γd(dx) = L
(

d∑

i=1

γiϕiξi

)
(dx).

Having introduced the relevant target measures and their approximations, we study

the performance of the RWM and the pCN applied to µd in terms of L2
µ-spectral gaps

subsequently.

3.3.1.1 Bounding the Spectral Gap from Above

The scaling analysis in [21] suggests that the RWM algorithm deteriorates quickly as

the dimension increases if the proposal variance is not rescaled appropriately. The

deterioration is quantified through the expected acceptance rate going to zero. However,

their analysis can be pursued further in order to obtain rigorous upper bounds on the

L2-spectral gap. The following is a slight generalisation of Section 2.4 in Article I. We

recall the definition of the conductance

C = inf
µ(A)≤ 1

2

´

A P (x,Ac)dµ(x)

µ(A)
(3.22)
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and Cheeger’s inequality
C2

2
≤ 1− Λ ≤ 2C (3.23)

from Section 3.2.1.2.

Our main observation is that there is a simple upper bound for the conductance of

a Metropolis-Hastings algorithm because it can only move from a set A if

• the proposed move lies in Ac and

• the proposed move is accepted.

Just considering either event gives rise to simple upper bounds that can be used to make

many results from the scaling analysis rigorous. We denote the expected acceptance

probability for a proposal from x as

α(x) =

ˆ

E
α(x, y)dQ(x, dy).

Considering only the acceptance of the proposal gives rise to

C ≤ inf
µ(A)≤ 1

2

´

A α(x)µ(dx)

µ(A)
.

In particular, for any set B such that µ(B) ≤ 1
2 , it follows that

C ≤ sup
x∈B

α(x)

and also that

C ≤ 2Eµα(x).

The last result allows us to make scaling results like those in [21] rigorous. Similarly,

just supposing that the Metropolis-Hastings algorithm accepts all proposals gives rise

to the following bound

C ≤ inf
µ(A)≤ 1

2

´

AQ(x,Ac)dµ(x)

µ(A)
.

We summarise these results in the subsequent proposition which is an extension to the

result presented in Article I.
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Proposition 3.15. Let P be a Metropolis-Hastings transition kernel for a target measure

µ with proposal kernel Q(x, dy) and acceptance probability α(x, y). The L2
µ-spectral gap

can be bounded by

1− β ≤ 1− Λ ≤ 2C ≤ 2





supx∈B α(x) for any µ(B) ≤ 1
2

2Eµα(x)

(3.31)

and

1− β ≤ 1− Λ ≤ 2C ≤ 2 inf
µ(A)≤ 1

2

´

AQ(x,Ac)dµ(x)

µ(A)
. (3.32)

We study the behaviour of the L2
µ-spectral gap 1 − βd for the target measure µd in

Equation (3.30) as d → ∞ on δd. If δd decays too slowly, the algorithms propose too

large moves leading to small acceptance probabilities allowing us to bound the spectral

gap using Equation (3.31). For δd decaying too quickly, the behaviour of the proposal

can be used as described in Equation (3.32). Asymptotic analysis can then be used

to obtain the appropriate bounds. We have executed this research programme for the

RWM giving rise to the following result.

Theorem 3.16. Let Pm be the Markov kernel and α be the acceptance probability asso-

ciated with the RWM algorithm applied to γm as in (3.30).

1. For δm ∼ m−a, a ∈ [0, 1) and any p there exists a K(p, a) such that the spectral

gap of Pm satisfies

1− βm ≤ K(p, a)m−p.

2. For δm ∼ m−a, a ∈ [1,∞) there exists a K(a) such that the spectral gap of Pm
satisfies

1− βm ≤ K(a)m−
a
2 .

We observe that the resulting scaling differs from the expected scaling expected from

[131]. There is no contradiction as this is just an upper bound on the L2-spectral gap.

It might be possible to obtain a smaller lower bound by choosing a different set for

bounding the conductance. However, the bound on the conductance might even be
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sharp because the lower bound on the upper spectral gap involves a square, compared

to Equation 3.23.

We conclude this section by noting that this simple observation gives a rigorous

foundation for many results obtained through scaling.

3.3.1.2 Wasserstein and L2-Spectral Gaps for the pCN

The second but not less important result concerns the performance of the pCN al-

gorithm introduced in Section 3.1.4. Conditions on the target measures µ and µd in

the Equations (3.2) and (3.30) are formulated leading to a uniform lower bound on the

Wasserstein spectral gap (c.f. Definition 3.13). The bound on the Wasserstein spectral

gap is obtained by an application of the weak Harris theorem given in Theorem 3.14.

We impose the assumption that Φ is locally Lipschitz and satisfies a growth assumption

at infinity giving rise to an appropriate lower bound on the acceptance probability. In

the following presentation, we restrict ourselves to the case of Φ being globally Lipschitz

which is much more instructive. For the case of Φ being locally Lipschitz, we refer the

reader to Article I. We impose the following assumptions on Φ:

Assumption 3.17. There is R > 0, αl > −∞ and a function r : R+ 7→ R+ satisfying

r(s) ≤ ρ
2s for all |s| ≥ R such that for all x ∈ BR(0)c

inf
z∈Br(‖x‖)((1−ρ)x)

α(x, z) = inf
z∈Br(‖x‖)((1−ρ)x)

exp (−Φ(z) + Φ(x)) > exp(αl). (3.33)

Assumption 3.18. Let Φ in (3.2) be globally Lipschitz with constant L and assume

that exp(−Φ) is γ-integrable.

Theorem 3.19 (from Article I). Let the Assumptions 3.17 and 3.18 be satisfied with

either

• r(‖x‖) = r ‖x‖a where r ∈ R+ for any a ∈ (1
2 , 1), then we consider V = ‖x‖i with

i ∈ N or V = exp(v ‖x‖) or

• r(‖x‖) = r ∈ R for r ∈ R+, then we take V = ‖x‖i with i ∈ N.
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Imposing these assumptions, µm (µ) is the unique invariant measure for the Markov

chain associated with the pCN algorithm applied to µm (µ). Moreover, we define

d̃(x, y) =
√
d(x, y)(1 + V (x) + V (y)) with

d(x, y) = 1 ∧ ‖x− y‖
ε

.

Then for ε small enough there exists an ñ such that for all probability measures ν1 and

ν2 on H and PmH, respectively, the following inequalities hold

d̃(ν1P
ñ, ν2P

ñ) ≤ 1

2
d̃(ν1, ν2),

d̃(ν1P
ñ
m, ν2P

ñ
m) ≤ 1

2
d̃(ν1, ν2)

for all m ∈ N.

This result implies an L2
µ-spectral gap for the transition kernel P ñ as shown in

Proposition 2.8 in Article I based on a private communication with F.-Y. Wang. In

turn, this yields an L2
µ-spectral gap for P which can be seen using the spectral theorem.

As discussed in Section 3.2.1.2, a lower bound on the L2
µ-spectral gap gives rise to

favourable properties of the sample average such as a CLT which is due to [106] and a

bound on the MSE for which we refer to [167].

Idea of the Proof

Theorem 3.19 is proved by verifying the three conditions of the weak Harris theorem

(see Proposition 3.14) for the Markov kernel of the pCN algorithm for the distance

d(x, y) = |x−y|
ε ∧ 1 with ε being chosen in due course. For the convenience of the reader,

we recall these three conditions

1. the existence of a Lyapunov function for the transition kernel of the pCN algorithm,

see Equation (3.26);

2. the transition kernel P is d-contracting, consult Equation (3.27);

3. and the existence of a d-small set for the transition kernel P , see Equation (3.28).
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Our presentation follows this structure. Moreover, we use qx(ξ)=(1 − 2δ)
1
2x +

√
2ξ to

denote the proposal from the position x with noise ξ.

Existence of a Lyapunov Function for the Transition Kernel of the pCN

Algorithm

In the following, we verify that Assumption 3.17 implies that V = exp(v ‖x‖) and

V = ‖x‖i are Lyapunov functions for P , that is

PnV (x) ≤ lnV (x) +K for all x and n.

For x with ‖x‖ ≥ R for a large R, Assumption 3.17 yields a lower bound on the prob-

ability that the pCN algorithm moves to a point z such that

‖z‖ ≤ (1− 2δ)
1
2 ‖x‖+ r(‖z‖) ≤ (1− δ) 1

2 ‖x‖

. In particular, V (z) ≤ θV (x). Let A be the event that

A =
{√

2δξ ≤ r(x) and qx(ξ) is accepted
}
,

then the above implies that

Ex (V (X1);A) ≤ θV (x)Px(A).

The Lyapunov property can then be deduced from obtaining a bound of the form

Ex (V (X1);Ac) ≤ V (x)Px(Ac) +K.

For details, we refer the reader to Lemma 3.2 in Article I.

Coupling of the Transition Kernels P (x, ·) and P (y, ·)

Both the d-contraction property and the characterisation of d-small sets require a bound

on the Wasserstein distance of the transition kernel because the Wasserstein distance is
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defined through the infimum over all couplings. Hence an upper bound can be obtained

by picking a particular coupling.

We choose the basic coupling which drives the pCN algorithm started at x and y

with the same noise and which uses the same random variable for the accept and reject

step. More precisely, this can be represented as follows

qx(ξ) = (1− 2δ)
1
2x+

√
2δξ qy(ξ) = (1− 2δ)

1
2 y +

√
2δξ

x̃ = qx(ξ)χ[0,α(x,qx)](U) + x · χ(α(x,qx),1] ỹ = qy(ξ)χ[0,α(y,qy)](U) + y · χ(α(y,qy),1]

with U ∼ U(0, 1). Note that in this case, P(x, ·) = L(x̃) and P(y, ·) = L(ỹ). This

implies that the following expression

πBasic = L ((x̃, ỹ))

defines a coupling which we call the basic coupling.

The d-Contraction Property of the Transition Kernel of the pCN Algorithm

For x and y such that d(x, y) < 1, we use the basic coupling to obtain an upper bound

on d (P (x, ·), P (y, ·)) . This can be achieved by considering the following three cases:

1. Both the algorithm started at x and the algorithm started at y accept the proposals

x̃ and ỹ.

2. Both the algorithm started at x and the algorithm started at y reject the proposals

x̃ and ỹ.

3. One algorithm accepts the proposal and the other rejects the proposal.

In the first case, we obtain d(x̃, ỹ) ≤ (1− 2δ)
1
2d(x, y) and in the second we get d(x̃, ỹ) =

d(x, y). If one algorithm rejects, then d(x, ỹ) and d(x̃, y) can be bounded from above by

one due to the choice of d. Overall, this allows us to bound

d (P (x, ·), P (y, ·)) ≤ (1− 2δ)
1
2d(x, y)P(both accept) + d(x, y)P(both reject)

+1 · P(only one accepts).
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The probability of the case when only one algorithm accepts can be bounded as follows

P(only one accepts) ≤
ˆ

X
|α(x, qx)(ξ)− α(y, qy)(ξ)| dγ(ξ)

≤
ˆ

|Φ(qx)− Φ(qy)|+ |Φ(x)− Φ(y)| dγ(ξ)

≤ 2L |x− y| ≤ 2Lεd(x, y).

By choosing ε small enough, we obtain a d-contracting property as P(both accept) can

be bounded below using Assumption 3.17.

The Existence of a d-Small Set

Both the Lyapunov function and the d-contraction property are persevered when con-

sidering the n-step transition kernel Pn instead of the one-step kernel P . For a fixed

bounded set S, we can choose n large enough so that the set is a d-small set. The

simplest way to see this is to bound the probability that two pCN algorithms, one star-

ted at x and the other one at y, both accept n-times in a row. We denote this event

by A and bound its probability using the basic coupling. In this case, the distance

‖Xn − Yn‖ decreases at each step by a factor of (1− 2δ)
1
2 . If we choose n large enough,

‖Xn − Yn‖ ≤ ε
2 regardless of x and y in S. This results in the following upper bound

d (P (x, ·), P (y, ·)) ≤ 1

2
P(A) + 1P(Ac) < 1

for all x and y in S.

Dimension Independence

In order to make the above discussion rigorous, we have to bound the probability of

appropriate events. These bounds have to be dimension independent in order to obtain

a result that is dimension independent, too. This is possible as most quantities can be

written as a monotonic function of the norm for which the following result holds.
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Lemma 3.20. (From Article I) Let f : R→ R be monotonically increasing, then

ˆ

f(‖ξ‖)dγm(ξ) ≤
ˆ

f(‖ξ‖)dγ(ξ)

and in particular,

γm(BR(0)) ≥ γ(BR(0)). (3.34)

Proof. The truncated Karhunen-Loeve expansion relates γm to γ and yields

m∑

i=1

λiξ
2
i ≤

∞∑

i=1

λiξ
2
i .

Hence the result follows by monotonicity of the integral and of the function f

ˆ

f (‖ξ‖) dγm(ξ) = E



√√√√f

(
m∑

i=1

λiξ2
i

)
 ≤ E



√√√√f

( ∞∑

i=1

λiξ2
i

)
 =

ˆ

f (‖ξ‖) dγ(ξ).

Inserting f = χBR(0)c , this yields Equation (3.34).

The lemma above is crucial as it implies that the bounds for the conditions of the

weak Harris theorem are dimension independent. In this way, we obtain our main result

for the pCN algorithm. For a concluding section on Article I and directions of further

research, we refer the reader to Section 3.4.

3.3.2 Article II

In the previous section, we have discussed the results of Article I and in particular, the

dimension-independent performance of the pCN based on a quickly converging proposal

Markov chain for the Gaussian reference measure. In contrast, Article II considers

how a quickly converging Markov chain for non-Gaussian reference measures can be

used to obtain quickly converging Metropolis-Hastings algorithms for the corresponding

target measures. If the density of the target measure is bounded from above and away

from zero, the Independence Sampler (IS) is uniformly ergodic as the state space is a

small set [135]. For Metropolis-Hastings algorithms with local proposals, this theory

does not apply which is one reason why the independence sampler is the only MCMC
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algorithm considered in [92]. In Article II, we address this problem by considering

local proposal kernels Q that are reversible and have an L2
µ0
-spectral gap with respect

to a given reference probability measure µ0. If the density of the target measure µ is

bounded above and below, then the lazy version of the resulting Metropolis-Hastings

algorithm has an L2
µ-spectral gap. A similar fact has been proved for the Gibbs sampler

for perturbations of Gaussian measures in [4]. However, it is not clear how it could be

generalised to the random walk proposal for arbitrary reference measures.

For the elliptic inverse problem with a prior based on a series expansion with uni-

formly distributed coefficients introduced in Section 2.2, we have constructed a class of

appropriate proposals. We call the resulting algorithm Reflection Random Walk Metro-

polis (RRWM) algorithm. Subsequently, we present our main result and introduce this

class of algorithms. For the corresponding simulations, we refer to Article II.

3.3.2.1 L2
µ-Spectral Gaps of Lazy Metropolis-Hastings Algorithms

In the following, we present our main result proved in Article II stating that the L2
µ-

spectral gap of the lazy version of the Metropolis-Hastings algorithm can be bounded in

terms of the L2
µ0
-spectral gap of the proposal chain. In contrast to Section 3.3.1.1, we

use the characterisation of the L2-spectral gap in terms of the associated Dirichletform

in order to obtain a lower bound thereof. However, before stating and proving our main

theorem, we introduce the lazy version associated to a Markov chain and explain the

relation between their L2
µ-spectra.

This construction is necessary because the our methods only yields a lower bound

on the upper L2
µ-spectral gap 1− Λ of P . In order to obtain a lower bound on the L2

µ-

spectral gap also a lower bound of the lower L2
µ-spectral gap is required. This problem

can be circumvented by considering the lazy version of a Markov chain with transition

kernel P̃ which is given by P̃ = 1
2(I+P ). This transition can be interpreted by throwing

a coin and

• if it comes up heads, the Markov chain performs a step according to P ;

• if it comes up tails, the Markov chain does not make a transition.
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Subsequently, we show that P̃ is positive definite and we derive a lower bound on its L2
µ-

spectral gap. The construction of the lazy Markov chain is well-known in the literature

and goes at least back to [127]. If −1 is in the spectrum σ(P ), this corresponds to a

period 2 behaviour which can be broken through considering the lazy version.

Following Section 3.2.1.2, we consider the Markov kernel P as an operator on either

L2
µ or L2

µ,0, where the latter denotes the orthogonal complement of the subspace of

constant functions in L2
µ. The spectrum σL2

µ,0
(P ) is then contained in [λ,Λ] where

λ = inf
‖f‖

L2
µ,0

=1
〈Pf, f〉 and Λ = sup

‖f‖
L2
µ,0

=1
〈Pf, f〉

which is the characterisation of the smallest and largest eigenvalue of a self-adjoint

operator, respectively. More generally, for a self-adjoint operator A : H → H the

smallest and largest eigenvalue are characterised by

λHmin(A) = inf
f∈H
〈Af, f〉
|f |2

and λHmax(A) = sup
f∈H

〈Af, f〉
|f |2

, (3.35)

respectively. The L2
µ-spectral gap can then be represented as

1− β = min{1− λ, 1-Λ}. (3.36)

This motivates the following notions.

Definition 3.21. For a Markov kernel P , we refer to the quantities 1− λ and 1−Λ as

the lower and upper L2
µ-spectral gap, respectively.

These notions are introduced because we will only be able to obtain a lower bound

for the upper L2
µ-spectral gap. In some sense, an upper L2

µ-spectral gap is sufficient

as the lazy version of the chain has an L2
µ-spectral gap of almost the same size. The

spectrum of the transition kernel P̃ of the lazy version can be derived easily from that of
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P . The smallest eigenvalue λ̃ and the largest eigenvalue Λ̃ of P̃ restricted to L2
µ,0 satisfy

λ̃ =
1 + λ

2

Λ̃ =
1 + Λ

2
.

In particular, σL2
µ,0

(P̃ ) ⊆ [1+λ
2 , 1+Λ

2 ]. Thus, P̃ has an L2
µ-spectral gap if Λ < 1 because

this implies that 0 ≤ λ̃ and Λ̃ < 1. The L2
µ-spectral gap 1 − β̃ of the lazy chain with

transition kernel P̃ is given by

1− β̃ =
1− Λ̃

2
.

Depending on the bound on Λ, there is p 6= 1
2 such that P ′ = pI + (1− p)P has a larger

L2
µ-spectral gap than P̃ . However, we stick to the choice p = 1

2 as our bounds are not

sharp at any rate. Instead, we are interested in proving the existence of a dimension

independent lower bound on the spectral gap.

3.3.2.2 Lower Bounds on the Upper L2-Spectral Gap of the Metropolis-

Hastings Kernel

We will first rewrite the characterisation of the upper L2-spectral gap in order to use

the lower bound on the upper L2-spectral gap for the Metropolis-Hastings kernel. The

upper spectral gap 1− λL
2
0(µ)

max (P ) is given by the smallest eigenvalue λL
2
0(µ)

min of I − P on

L2
0(µ) and can be characterised as

1− λL
2
0(µ)

max (P ) = inf
f∈L2

0(µ)

〈(I − P )f, f〉
|f |2

= inf
f∈L2(µ)

〈(I − P )Πf,Πf〉
|Πf |2

(3.37)

where Π : L2
0(µ)→ L2(µ) is the orthogonal projection onto L2

0(µ) given by

Πf = f − µ(f).
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The denominator can be rewritten as

|Πf |2 = V arµ(f) =

ˆ

(f − µ(f))2 dµ

=

ˆ

f2dµ− µ(f)2 =
1

2

ˆ

µ(dx)µ(dy) (f(x)− f(y))2 . (3.38)

Moreover, the nominator in (3.37) can be rewritten as

〈(I − P )(f − µ(f)), f − µ(f)〉 = 〈(I − P )f, f − µ(f)〉 = 〈(I − P )f, f〉

=

ˆ

µ(dx)P (x, dy)
(
f(x)2 − f(x)f(y)

)
dy

=
1

2

ˆ

µ(dx)P (x, dy) (f(x)− f(y))2 dy =: EPµ (f, f).

The bilinear form E(f, f) is called Dirichlet form associated with the Markov kernel P .

Reversible Markov processes can be studied in terms of their Dirichlet form. We refer

the reader to [169] for a short survey for time-continuous Markov processes, to [73] for

generalities of the theory and to [126] for a review for discrete Markov chains. However,

we will not make use of this theory. Instead the characterisation of the upper L2-spectral

gap

1− λL
2
0(µ)

max = inf
f∈L2(µ)

EPµ (f, f)

Var(f)
(3.39)

is sufficient.

Having disposed of this preliminary step, we are now in the position to state and

prove our main theorem presented in Article II. The considerations above show that

it is enough to bound the second largest eigenvalue Λ in order to bound the spectral

gap of the lazy chain. The following theorem uses the characterisation in Equation

(3.39) and is an adaptation of the results from [56] for continuous state spaces and the

Metropolis-Hastings kernel.

Theorem 3.22. Suppose that the proposal kernel Q satisfies a lower bound on the upper

L2
µ0
-spectral gap 1− λL

2
0(µ)

max (P ) > 0 and the target measure takes the form

µ =
L

Z
µ0.
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Then the upper L2
µ-spectral gap satisfies

(
1− λL

2
0(µ0)

max (Q)
) L?3
L3
?

≥ 1− λL
2
0(µ)

max (P ) ≥ L4
?

L?4

(
1− λL

2
0(µ0)

max (Q)
)

where L? := inf L ≤ L ≤ supL = L?. In particular, the lazy version P̃ has an L2
µ-spectral

gap 1− βlazy satisfying

1

2

(
1− λL

2
0(µ0)

max (Q)
) L?3
L3
?

≥ 1− βlazy ≥
1

2

L4
?

L?4

(
1− λL

2
0(µ0)

max (Q)
)
.

Proof. From Equation (3.38) follows that

L2
?

Z2
Varµ(f) ≤ Varµ0(f) ≤ L?2

Z2
Varµ(f).

Similarly, we notice that

EPµ (f, f) =
1

2

ˆ

µ0(dx)Q(x, dy)
L

Z
α(x, y) (f(x)− f(y))2

≥ L?
Z
α?

1

2

ˆ

µ0(dx)Q(x, dy) (f(x)− f(y))2

≥ L2
?

ZL?

(
1− λL

2
0(µ0)

max (Q)
)
Varµ0(f)

≥ L4
?

Z3L?

(
1− λL

2
0(µ0)

max (Q)
)
Varµ(f)

≥ L4
?

L?4

(
1− λL

2
0(µ0)

max (Q)
)
Varµ(f).

Thus, we can conclude that

1− λL
2
0(µ)

max (P ) = inf
f∈L2(µ)

EPµ (f, f)

Var(f)
≥ L4

?

L?4

(
1− λL

2
0(µ0)

max (Q)
)
.

The other inequality is obtained in the following way

EQµ (f, f) =
1

2

ˆ

µ0(dx)Q(x, dy)
L

Z
α(x, y) (f(x)− f(y))2

≥ L?
Z

1

2

ˆ

µ(dx)P (x, dy) (f(x)− f(y))2
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≥ L?
Z

(
1− λL

2
0(µ)

max (P )
)
Varµ(f)

≥ L3
?

Z3

(
1− λL

2
0(µ)

max (P )
)
Varµ0(f).

The result for the lazy chain can be derived by an application of the theory presented

at the beginning of this section.

The statement of Theorem 3.22 highlights the insight that the choice of the reference

measure is crucial for designing efficient sampling algorithms on function spaces. A

typical example is the use of a Markov chain that has an L2
µ0
-spectral gap where µ0 is the

prior of a Bayesian inverse problem. If the likelihood is bounded, then the Metropolis-

Hastings algorithm with this chain as the proposal has an L2
µy -spectral gap with µy

being the posterior. However, the result is not limited to this situation.

3.3.2.3 The Reflection Random Walk Metropolis Algorithm for Uniform

Series Priors

We describe the construction of reversible proposals for posteriors arising from uniform

series priors satisfying the conditions of Theorem 3.22. These priors are commonly

used for the particular Bayesian inverse problem (EIP) of reconstructing the diffusion

coefficient from the pressure as introduced in Section 2.2.2. We recall that this prior is

given by

au(x) = ā(x) +
∑

j≥1

ujψj(x), x ∈ D (2.7)

µ0 =

∞⊗

j=1

U(−1, 1). (2.8)

Constructing a reversible proposal with an L2
µ0
-spectral gap can be reduced to construct-

ing such a proposal for U(−1, 1) because of the tensorisation property of the L2-spectral

gap, for which we refer the reader to [80] and [12].

Such a proposal can also be obtained from a Metropolis-Hastings chain which is

explained in more detail in Article I. However, we follow the more straightforward ap-

proach of considering a proposal based on a repeated reflection of random walks. A
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repeated reflection at the boundary −1 and 1 can be represented by the following map

R(x) =





y y ≤ 1

2− y 1 < y < 3

−4 + y 3 ≤ y ≤ 4

, where y = x mod 4.

Therefore the proposals take the form

QRRWM(x, dy) = L (R(x+ ξ)) , with ξ ∼ q̃

where L denotes the law of a random variable. The resulting density qRRWM of QRRWM

can be written using the change of variable formula

qRRWM(x, dy) =
∑

k∈Z
q̃(x− y + 4k) + q̃(x+ y + 4k + 2). (3.40)

We focus on the choices

q̃RURWM
ε = U(−ε, ε) and

q̃RSRWM
ε = N (0, ε2)

which we call Reflection Uniform Random Walk Metropolis (RURWM) and Reflection

Standard Random Walk Metropolis (RSRWM) algorithm, respectively. In the Figures

3.1 and 3.2, we plot the density of the one dimensional transition kernel of the RURWM

and the RSRWM algorithm based on Equation (3.40). Higher dimensional proposals are

obtained by applying this proposal to each component independently.

In Article II, we show that the L2
µ0
-spectral gaps for both Markov chains are bounded

away from zero and are of order ε. Using our main theorem, we can conclude that the

lazy version of the resulting Metropolis-Hastings algorithm has L2
µ -spectral gaps.

The lower bound on the L2
µ-spectral gap of the lazy chain obtained from Theorem

3.22 is best for the independence sampler based on proposing independent samples form

µ0 because its L2
µ-spectral gap is given by 1 − β = 1 and therefore it is as large as
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(a) ε = 0.1 (b) ε = 0.5

Figure 3.1: Transition density for the RURWM

(a) ε = 0.1 (b) ε = 0.5

Figure 3.2: Transition density for the RSRWM
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possible. However, this result only concerns lower bounds. In contrast, the simulations in

Section 5 of Article II suggest that the RURWM and the RSRWM algorithm converge to

equilibrium more quickly than the IS for peaked measures. More precisely, we implement

the inverse problem introduced in Section 2.2.2 in one spatial dimension. Notice that

the representation of the diffusion coefficient through a series expansion leads to a high-

dimensional inference problem.

This Bayesian inverse problem is precisely set up in Section 5.1 of Article II. In the

simulations, we compare the IS, RWM, RURWM and RSRWM algorithm in terms of

the acceptance probability and autocorrelation. Note that there is in general a relation

between the average acceptance probability and the step-size. If the target density is

continuous, it is plausible that small step sizes lead to large acceptance probabilities

and large step sizes lead to low acceptance probabilities because it is very likely for the

proposal to lie in the tails. For the RWM algorithm, this can be seen from the definition

of the acceptance probability in Equation (3.6). In Figure 3.3, it has been demonstrated

that for the RURWM and the RSRWM algorithm this relationship does not depend on

the dimension in contrast to the RWM algorithm.

A more direct quantification of the performance is given through the autocorrelation.

It is well-known that the integrated autocorrelation agrees with the asymptotic variance

of the Markov chain CLT. For different representations of the asymptotic variance, we

refer the reader to [81]. In Section 5.3 of Article II, we compare the autocorrelation of

the IS, RWM, RURWM and RSRWM algorithm.

In this section, we summarised the construction of the Reflection Random Walk

algorithm which is particularly suited for sampling the posterior of the elliptic inverse

problem with a prior based on a series expansion with uniformly distributed coefficients

introduced in Section 2.2.2. For this example, we have constructed a proposal which

satisfies the conditions of our main theorem indicating its importance for applications.

Subsequently, we draw an overall conclusion about this chapter and Articles I and II.
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(a) Acceptance rate vs. step size for the RWM algorithm

(b) Acceptance rate vs. step size for the RURWM algorithm

(c) Acceptance rate vs. step size for the RSRWM algorithm

Figure 3.3: Dependence of the acceptance probability on the dimension
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3.4 Conclusion and Avenues of Further Research

Subsequently, we draw a conclusion of this chapter and Articles I and II reviewed in

Section 3.3. The chapter has provided an exposition and literature review of Metropolis-

Hastings algorithms both on finite and infinite dimensional state spaces in the Sections

3.1 and 3.2. Our research fills a gap by providing one of the first dimension independent

rigorous convergence results for locally moving MCMC chains.

3.4.1 Article I

We have provided the first dimension independent convergence result for a locally moving

Metropolis-Hastings algorithm, the preconditioned Crank-Nicolson (pCN). In contrast,

we also quantified how the standard RWM algorithm deteriorates in terms of the L2
µ-

spectral gap. For the pCN, we considered target measures given as densities with respect

to a Gaussian measure on separable Hilbert spaces. The results for the pCN algorithm

can also be verified on separable Banach spaces. The finite dimensional approximations

in Article I have been based on the Karhunen-Loeve expansion. For target measures

defined on Banach spaces, we would use a general Gaussian series (c.f. Section 3.5 in

[26]) instead. The dimension independence in the present form is based on an explicit

calculation based on the Karhunen-Loeve expansion, see Lemma 3.20. For more general

target measures, the same result is due to Theorem 3.3.6 in [26].

Moreover, we have demonstrated that the theory based on small sets and φ-irreducibility,

as developed in [137], is not well-suited for dealing with convergence to equilibrium for

stochastic processes on infinite dimensional state spaces. Instead, we use the theory

based on the weak Harris theorem which has been developed in [84].

A natural direction for further investigation is to prove convergence results for other

MCMC algorithms that are well-defined on function spaces. Natural candidates are the

preconditioned Crank-Nicolson Langevin (pCNL) and Hybrid Monte Carlo algorithm.

For the pCNL, which is also called MALA algorithm with semi-implicit proposal,

results of this type have been obtained in [64]. However, the main result of the article

only shows a contraction of the Wasserstein distance in bounded sets under restricted
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log-concavity assumptions. This could be a starting point of an analysis based on the

weak Harris theorem because this result yields a ’large’ d-small set.

The function space version Hybrid Monte Carlo algorithm has originally been intro-

duced in [20] and revised in [18]. It is based on geometric integrators for Hamiltonian

dynamics. An optimal scaling result in terms of the ESJD, see Section 3.2.2, has been

obtained in [19]. More recently, a non-reversible version of this algorithm has been

constructed in [147] along with a scaling result that suggests a dimension-independent

performance. The non-reversibility introduces additional technical difficulties because

many methods, such as L2
µ-spectral gaps, depend on the reversibility. Studying rigorous

convergence bounds for this algorithm seems to be an interesting direction for further

investigation.

However, a Wasserstein spectral gap would at least imply bounds on the MSE and

a CLT for Lipschitz functionals, the corresponding results can be found in [98] and

[115], respectively. Moreover, it seems worthwhile to develop a theory of polynomial

Wasserstein convergence to match the theory of polynomial ergodicity, for the latter we

refer the reader to [94] and [69]. Subgeometric ergodicity is known to give rise to CLTs

and bounds on the sample average, consult [94] and [120]. In contrast, such results are

not known for Wasserstein convergence.

3.4.2 Article II

We have shown that if the proposal kernel Q is reversible and has an L2
µ0
-spectral gap

with respect to a given reference probability measure µ0 and the density of the target

measure µ is bounded from above and below, then the lazy version of the resulting

Metropolis-Hastings algorithm has an L2
µ-spectral gap. It is therefore natural to ask the

question whether the same is true for the Metropolis-Hastings algorithm chain or just

for its lazy version.

We constructed appropriate proposals for the elliptic inverse problem introduced in

Section 2.2 based on the tensorisation property of L2
µ-spectral gaps and a reflection

argument which we called Reflection Random Walk Metropolis (RRWM) algorithm.

As it is quite natural to assume that the density is bounded above and below on
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bounded sets, the global bound can be viewed locally as an additional tail assumption.

Even for Markov chains on Rn, it is quite difficult to pose general sufficient conditions on

the tail behaviour of the density implying geometric ergodicity of he Metropolis-Hastings

Markov chain for a given proposal. One of the most general sufficient conditions are

formulated in Equation (3.17) and has been derived in [93]. This condition is non-trivial

to verify. It is of interest to derive similar conditions in the infinite dimensional setting

and therefore to weaken the assumptions in Articles I and II.

Even though our bounds for the spectral gap are worse for the RRWM algorithm,

compared to the IS algorithm numerical simulations suggest that the former has a better

performance for concentrated measures. Posteriors arising in Bayesian inverse problems

often become more concentrated if the observational noise is turned to zero. This sug-

gests that it would be interesting to rigorously quantify the complexity of sampling as

the posterior in a Bayesian inverse problem goes to zero.
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Chapter 4

Posterior Consistency for Bayesian Inverse

Problems

The quality of the Bayesian method described in Section 2.1 can be evaluated by con-

sidering the posteriors arising from artificially generated data y = G(u†) + η for a fixed

’truth’ u†. Because the aim is the reconstruction of the truth, it is desirable that the

posterior contracts to the ’truth’ as, for example, the noise goes to zero or the amount

of data to infinity. This property of the statistical model is called posterior consistency

and is the subject of this chapter. In particular, we present the results of Article III

constituting one of the first posterior consistency result for a nonlinear inverse problem

in infinite dimensions.

In the following, we define posterior consistency for a sequence of inverse problems

(µn0 ,Gn,Qn
0 ). In order to quantify the posterior concentration, we denote by Bd

ε the ball

of radius ε with respect to a metric d.

Definition 4.1. A sequence of Bayesian inverse problems (µn0 ,Gn,Q0
n) is posterior

consistent for u† with rate εn ↓ 0 with respect to a metric d if for

yn = Gn(u†) + ηn with ηn ∼ Qn
0 , (4.1)
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there exists a constant C and a sequence ln → 1 such that

Qn
0

(
µyn
(
Bd
Cεn

(u†)
)
≥ ln

)
→ 1. (4.2)

If we do not consider the rate of posterior consistency, we simply say that (µn0 ,Gn,Q0
n)

is posterior consistent if the above holds with εn replaced by ε, for any fixed ε > 0.

In the subsequent discussion, we concentrate on the following two special cases of

this definition:

• Posterior consistency in the small noise limit corresponds to

Qn
0 = S 1√

n
?Q0 and Gn = G

where Sa(x) = ax;

• Posterior consistency in the large data limit corresponds to

Qn
0 = ⊗ni=1Q0 and Gn=

n∏

i=1

Gi = (G1, . . . ,Gn).

It is important to note that posterior consistency implies the existence of a consistent

estimator. More precisely, for the choice

ûn = arg max
u

µyn
(
Bd
Cεn(u)

)
,

it follows that d(ûn, u
†) ≤ 2Cεn if ln > 0.5 because in this case Bd

Cεn
(u†) and Bd

Cεn
(ûn)

cannot be disjoint. More generally, posterior consistency properties evaluate Bayesian

methods from the frequentist perspective by studying how the posterior depends on the

realisation of the noise. The posterior is always a trade off between the prior and the

data. In this context, a lack of posterior consistency can be interpreted as a bias intro-

duced by the prior that cannot be overcome by the data. Posterior inconsistency does

not only occur in pathological cases as described in the following. Priors based on Dirich-

let processes have been used for the location problem in [43, 41] and [42]. Nevertheless,
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in [50] it has been shown for the location problem that these priors lead to inconsistent

posteriors. The example provided in article [50] illustrates the importance of posterior

consistency and its dependence on the choice of the prior. For this reason, it seems

plausible to choose priors that have the best possible posterior consistency properties

for a very large class of possible truths. However, this contradicts the philosophical idea

behind the Bayesian approach because the prior is only supposed to represent a priori

knowledge. A philosophical justification for studying posterior consistency can be seen

in the fact that posterior consistency is equivalent to the property that the posteriors

arising from different priors merge for a broad class of models as considered in [51]. For

an in-depth discussion, we refer the reader to [76]. In practice, priors are often chosen

based on their computational performance and some of their parameters are adapted to

represent subjective knowledge. This is the case for the choice of base measures and the

intensity of a Dirichlet process prior in clustering [91]. It is worth noting that the bulk

of the field has moved towards establishing consistency, after the initial works like [50]

indicated the care needed in selecting the priors.

This chapter is structured as follows. Section 4.1 contains a review of the develop-

ment of posterior consistency in the literature of parametric and non-parametric statist-

ics as well as for inverse problems. We use this background to present our contributions

summarised in the research Article III in Section 4.2. The key idea is to use inverse

stability results which can be combined with posterior consistency for regression prob-

lems in order to prove posterior consistency for non-linear inverse problems. This idea

is presented in more detail in Section 4.2.

4.1 The Development of Posterior Consistency - A Literat-

ure Review

In the following, we review the literature on posterior consistency for parametric and

non-parametric statistics as well as for inverse problems. We first simplify the problem

of posterior consistency for a Bayesian inverse problems to posterior consistency for

the problem of identifying a probability distribution from samples. Whereas the main
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research question is to address posterior consistency of nonlinear inverse problems in

infinite dimensions, we would like show first why it is difficult to adapt the techniques

that work for finite dimensions. In this way, we illustrate the need for new methods. The

approach taken in Article III is presented in Section 4.2 and constitutes an important

step in that direction.

Reformulation of Posterior Consistency for Bayesian Inverse Problems

Many statistical models and indeed Bayesian inverse problems can be reduced to the

problem of identifying a probability distribution from samples. In the following, we show

that this is also the case for inverse problems if the forward operators are injective. In

this case, u can be identified with Pu = TGn(u)?Qn
0 where Ty(x) := x + y denotes the

translation operator. Moreover, we define by

Pn :=
{
Pu

∣∣∣u ∈ X
}
,

a set of probability measures on Y . Both prior and posterior on u yield a prior Πn and

a posterior Πn(·|yn) on Pn given by

Πn = µm0 (du)TGn(u)?Qn
0

Πn(·|yn) = µy(du)Pu. (4.3)

This statistical model is related to the following problem.

Problem 4.2. Let P be a set of probability measures on E and θ 7→ Pθ be a para-

metrisation for θ ∈ Θ. For a fixed Pθ0 ∈ P, the data is generated from n samples

yn = (X1, . . . , Xn) where Xi
i.i.d.∼ Pθ0.

It is worth mentioning that Problem 4.2 and the reformulation of posterior con-

sistency for inverse problems in Equation (4.3) are not equivalent. However, they are

closely related as the discussion in Section 4.1.2 shows. The main question arising for

this problem is whether the sequence of posteriors Πn(·|yn) corresponding to a sequence

of priors Πn and the data yn concentrates around θ0.
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We would like to point out that Definition 4.1 is posed in analogy to the following

definition of posterior consistency for Problem 4.2 presented in [183, 76] and [110].

Definition 4.3. (Posterior rate of contraction). The posterior distribution Πn(·|Y n) is

said to contract at θ0 at rate εn ↓ 0 if

Πn(θ : d(θ, θ0) ≥Mnεn|Y n)→ 0 (4.4)

in Pnθ0-probability for every Mn → ∞ as n → ∞. If the above holds for every constant

ε, we say that the posterior is consistent.

In Definition 4.3, d denotes a metric on P which might be the total variation, the

Hellinger distance of the corresponding distribution Pθ or a distance induced by a metric

on Θ. The relation between the Definitions 4.1 and 4.3 becomes apparent through the

reformulation of the underlying problem in Equation (4.3). The additional sequenceMn

makes Definition 4.3 a bit more cumbersome at the benefit of including borderline cases.

In particular, the multiplicative constant of the convergence rate can be hidden in Mn.

Bernstein-von-Mises - Posterior Consistency in Finite Dimensions

For finite dimensional Θ ⊆ Rd and Θ 3 θ 7→ Pθ sufficiently regular, the Bernstein-von-

Mises theorem implies that under appropriate assumptions on θ 7→ Pθ

sup
A

∣∣∣Πn

(
θ ∈ A

∣∣X1, . . . , Xn

)
−N (θ̂n, n

−1I−1
θ )(A)

∣∣∣→ 0 (4.5)

for any asymptotically efficient estimator θ̂n. Due to the well-known properties of θ− θ̂n
for asymptotically efficient estimators and N (θ̂n, n

−1I−1
θ )(A), Equation (4.5) implies

that the posterior contracts at the rate εn = n−
1
2 . The Bernstein-von-Mises theorem

consolidates Bayesian and frequentists’ statistics by providing a comparison of asymp-

totic confidence sets and credible sets. For more details on confidence sets and their

relation, we refer the reader to [39] and [112]. A good overview of the Bernstein-von-

Mises theorem can be found in [183] and [91]. It is an interesting historical fact that

this theorem can be traced back to Laplace in 1810 as discussed in [125].
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It is important to note that the Bernstein-von-Mises theorem does not imply con-

sistency for the MAP estimator. However, consistency of the MAP-estimator is clearly a

related question which has been considered for Bayesian inverse problems with Gaussian

priors in [45].

However, even though the Bernstein-von-Mises theorem provides very strong results

for the finite dimensional case, it is not straightforward to generalise it to the non-

parametric or infinite dimensional setting as has been shown in [39]. More precisely,

in this article, the author considers a regression problem in the large data limit and

proves that there are sets with posterior probability arbitrarily close to one that con-

stitute confidence sets to an arbitrary low level. Nonetheless, for some special cases

Bernstein-von-Mises type results hold, for example, it has been proved in [105] that a

non-parametric version of the Bernstein-von-Mises theorem applies to the large class

of Lévy process priors for survival models. Bernstein-von-Mises type theorems seem to

hold in more generality in the semi-parametric setting, that is for a finite dimensional

parameter with an infinite dimensional nuisance parameter. One of the first of these res-

ults has been presented in [104] for the hazard model. For a recent account of the theory

of semi-parametric inference and an extension to more irregular models, we refer the

reader to [108]. In general, the problem of posterior consistency for non-linear inverse

problems is for this reason treated differently.

4.1.1 Non-Parametric Statistics

We review posterior consistency results for a non-parametric version of Problem 4.2

following [91] and [76]. The difference to the parametric approach is that the parameter

space Θ is infinite dimensional or the dimension is increasing with the number of samples.

Without any restrictive assumptions, Doob has shown in [60] that if θ is a measurable

function of σ(X1, . . . ), then the posterior is consistent for
∏
-.a.e. θ for Problem 4.2 with

respect to the Prokohorv metric metrising weak convergence. However, Doob’s result

does not establish a rate, nor does it guarantee consistency for particular choices of θ0.

The first example of posterior inconsistency has been provided in [71] for the Problem

4.2 for probability measures on N. In a similar setting, the same author has proved in
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the research article [72] that this behaviour is topologically generic.

Article [171] contains a general theory for posterior consistency based on the well-

developed theory of tests in order to bound Πn(U cθ0

∣∣Yn) for any neighbourhood U cθ0 of

the truth Pθ0 . The basic idea is to use the existence of tests Φn satisfying

Pθ0(Φn) ≤ B exp(−bn) sup
θ∈Ucθ0

Pθ(1− Φn).

The tests Φn can be used to bound the following expression with respect to the realisation

of the noise

Πn

(
U cθ0
∣∣Yn
)
≤ Φn +

(1− Φn)
´ c
Uθ0

∏n
i=1

p(Xi)
p0(Xi)

dΠn(p)
´ c
Uθ0

∏n
i=1

p(Xi)
p0(Xi)

dΠn(p)

under appropriate additional assumptions.

The test-driven approach has been developed into a quantitative approach in [74]

by reducing the existence of appropriate tests to metric entropy numbers with respect

to, for example, the Hellinger metric. The existence of such tests is then guaranteed by

results presented in [124] and [23]. This method gives rise to conclusions of the following

form.

Theorem 4.4. (Theorem 2.1 in [74]) Suppose there exist εn → 0 with nε2n → ∞, a

constant C > 0 and sets Pn ⊆ P such that

logD (εn,Pn, d) ≤ nε2n (4.6)

Πn (P \Pn) ≤ exp
(
−nε2n (C + 4)

)
(4.7)

Πn

(
P : −P0

(
log

p

p0

)
≤ ε2n, P0

(
log

p

p0

)
2 ≤ ε2n

)
≥ exp

(
−nε2nC

)
(4.8)

where d is a distance on the set of measures P and D (εn,Pn, d) is the ε-packing number.

Then for sufficiently large M

Πn(P : d(P, P0) ≥Mεn|X1, . . . , Xn)→ 0.

The assumptions stated in Theorem 4.4 have explicitly been verified for Gaussian

priors in [182]. In the same article, the authors show that also other problems in non-
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parametric statistics, such as regression and density estimation, can be transformed into

the Model 4.2. For regression problems of the form

Yi = f(Xi) + εi

with εi ∼ N (0, σ2) and Xi ∼ Q for a known Q, this transformation works as follows

f 7→ Pf =

ˆ

Tf(x)?Q(dx)

where Th(x) = x + h is the translation operator. It is then left to relate distances on

the measures Pf to distances on the function f . For a more detailed discussion about

posterior consistency, we refer the reader to [182], [91] and [76]. More details about

posterior consistency for non-parametric regression are presented in Section 4.2.

4.1.2 Bayesian Inverse Problems

In the following, we review posterior consistency results for Bayesian inverse problems

available in the literature stressing that most articles address linear inverse problems

under restrictive assumptions on the prior. In contrast, we present our contributions

addressing posterior consistency for nonlinear inverse problems in Section 4.2.

Whereas we focus on posterior consistency of the infinite dimensional problem, pos-

terior consistency for discretisations of linear models has been considered in [141] and

in references therein.

At first sight, the literature suggests that the notions of posterior consistency for

Bayesian inverse problems and for non-parametric statistics, do not have much in com-

mon. The methods from non-parametric statistics were deemed as ’not suitable to deal

with ill-posed inverse problems’1. This is not quite true as has been demonstrated in

[153] by a modification of the proof of Theorem 4.4. The author has been able to obtain

sharp rates in the linear case with this method and he has also established results for

some classes of non-Gaussian priors.

1p. 22 in B. Knapik. Bayesian Asymptotics - Inverse Problems and Irregular Models, PhD thesis,
Vrije Universiteit Amsterdam, 2013.
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Linear forward operators have also been considered in articles [112, 113, 1] and [2]

under the assumption that both the prior and the noise are Gaussian. Whereas articles

[112] and [113] treat the case when prior and noise covariances are jointly diagonalisable,

[1] and [2] use PDE methods that weaken this assumption. However, articles [112, 113,

1, 2] make use of the explicit Gaussian structure of the posterior. For this problem,

Gaussian priors are conjugate, that is both the prior and the posterior are of the same

class, in this case they are Gaussian measures. In contrast, [153] is able to treat a much

larger class of non-conjugate priors.

As far as the author is aware, posterior consistency results for nonlinear inverse

problems have only been considered in finite dimensions in articles [25] and [24]. Both

articles consider generalised linear models with non-Gaussian noise. However, it seems

that the appropriate assumptions are not satisfied for many non-linear problems such

as the (EIP). Posterior consistency with respect to the Ky-Fan metric has been proved

in [24]. This result also holds if the dimension increases sufficiently slowly. For a fixed

finite dimension, a version of the Bernstein-von-Mises theorem has been derived in [25].

It becomes apparent from the above literature review that so far no posterior con-

sistency results have been established for nonlinear infinite dimensional Bayesian inverse

problems with non-Gaussian priors. In the following section, we present results from

Article III filling this gap.

4.2 Contributions of Article III

In Article III, we develop a method to prove posterior consistency for non-linear inverse

problems with additive Gaussian noise under weak assumptions on the prior and apply

it to the elliptic inverse problem (EIP) as considered in Section 2.2. Our method can be

summarised by reducing the problem of posterior consistency of the non-linear inverse

problem to posterior consistency of a Bayesian regression problem using inverse stability

results. These inverse stability results are readily available for many problems in the

literature as they often form the basis for convergence results for regularisation problems

(see Theorem 10.4 in [67]).
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Besides establishing this general method, the contribution of this paper naturally

falls into four parts:

1. Assuming the behaviour of small ball probabilities and the tail behaviour of the

prior, we establish new results of posterior consistency with rate for the Bayesian

regression problem with Gaussian noise both for Hilbert spaces and point-wise

observations (consider Section 3 in Article III).

2. We discuss an interesting example of posterior inconsistency for a particular re-

gression problem.

3. We apply the method in detail to elliptic inverse problems as considered in Section

2.2 verifying the assumptions for the posterior consistency results for the Bayesian

regression problem (see Section 4 in Article III).

4. We derive small ball probability asymptotics for a prior based on a series expansion

with independent and uniformly distributed coefficients in order to obtain a rate

of posterior consistency.

In the remaining part of this chapter, we describe our method and the novel posterior

consistency results for the Bayesian regression problem in more detail. Suppose we

are given a sequence of inverse problems with prior µ0, forward operator Gn and noise

η ∼ N (0,Γn). The Bayesian framework for this inverse problem (IP), as described in

Section 2.1, can be summarised as follows

Prior µ0 on u

Data y = Gn(u) + ηn, ηn ∼ N (0,Γn)

Posterior dµn

dµ0
(u) ∝ exp

(
−1

2

∥∥Gn(u)
∥∥2

Γn
+ 〈y,Gn(u)〉Γn

)
.

(IP)

We assume that the forward operator Gn can be written as a composition of the

model operator G and an observation operator On such that

Gn = On(G(u)).
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The model operator can be thought of as the solution operator to the underlying con-

tinuum model and the observation operator can be interpreted as evaluations of the

solution. We consider a related Bayesian regression problem with the following push-

forward prior

Prior µ̃0 = G?µ0 on v

Data y = On(v) + ηn, ηn ∼ N (0,Γn)

Posterior dµ̃yn

dµ̃0
(v) ∝ exp

(
−1

2

∥∥O(v)
∥∥2

Γn
+ 〈y,O(v)〉Γn

)
.

(BRP)

The (IP) is related to the (BRP) by a change of variable formula (consider Theorem

Appendix B.1. in Article III) implying that

µyn
(
Bd
ε (u†)

)
= µ̃yn

(
G
(
Bd
ε (u†)

))
.

Recall that Bd
ε (x) denotes a ball of radius ε with respect to the metric d. Inverse stability

results yield a statement of the form G(Bd
ε (u†)) ⊇ Bd′

b(ε)

(
G(v†)

)
which then gives rise to

the following theorem which is the main result of Section 2 in Article III.

Theorem 4.5. Suppose Gn = On ◦ G with G : (X, dX) → (Y, dY ) and On : (Y, dY ) →

(Z, dZ). Moreover, we assume that

• there exists an inverse stability result of the form

dX(a1, a2) ≤ b (dY (G(u1), G(u2)))

where b : R+ → R+is increasing and, b(0) = 0;

• there is a set A such that the sequence of Bayesian inverse problems (G?µ0,On,L(ξn))

is posterior consistent with respect to dY for all v† ∈ A with rate εn.

Then (µ0,Gn,L(ξn)) is posterior consistent with respect to dX for all u† ∈ G−1(A) with

rate b(εn).

In the following, we consider On = Id or On = (exi)
n
i=1, where exi denotes the

evaluation at xi. For the latter, the (BRP) becomes a standard regression problem.

101



Chapter 4. Posterior Consistency 4.2. Contributions of Article III

However, as this problem is equipped with the push-forward prior, the prior does not

belong to a particular class. In the case of On = (exi)
n
i=1, this problem has mostly been

dealt with in the case of Gaussian process priors and/or random covariates as described

in [91] and [76]. The only exceptions are [34] and [33] containing posterior consistency

results under conditions similar to ours, however, without a rate. In contrast, we obtain

a rate of posterior consistency under assumptions posed in [34] and are able to conclude

posterior consistency under much weaker assumptions. The corresponding results are

contained in Section 3.2 in Article III.

For On = Id, the only posterior consistency results that apply to the (BRP) are those

for linear Bayesian inverse problems. However, these results only apply to particular

classes of priors as described in Section 4.1. We derive a result for general priors satisfying

assumptions on the small ball probabilities as well as the tail behaviour. We compare our

results in the conjugate Gaussian setting with jointly diagonalisable covariances to the

optimal rates obtained in [112]. Even though our result applies in far greater generality,

our rates are suboptimal but quite close to the optimal rates in the special case where

[112] is applicable (for details see Section 3.1 in Article III, in particular, Figure 1).

In order to give a flavour of the results presented in Article III, we state a special

case that applies to the (EIP) as considered in Section (2.2.2).

Theorem 4.6. Consider the sequence of posteriors µyn arising from the (EIP) as set

up in Equation (2.10) for Γn = 1√
n

(−∆Dirichlet)
−r. Suppose that the parametrisation of

the diffusion coefficient in Equation (2.7) satisfies

( ∞∑

i=1

‖ψi‖Cβ
) 1

ν

<∞

for β > r + d
2 − 1. Then the (EIP) is posterior consistent in the small noise limit with

respect to the C β̃-norm for any β̃ < β. Additionally, the (EIP) is posterior consistent

in the small noise limit with respect to the L∞-norm with rate n−κ for any κ such that

κ <

(
α

α+ 2 + d
2 − r

∧ 1

)(
1

2 + 1
ν − 1

∧ α

2
(
α+ 1 + d

2r

)
)
.
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The above theorem is crucial as it shows that the bias due to the prior choice vanishes

if the noise in the data is scaled to zero. Moreover, a lower bound on the rate has been

provided.

4.3 Conclusion and Further Directions

In Article III, we have provided one of the first posterior consistency results for non-

linear inverse problems in infinite dimensions. Besides providing a general method to

approach this problem, the article contains new results for Bayesian regression problems

as well as small ball probabilities. We have applied our method to the (EIP) with appro-

priate priors. These do not include log-Gaussian priors on the diffusion coefficient as the

resulting push forward prior on the pressure does not have any exponential moments.

It is therefore of interest that posterior consistency for the (BRP) can be proved under

weaker assumptions on the tails.

We would like to stress that it is straightforward to apply the method to any inverse

problem for which the appropriate inverse stability results are available. One example is

the Calderon problem (electrical impedance tomography) for which the inverse stability

results are given in [3]. As the problem is severely ill-posed, the stability result is very

weak and therefore our method would also yield a slow rate of posterior consistency on

the log-scale.

In Article III, we have proved posterior consistency in the large data limit assuming

the data is i.i.d. distributed. A possible extension is to consider dependent data which

has been considered in [75] for the problem of identifying a distribution from samples

(c.f. Model 4.2). It seems to be possible to use the ideas from [33] in order to prove such

a result.

As described just before Section 4.1.1, the consistency of the MAP estimator is a

related question that neither implies, nor is implied by posterior consistency. However,

there might be additional assumptions under which consistency of the MAP estimator

implies posterior consistency. If this is the case, it is possible to use results from [45] in

order to establish posterior consistency.
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Chapter 5

An Under-Determined Elliptic Multiscale

Inverse Problem

Many physical phenomena happening around us are in fact occurring on many different

spatial and temporal scales. Therefore all of these different scales have to be taken into

account in order to model the phenomena accurately. A very descriptive example is the

global climate as it is influenced by effects that happen on small spatial scales, as for

example, the forming of clouds, and short temporal scales, like volcano eruptions. If all

effects are taken into account explicitly, the computer model would have to resolve up to

finest temporal and spatial scales leading to a prohibitively expensive model. Therefore

an effective model has to be constructed that only involves large temporal and spatial

scales. However, in case of the climate model, it is not possible to derive such an effective

model rigorously. In contrast, more idealised multiscale phenomena can be treated in

a rigorous way. One example is the phenomenon of heat conduction for a composite

material consisting of alternating layers of different materials. For this problem, it is

possible to describe the composite material as being effectively homogenous. In doing so,

we obtain a bound on the difference between the two descriptions depending on the layer-

size. Consequently, the mathematical theory behind this fact is called homogenisation.

Solving the effective equation has usually a much smaller computational cost than

solving the multiscale equation while still being accurate. For this reason, it is of in-

terest to study the consequences of using the effective model for data obtained from the
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physical model. This approach has, for example, been considered in [144]. However, in

the following, we study a different aspect. We would like to investigate the following

questions: How much information about the multiscale structure is contained in the

measurements and what effect does homogenisation have on the inverse problem? In

the simple picture of homogenisation of a two layered material, one can already expect

that there are many two layered materials corresponding to one homogeneous material.

This makes it apparent that the reconstruction of the complete two-scale structure is in

fact a heavily underdetermined problem.

In this last chapter, we would like present our work in progress regarding the beha-

viour of the posterior in a multiscale inverse problem. We have summarised our initial

results and observations in draft Article IV. More precisely, in Article IV, we study the

reconstruction of the two-scale diffusion coefficient from measurements of the pressure.

This is an extension of the problem studied in Section 2.2. The relation is again modelled

as a linear second order elliptic PDE of the form

−∇ ·
(
a
(
x,
x

ε

)
∇pε

)
= g for x ∈ D (5.1)

pε = 0 for x ∈ ∂D (5.2)

on a domain D ⊆ Rd. The basic assumptions are that a : D × Rd → Rd is periodic in

its second argument and twice differentiable in both arguments and g is an element of

C2(D). Moreover, we assume that a is uniformly elliptic, that is

〈a(x, y)ξ, ξ〉 ≥ α ‖ξ‖2 .

We would like to point out that Equation (5.1) also describes the heat conduction phe-

nomenon described above.

A scale separation occurs as x and x
ε vary on the scale of order 1 and ε, respectively.

Because of the periodicity of a, the theory of periodic homogenisation applies which we

present in a nutshell in Section 5.1 following [149]. This implies that there is an effective
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equation of the form

−∇ · (ā(x)∇p̄) = g for x ∈ D (5.3)

p̄ = 0 ∈ ∂D.

In this setting, it is possible to show that ‖pε − p̄‖∞ is of order ε [17, p.19].

In order to present our ideas, we introduce the inverse problem of interest. We

consider a two-scale diffusion coefficient of the form

a(b, c)(x, y) : = a0(x) + b(x) + c(y) (5.4)

where a0, b ∈ C2(D,Rd) and c ∈ C2(Rd,Rd). We call b and c the coarse and fine diffusion

coefficient, respectively and denote the corresponding homogenised diffusion coefficient

by ā(b, c).

We assume that a0, ε and g are known and consider the inverse problem for b and

c given measurements of the pressure p. We summarise the homogenisation theory and

set up the inverse problem in more detail before presenting the results contained in

Article IV. In this article, we study the inverse problem on the one dimensional domain

D = [0, 1]. Our initial findings are the following:

1. We consider the set ā−1
(
ā(b†, c†)

)
of different coarse and fine diffusion coefficients

b and c that homogenise to the same effective diffusion coefficient corresponding

to ā(b†, c†). This set has a manifold structure and can be represented as a graph

over c. In order study the form of the level set, we investigate the dependence of

ā on b and c.

2. We study the Bayesian approach to the inverse problem by generating artificial

data corresponding to b†and c†. Using simulations, we demonstrate that for small

ε and small observational noise the posterior concentrates around the level set

ā−1
(
ā(b†, c†)

)
.

3. We prove that the posterior based on the homogenised model is close to that of the

107



Chapter 5. A Multiscale Inverse Problem 5.1. Periodic Homogenisation

multiscale model. Moreover, we use disintegration to illustrate why the posterior

concentrates around the level set.

Subsequently, we set up the homogenised problem first before introducing the corres-

ponding inverse problem in Section 5.1. In Section 5.2, we present a brief literature

review. The considerations in Article IV are interesting in their own right but are in

fact meant as a starting point of an investigation of the following two aspects

1. The study of heavily underdetermined problems with posteriors concentrating

around manifolds and the development of efficient MCMC methods for them.

2. The consideration of inference for multiscale models, in particular, considering the

size of the fast scale as unknown, too.

Because it is a common phenomenon that the posterior concentrates in different direc-

tions at different rates, appropriate MCMC algorithms are needed.

5.1 Periodic Homogenisation and the Multiscale Inverse

Problem

We present the main ideas of the periodic homogenisation theory of elliptic PDEs before

setting up the corresponding inverse problem and the Bayesian approach to it more

explicitly.

5.1.1 Periodic Homogenisation of Elliptic PDEs

We follow [149] to present the main ideas of homogenisation and refer to [17] and [35]

for further reading. The effective Equation (5.3) can be derived by treating x
ε as an

independent variable y and performing an asymptotic expansion of the form

pε(x, y) = p0(x, y) + εp1(x, y) + ε2(x, y) . . .
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for which we refer the reader to [149]. In particular, this expansion implies that p0(x, y) =

p0(x) =: p̄(x). The homogenised diffusion coefficient is given by

Ā(x) =

ˆ

Td
A(x, y) +A(x, y)∇yχ(x, y)Tdy,

where χ : D×Rd → Rd is the corrector corresponding to the solution of the cell problem

−∇y ·
(
∇yχAT

)
= ∇y ·AT with periodic boundary conditions.

The formal derivation can be justified by appropriate convergence results of the form

pε → p. In the case of Equation (5.1), it is possible to derive an explicit error bound

such that

‖pε − p̄‖ ≤ K(A)ε. (5.5)

This estimate can be obtained using the maximum principle as described in [17, p. 19].

The appropriate maximum principle can be found in [178]. Bounds of this form in

stronger topologies have been obtained in [138]. Moreover, we have obtained bounds

with an explicit constant in the appendix of Article IV for D = (0, 1).

5.1.2 The Multiscale Elliptic Inverse Problem

We introduce the inverse problem of reconstructing the multiscale diffusion coefficient

from measurements of the pressure. We assume that the magnitude of the fine scale ε

is known, therefore this can be viewed as a slight generalisation of the problem studied

in Section 2.2. We assume that the data is given by

y = O(p) + ξ = {p(i∆y)}
⌊

1
∆y

⌋

i=0 + ξ,

where O denotes the observation operator and ξ is the additive observational noise. By

introducing the solution operators Gε and Ḡ corresponding to the Equations (5.1) and

(5.3), respectively, we may construct the appropriate forward operators as follows

y = Gε(a(b, c)) + η := O(Gε(a(b, c))) + η = O(pε) + η. (5.6)
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We also consider the inverse problem of reconstructing the multiscale diffusion coefficient

using the solution operator Ḡ to the homogenised problem given by

ȳ = Ḡ(b, c) + η := O(Ḡ(ā(b, c))) + η = O(p̄) + η. (5.7)

Similar to Section 2.2, we take the Bayesian approach by specifying the observational

noise η to be a finite dimensional Gaussian of the form N (0,Γ) and placing a prior on

b and c.

Already the inverse problem in d = 1 suffers from the lack of identifiability as different

parameters b’s and c’s give rise to the same homogenised diffusion coefficient ā and even

to the same a. Studying the problem in dimensions d > 1 yields additional difficulties

which we describe briefly in the following. Given an equation of the form

−∇ · (a(x)∇p) = g for x ∈ D, (5.8)

we can add any n : D × Rd → Rd such that n(x)∇p = 0 for all x ∈ D. Thus,

−∇ · (a(x)∇p+ n(x)) = g for x ∈ D.

In article [47], this problem is circumvented by considering among all matrix fields

a satisfying Equation (5.8) the one with the smallest L2-norm as the solution to the

inverse problem.

The contributions of Article IV concern the two-scale inverse problem on D = [0, 1].

Under appropriate assumptions on the prior, the posterior takes the form

dµy

dµ0
(aε) ∝ exp

(
−1

2
‖y − Gε(a)‖2Γ

)
. (5.9)

In Article IV, the influence of homogenisation to the behaviour of the posterior in

identical twin experiments for a known small ε is considered.
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5.2 Literature Review

Articles [143] and [144] consider the same multiscale inverse problem from a different

angle. The authors fix a true multiscale diffusion coefficient a† and are interested in

reconstructing the corresponding homogenised diffusion coefficient ā† based on the data

y = G(a†) + η.

A natural way would be to feed this data into the inverse problem

y = Ḡ(h) + η.

However, they demonstrate that a better result is obtained when the homogenised inverse

problem is considered with a different noise distribution which can be derived on the

basis of homogenisation theory. This idea has been extended to a semi-parametric drift

estimation of a multiscale diffusion coefficient, for which we refer the reader to [116].

The Bayesian inverse method has also directly been applied to discretisations such as

multi-scale finite element methods in [61] and [65]. They speed up MCMC simulations

by rejecting proposals first on the basis of the coarse scale dynamics before any fine scale

simulations are performed. It is worth mentioning the work of [148] representing the

inverse problem using a multiscale finite elements method. In this article, a prior and

posterior are formulated as joint probability distribution. Moreover, the assumption is

posed that the diffusion coefficient is conditionally independent given the coarse stiffness

matrix. On this basis an appropriate MCMC algorithm is developed.

So far, we are concerned with a manifold of different fine and coarse diffusion coef-

ficients giving rise to same homogenised diffusion coefficient. One of our future goals is

to develop efficient MCMC algorithms for this particular case and similar problems. We

point the reader to [180] for an optimal scaling study of the performance of the RWM

as the target measure concentrates around simple manifolds.
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5.3 Contributions of Article IV

We summarise some of our initial findings contained in Article IV using a toy model.

In the article, we expand both the coarse diffusion coefficient b and the fine diffusion

coefficient c in terms of a Fourier series. We consider the toy model with D = (0, 1) and

we assume that the diffusion coefficient is parametrised by

a0(x) = 0, b(x) = b0, c(y) = c1 sin(2πy)

with a corresponding homogenised diffusion coefficient given by

ā(b0, c1) =

(
ˆ

(b0 + c1 sin(2πy))−1

)−1

which in this case is just a constant function. Our contributions for the general case are

as follows:

1. Using the implicit function theorem, we show that ā−1(b†, c†)∩ {(b, c)
∣∣a(b, c) > 0}

form a manifold with graph structure in a function space. For the toy model,

the coarse diffusion coefficient b and the homogenised diffusion coefficient ā are

constants leading to finite dimensional level sets. These do also have a graph

structure as demonstrated in Figure 5.1 illustrating the contours of ā in the b0 and

c1 space.

2. The manifold structure in higher dimensions turned out be not as rich as expected.

We have investigated the impact of a change in the fine diffusion coefficient c, given

as a Fourier expansion of the homogenised diffusion coefficient ā. Changes in the

Fourier modes of c almost only effect the constant mode of the homogenised diffu-

sion coefficient as shown in Figure 5.2. Even in the toy model depicted in Figure

5.1, it is apparent that c1 has less impact on the homogenised diffusion coefficient

than b0. In general, this can be made quantitative by taking the derivative of

the Fourier coefficients of ā with respect to those of b and c. The corresponding

simulation is explained in more detail in Section 3 of Article IV.

112



Chapter 5. A Multiscale Inverse Problem 5.3. Contributions of Article IV

Figure 5.1: Level sets of ā

3. We study the Bayesian inverse problem using artificial data corresponding to

y = Gε(b†, c†) + η. In this case, the posterior consistency property, see Chapter

4, does not hold. The reason for this is that for small ε it is difficult to distin-

guish between different coarse and fine diffusion coefficients b and c giving rise to

the same homogenised diffusion coefficient ā. Using MCMC samples, we confirm

that instead the posterior concentrates around the level set ā−1(b†, c†). This is

illustrated for an extended toy model in Figure 5.3

4. We consider an approximate posterior based on the homogenised forward model.

We derive an appropriate bound on K in Equation (5.5) such that we can show

that both posteriors are ε close in the Hellinger and the total variation distance.

Moreover, we use disintegration to show that the homogenised inverse problem

determines the distribution of the posterior of different level sets and that the

prior determines the distribution on these level sets.
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Figure 5.2: Influence of the fine diffusion coefficient c on the homogenised diffusion
coefficient ā

Figure 5.3: MCMC points (green), manifold (red), level sets of the L2-distance to p†
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5.4 Future Goals

One of our major goals is to develop MCMC algorithms that make efficient use of the

a priori knowledge of the geometry of the forward problem. More precisely, the level

sets of the homogenised diffusion coefficients are a priori known and the data only

determines on which level sets the posterior concentrates as the noise goes to zero. The

simplest way to make use of this knowledge is to construct a proposal with large steps

in the direction tangent to the level set and smaller steps normal to the manifold. In

this way, the derivative of the mapping to the homogenised diffusion coefficient is used

in order to explore the state space faster in directions that have less impact on the

effective problem. Another objective is to use and maybe adapt the approach based

on Riemannian manifolds developed in [79]. Moreover, we would like to investigate

how particle methods, as described in [48] and [49], can be used in order to explore

concentrated posteriors; the benefit of this approach being that several areas can be

explored at once.
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SPECTRAL GAPS FOR A METROPOLIS-HASTINGS ALGORITHM IN
INFINITE DIMENSIONS

By Martin Hairer ∗, Andrew M. Stuart †

and Sebastian J. Vollmer‡

Mathematical Institute, University of Warwick, Coventry, CV4 7AL, UK.

Abstract. We study the problem of sampling high and infinite
dimensional target measures arising in applications such as condi-
tioned diffusions and inverse problems. We focus on those that arise
from approximating measures on Hilbert spaces defined via a dens-
ity with respect to a Gaussian reference measure. We consider the
Metropolis-Hastings algorithm that adds an accept-reject mechan-
ism to a Markov chain proposal in order to make the chain reversible
with respect to the the target measure. We focus on cases where the
proposal is either a Gaussian random walk (RWM) with covariance
equal to that of the reference measure or an Ornstein-Uhlenbeck pro-
posal (pCN) for which the reference measure is invariant.

Previous results in terms of scaling and diffusion limits suggested
that the pCN has a convergence rate that is independent of the dimen-
sion while the RWM method has undesirable dimension-dependent
behaviour. We confirm this claim by exhibiting a dimension-indepen-
dent Wasserstein spectral gap for pCN algorithm for a large class of
target measures. In our setting this Wasserstein spectral gap implies
an L2-spectral gap. We use both spectral gaps to show that the er-
godic average satisfies a strong law of large numbers, the central limit
theorem and non-asymptotic bounds on the mean square error, all
dimension independent. In contrast we show that the spectral gap of
the RWM algorithm applied to the reference measures degenerates
as the dimension tends to infinity.

1. Introduction. The aim of this article is to study the complexity of certain sampling al-
gorithms in high dimensions. Creating samples from a high dimensional probability distribution is
an essential tool in Bayesian inverse problems Stuart (2010), Bayesian statistics Lee (2004), Bayesian
nonparametrics Hjort et al. (2010) and conditioned diffusions Hairer, Stuart and Voss (2007). For
example, in inverse problems, some input data such as initial conditions or parameters for a forward
mathematical model have to be determined from observations of noisy output. In the Bayesian
approach, assuming a prior on the unknown input, and conditioning on the data, results in the
posterior distribution, a natural target for sampling algorithms. In fact these sampling algorithms
are also used in optimisation in form of simulated annealing Geyer and Thompson (1995); Pillai,
Stuart and Thiéry (2011).

The most widely used method for general target measures are Markov chain Monte Carlo (MCMC)
algorithms which use a Markov chain that in stationarity yields dependent samples from the target.
Moreover, under weak conditions, a law of large numbers holds for the empirical average of a func-
tion f (observable) applied to the steps of the Markov chain. We quantify the computational cost
∗Supported by EPSRC, the Royal Society, and the Leverhulme Trust.
†Supported by EPSRC and ERC.
‡Supported by ERC.
AMS 2000 subject classifications: 65C40, 60B10, 60J05, 60J22
Keywords and phrases: Wasserstein spectral gaps, L2-spectral gaps, Markov Chain Monte Carlo in infinite dimen-

sions, Weak Harris theorem, Random-walk metropolis
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2 M. HAIRER, A. STUART AND S. VOLLMER

of such an algorithm as

number of necessary steps × cost of a step.

While for most algorithms the cost of one step grows with the dimension, a major result of this
article is to exhibit an algorithm which, when applied to measures defined via a finite-dimensional
approximation of a measure defined by a density with respect to a Gaussian random field, requires
a number of steps independent of the dimension in order to achieve a given level of accuracy.

For ease of presentation we work on a separable Hilbert space (H, 〈·, ·〉) equipped with a mean-
zero Gaussian reference measure γ with covariance operator C. Let {ϕn}n∈N be an orthonormal
basis of eigenvectors of C corresponding to the eigenvalues {λ2

n}n∈N. Thus γ can be written as its
Karhunen-Loeve Expansion Adler (1990)

γ = L(
∞∑

i=1

λieiξi), where ξi
i.i.d∼ N (0, 1)

and where L(·) denotes the law of a random variable. The target measure µ is assumed to have a
density with respect to γ of the form

(1.1) µ(dx) = M exp(−Φ(x))γ(dx).

With Pm being the projection onto the first m basis elements, we consider the following m-
dimensional approximations to γ and µ

γm(dx) = L(
m∑

i=1

λieiξi)(dx)

µm(dx) = Mm exp(−Φ(Pmx))γm(dx).(1.2)

The approximation error, namely the difference between µ and µm, is already well studied Dashti and
Stuart (2011); Mattingly, Pillai and Stuart (2012b) and can be estimated in terms of the closeness
between Φ ◦ Pm and Φ.

In this article we consider Metropolis-Hastings MCMC methods Metropolis et al. (1953); Hastings
(1970). For an overview of other MCMC methods, which have been developed and analysed, we refer
the reader to Robert and Casella (2004); Liu (2008). The idea of the Metropolis-Hastings algorithm
is to add an accept-reject mechanism to a Markov chain proposal in order to make the resulting
Markov chain reversible with respect to the target measure. We denote the transition kernel of the
underlying Markov chain by Q(x, dy) and the acceptance probability for a proposed move from x
to y by α(x, y). The transition kernel of the Metropolis-Hastings algorithm reads

(1.3) P(x, dz) = Q(x, dz)α(x, z) + δx(dz)

ˆ

(1− α(x, u))Q(x, du)

where α(x, y) is chosen such that P(x, dy) is reversible with respect to µ Tierney (1998). For the
Random Walk Metropolis algorithm (RWM) the proposal kernel corresponds to

Q(x, dy) = L(x+
√

2δξ)(dy) ,

with ξ ∼ γm which leads to the following acceptance probability

(1.4) α(x, y) = 1 ∧
(

Φ(x)− Φ(y) +
1

2
〈x, C−1x〉 − 1

2
〈y, C−1y〉

)
.
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Notice that the quadratic form 1
2〈y, C−1y〉 is almost surely infinite with respect to the proposal

because it corresponds to the Cameron-Martin norm of y. For this reason the RWM algorithm is not
defined on the infinite dimensional Hilbert spaceH (consult Cotter et al. (2011) for a discussion) and
we will study it only on m−dimensional approximating spaces. In this article we will demonstrate
that the RWM can be considerably improved by using the preconditioned Crank-Nicolson (pCN)
algorithm which is defined via

Q(x, dy) = L((1− 2δ)
1
2x+

√
2δξ)(1.5)

α(x, y) = 1 ∧ exp(Φ(x)− Φ(y))(1.6)

with ξ ∼ γ. The pCN was introduced in Beskos et al. (2008) as the PIA algorithm, in the case α = 0.
Numerical experiments in Cotter et al. (2011) demonstrate its favourable properties in comparison
with the RWM algorithm. In contrast to RWM, the acceptance probability is well-defined on a
Hilbert space and this fact gives an intuitive explanation for the theoretical results derived in this
paper in which we develop a theory explaining the superiority of pCN over RWM when applied on
sequences of approximating spaces of increasing dimension. Our main positive results about pCN
can be summarised as (rigorous statements in Theorems 2.14, 2.15, 4.3 and 4.4):

Claim. Suppose that both Φ and its local Lipschitz constant satisfy a growth assumption at
infinity. Then for a fixed 0 < δ ≤ 1

2 the pCN algorithm applied to µm(µ)

I. has a unique invariant measure µm (µ);
II. has a Wasserstein spectral gap uniformly in m;
III. has an L2-spectral gap 1− β uniform in m.

The corresponding sample average Sn(f) = 1
n

n∑
i=1
f(Xi)

IV. satisfies a strong law of large numbers and a central limit theorem (CLT) for a class of locally
Lipschitz functionals for every initial condition;

V. satisfies a CLT for µ (µm)-almost every initial condition with asymptotic variance uniformly
bounded in m for f ∈ L2

µ

(
L2
µm

)
;

VI. has an explicit bound on the mean square error (MSE) between itself and µ(f) for certain
initial distributions ν.

These positive results about pCN clearly apply to Φ = 0 which corresponds to the target measures
γ and γm respectively; in this case the acceptance probability of pCN is always one and the theorems
mentioned are simply statements about a discretely sampled Ornstein-Uhlenbeck (OU) process on
H in this case. On the other hand the RWM algorithm applied to a specific Gaussian target measure
γm has an L2

µ-spectral gap which converges to 0 as m→∞ as fast as any negative power of m, see
Theorem 2.17.

While it is a major contribution of this article to establish the results I, II and IV for pCN and
to establish the negative results for RWM, the statements III, V and VI follow by verification of the
conditions of known results.

In addition to the significance of these results in their own right for the understanding of MCMC
methods, we would also like to highlight the techniques that we use in the proofs. We apply recently
developed tools for the study of Markov chains on infinite dimensional spaces Hairer, Mattingly and
Scheutzow (2011). The weak Harris theorem makes a Wasserstein spectral gap verifiable in practice
and for reversible Markov processes it even implies an L2-spectral gap.
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4 M. HAIRER, A. STUART AND S. VOLLMER

1.1. Literature Review. The results in the literature can broadly be classified as follows Rudolf
(2012); Meyn and Tweedie (2009):

1. For a metric on the space of measures such as the total variation or the Wasserstein metric
the rate of convergence to equilibrium can be characterised through the decay of d(νPn, µ)
where ν is the initial distribution of the Markov chain.

2. For the Markov operator P the convergence rate is given as the operator norm of P on a
space of functions from X to R modulo constants. The most prominent example here is the
L2-spectral gap.

3. Direct methods like regeneration and the so-called split-chain which use the dynamics of the
algorithm to introduce independence. The independence can be used to prove central limit
theorem. Previous results have been formulated in terms of the following three main types of
convergence:

Between these notions of convergence, there are many fruitful relations, for details consult Rudolf
(2012). All these convergence types have been used to study MCMC algorithms.

The first systematic approach to prove L2-spectral gaps for Markov chains was developed in
Lawler and Sokal (1988) using the conductance concept due to Cheeger Cheeger (1970). These
results were extended and applied to the Metropolis-Hastings algorithm with uniform proposal and
a log-concave target distribution on a bounded convex subset of Rn in Lovász and Simonovits
(1993). The consequences of a spectral gap for the ergodic average in terms of a CLT and the MSE
have been investigated in Kipnis and Varadhan (1986); Cuny and Lin (2009) and Rudolf (2012)
respectively and were first brought up in the MCMC literature in Geyer (1992); Chan and Geyer
(1994).

For finite state Markov chains the spectral gap can be bounded in terms of quantities associated
with its graph Diaconis and Stroock (1991). This idea has also been applied to the Metropolis-
Algorithm in Sinclair and Jerrum (1989) and Frigessi et al. (1993).

A different approach using the splitting chain technique mentioned above was independently
developed in Nummelin (1978) and Athreya and Ney (1978) to bound the total variation distance
between the n-step kernel and the invariant measure. Small and petite sets are used in order to
split the trajectory of a Markov chain into independent blocks. This theory was fully developed in
Meyn and Tweedie (2009) and again adapted and applied to the Metropolis-Hastings algorithm in
Roberts and Tweedie (1996) resulting in a criterion for geometric ergodicity

‖P(x, ·)n − µ‖TV ≤ C(x)cn for some c < 1.

Moreover, they established a criterion for a CLT. Extending this method, it was also possible to
derive rigorous confidence intervals in Łatuszyński and Niemiro (2011).

In most infinite dimensional settings the splitting chain method cannot be applied since measures
tend to be mutually singular. The method is hence not well-adapted to the high-dimensional setting.
Even Gaussian measures with the same covariance operator are only equivalent if the difference
between their means lies in the Cameron-Martin space. As a consequence the pCN algorithm is not
irreducible in the sense of Meyn and Tweedie (2009), hence there is no non trivial measure ϕ such
that ϕ(A) > 0 implies P(x,A) > 0 for all x. By inspecting the Metropolis-Hastings transition kernel
(1.3), the pCN algorithm is not irreducible. More precisely if x − y is not in the Cameron-Martin
space Q(x, dz) and Q(y, dz) are mutually singular, consequently the same is true for P (x, dz) and
P (y, dz). This may also be shown to be true for the n-step kernel by expressing it as a sum of densities
times Gaussian measures and applying the Feldman-Hajek Theorem Da Prato and Zabczyk (1992).

For these reasons, existing theoretical results concerning RWM and pCN in high dimensions have
been confined to scaling results and derivations of diffusion limits. In Beskos, Roberts and Stuart

imsart-aap ver. 2013/03/06 file: gappaper.tex date: 2nd November 2013

Article I: Spectral Gaps for a Metropolis-Hastings Algorithm in Infinite Dimensions

123



SPECTRAL GAPS FOR MCMC IN INFINITE DIMENSIONS 5

(2009a) the RWM algorithm with a target that is absolutely continuous with respect to a product
measure has been analysed for its dependence on the dimension. The proposal distribution is a
centred normal random variable with covariance matrix σnIn. The main result there is that δ has to
be chosen as a constant times a particular negative power of n to prevent the expected acceptance
probability to go to one or to zero. In a similar setup it was recently shown that there is a µ-
reversible SPDE limit if the product law is a truncated Karhunen-Loeve expansion Mattingly, Pillai
and Stuart (2012a). This SPDE limit suggests that the number of steps necessary for a certain level
of accuracy grows like O(m) because O(m) steps are necessary in order to approximate the SPDE
limit on [0, T ] . A similar result in Pillai, Stuart and Thiéry (2011) suggests that the pCN algorithm
only needs O(1) steps.

Uniform contraction in a Wasserstein distance was first applied to MCMC in Joulin and Ollivier
(2010) in order to get bounds on the variance and bias of the sample average of Lipschitz functionals.
We use the weak Harris theorem to verify this contraction and, by using the results from Rudolf
(2012), we obtain non-asymptotic bounds on the sample average of L2

µ-functionals. In Eberle (2012)
exponential convergence for a Wasserstein distance is proved for the Metropolis-adjusted-Langevin
(MALA) and pCN algorithm for log-concave measures having a density with respect to a Gaussian
measure. The rates obtained in this article are explicit in terms of additional bounds on the derivates
of the density. In our proofs we do not assume log-concavity. However, the rate obtained here is less
explicit.

Similarly, approaches based on the Bakery-Emery criterion Bakry and Émery (1985) seem to be
only applicable if the measure is log-concave.

1.2. Outline. In this paper we substantiate these ideas by using spectral gaps derived by an
application of the weak Harris theory Hairer, Mattingly and Scheutzow (2011). Section 2 contains
the statements of our main results, namely Theorems 2.12, 2.14 and 2.15 concerning the desirable
dimension-independence properties of the pCN method and Theorem 2.17 dealing with the undesir-
able dimension dependence of the RWM method. Section 2 starts by specifying the RWM and pCN
algorithms as Markov chains, the statement of the weak Harris theorem and a discussion of the
relationship between exponential convergence in a Wasserstein distance and L2

µ-spectral gaps. The
proofs of the theorems in Section 2 are given in Section 3. We highlight that the key steps can be
found in the Sections 3.1.2 and 3.2.2 where we dealt with the cases of global and local Lipschitz Φ
respectively. In Section 4 we exploit the Wasserstein and L2

µ-spectral gaps in order to derive a law
of large numbers (LLN), central limit theorems (CLTs) and mean square error (MSE) bounds for
sample-path ergodic averages of the pCN method, again emphasising the dimension independence
of these results. We draw overall conclusions in Section 5.

Acknowledgement. We thank Feng-YuWang for pointing out the connection betweenWasser-
stein and L2-spectral gaps and Professor Andreas Eberle for many fruitful discussions about this
topic.

2. Main Results. In Section 2.1 we specify the RWM and pCN algorithms before summarising
the weak Harris theorem in Section 2.2. Subsequently, we describe how a Wasserstein spectral gap
implies an L2

µ-spectral gap. Based on the weak Harris theorem, we give necessary conditions on the
target measure for the pCN algorithm in order to have a dimension independent spectral gap in
a Wasserstein distance in Section 2.3. In Section 2.4 we highlight one of the disadvantages of the
RWM by giving an example satisfying our assumptions for the pCN algorithm for which the spectral
gap of the RWM algorithm converges to zero as fast as any negative power of m as m→∞.
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Algorithm 1 Preconditioned Crank-Nicolson
Initialize X0.
For n ≥ 0 do:

1. Generate ξ ∼ γ and set pXn
(ξ) = (1− 2δ)

1
2Xn +

√
2δ ξ.

2. Set

Xn+1 =

{
pXn with probability α(Xn, pXn)

Xn otherwise

Here, α(x, y) = 1 ∧ exp(Φ(x)− Φ(y)).

Algorithm 2 Random Walk Metropolis
Initialise X0.
For n ≥ 0 do:

1. Generate ξ ∼ γm and set pXn
(ξ) = Xn +

√
2δ ξ.

2. Set

Xn+1 =

{
pXn with probability α(Xn, pXn)

Xn otherwise

Here, α(x, y) = 1 ∧ exp(Φ(x)− Φ(y) + 1
2
〈x, C−1x〉 − 1

2
〈y, C−1y〉).

2.1. Algorithms. We focus on convergence results for the pCN algorithm (Algorithm 1) which
generates a Markov chain {Xn}n∈N with Xn ∈ H and {Xn

m}n∈N when it is applied to the measures µ
and µm respectively. The corresponding transition Markov kernels are called P and Pm respectively.
We use the same notation for the Markov chain generated by the RWM (Algorithm 2). This should
not cause confusion as the statements concerning the pCN and RWM algorithms occur in separate
sections.

2.2. Preliminaries. In this section we review Lyapunov functions, Wasserstein distances, d-small
sets and d-contracting Markov kernels in order to state a weak Harris theorem which has been
recently proved by Hairer et al. Hairer, Mattingly and Scheutzow (2011). By weakening the notion
of small sets, this theorem gives a sufficient condition for exponential convergence in a Wasserstein
distance. Moreover, we explain how this implies an L2-spectral gap.

2.2.1. Weak Harris Theorem.

Definition 2.1. Given a Polish space E, a function d : E×E→ R+ is a distance-like function
if it is symmetric, lower semi-continuous and d(x, y) = 0 is equivalent to x = y.

This induces the 1-Wasserstein “distance” associated with d for the measures ν1, ν2

d(ν1, ν2) = inf
π∈Γ(ν1,ν2)

ˆ

E×E
d(x, y)π(dx, dy)(2.1)

where Γ(ν1, ν2) is the set of couplings of ν1 and ν2 (all measures on E × E with marginals ν1 and
ν2). If d is a metric, the Monge-Kantorovich duality states that

d(ν1, ν2) = sup
‖f‖Lip(d)=1

ˆ

fdν1 −
ˆ

fdν2.

We use the same notation for the distance and the associated Wasserstein distance; we hope that
this does not lead to any confusion.
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Definition 2.2. A Markov kernel P is d-contracting if there is 0 < c < 1 such that d(x, y) < 1
implies

d(P(x, ·),P(y, ·)) ≤ c · d(x, y).

Definition 2.3. Let P be a Markov operator on a Polish space E endowed with a distance-like
function d : E×E→ [0, 1]. A set S ⊂ E is said to be d-small if there exists 0 < s < 1 such that for
every x, y ∈ S

d(P(x, ·),P(y, ·)) ≤ s.

Remark. The d-Wasserstein distance associated with

d(x, y) = χ{x 6=y}(x, y)

coincides with the total variation distance (up to a factor 2). If S is a small set Meyn and Tweedie
(2009), then there exists a probability measure ν such that P can be decomposed into

P(x, dz) = sP̃(x, dz) + (1− s)ν(dz) for x ∈ S.

This implies that dTV(P(x, ·),P(y, ·)) ≤ s and hence S is d-small, too.

Definition 2.4. A Markov kernel P has a Wasserstein spectral gap if there is a λ > 0 and a
C > 0 such that

d(ν1Pn, ν2Pn) ≤ C exp(−λn)d(ν1, ν2) for all n ∈ N.

Definition 2.5. V is a Lyapunov function for the Markov operator P if there exist K > 0 and
0 ≤ l < 1 such that

(2.2) PnV (x) ≤ lnV (x) +K for all x ∈ E and all n ∈ N.

(Note that the bound for n = 1 implies all other bounds but with a different constant K.)

Proposition 2.6. (Weak Harris Theorem Hairer, Mattingly and Scheutzow (2011)) Let P
be a Markov kernel over a Polish space E and assume that

1. P has a Lyapunov function V such that (2.2) holds;
2. P is d-contracting for a distance-like function d : E×E→ [0, 1];
3. the set S = {x ∈ E : V (x) ≤ 4K} is d-small.

Then there exists ñ such that for any two probability measures ν1, ν2 on E we have

d̃(ν1P ñ, ν2P ñ) ≤ 1

2
d̃(ν1, ν2)

where d̃(x, y) =
√
d(x, y)(1 + V (x) + V (y)) and ñ(l,K, c, s) is increasing in l, K,c and s. In par-

ticular there is at most one invariant measure. Moreover, if there exists a complete metric d0 on E
such that d0 ≤

√
d and such that P is Feller on E, then there exists a unique invariant measure µ

for P.

Remark. Setting ν2 = µ we obtain the convergence rate to the invariant measure.
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2.2.2. The Wasserstein spectral gap implies an L2-spectral gap. In this section we give reasons
why a Wasserstein spectral gap implies an L2

µ- spectral gap under mild assumptions for a Markov
kernel P. The proof is based on a comparison of different powers of P using the spectral theorem.

Definition 2.7. (L2
µ-spectral gap) A Markov operator P with invariant measure µ has an

L2
µ-spectral gap 1− β if

β = ‖P‖L2
0→L2

0
= sup

f∈L2
µ

‖Pf − µ(f)‖2
‖f − µ(f)‖2

< 1.

The following proposition is due to F.-Y. Wang and is a discrete-time version of Theorem 2.1(2)
in Wang (2003). The proof given below is from private communication with F.-Y. Wang and is
presented because of its beauty and the tremendous consequences in combination with the weak
Harris theorem.

Proposition 2.8. (Private Communication Röckner and Wang (2001)) Let P be a Markov
transition operator which is reversible with respect to µ and suppose that Lip(d̃) ∩ L∞µ is dense in
L2
µ. If for every such f there exists a constant C(f) such that

d̃((Pnf)µ, µ) ≤ C(f) exp(−λn)d̃(fµ, µ),

then this implies the L2
µ-spectral gap

(2.3) ‖Pnf − µ(f)‖22 ≤ ‖f − µ(f)‖22 exp(−λn).

Proof. First assume that 0 ≤ f ∈ Lip(d̃) ∩ L∞(µ) with µ(f) = 1 and π being the optimal
coupling between (P2nf)µ and µ for the Wasserstein distance associated with d. Reversibility implies
´

(Pnf)2dµ =
´

(P2nf)fdµ which leads to

‖Pnf − µ(f)‖22 = µ
(
(Pnf)2

)
− 1 =

ˆ

(f(x)− f(y))dπ

≤ Lip(f)

ˆ

d̃(x, y)dπ ≤ Lip(f)d̃(P2nfµ, µ)

= Lip(f)d̃((fµ)P2n, µ) ≤ CLip(f) exp(−2λn).

Since the above extends to a · f , we note that for general f ∈ L∞ ∩ Lip(d̃)

‖Ptf − µ(f)‖22 ≤ 2
∥∥Ptf+ − µ(f+)

∥∥2

2
+ 2

∥∥Ptf− − µ(f−)
∥∥2

2
.

By Lemma 2.9, the bound (2.3) holds for functions in Lip ∩ L∞(µ). Hence the result follows by
taking limits of such functions.

Lemma 2.9. Let P be a Markov transition operator which is reversible with respect to µ. If the
following relationship holds for some f ∈ L2(µ), the constants C(f) and λ > 0

‖Pnf − µ(f)‖22 ≤ C(f) exp(−λn) for all n,

then for the same f
‖Pnf − µ(f)‖22 ≤ ‖f − µ(f)‖22 exp(−λn) for all n.
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Proof. Without loss of generality we assume that µ(f̂2) = 1 where f̂ = f − µ(f). Applying
the spectral theorem to P yields the existence of a unitary map U : L2(µ) 7→ L2(X, ν) such that
UPU−1 is a multiplication operator by m. Moreover, µ(f̂2) = 1 implies that (Uf̂)2ν is a probability
measure. Thus for k ∈ N

ˆ

(Pnf̂(x))2dµ =

ˆ

m(x)2n(Uf̂)2(x)dν =

ˆ

m(x)(2n+k) 2n
2n+k d(Uf̂)2ν

≤
(
ˆ

m(x)2n+kd(Uf̂)2ν

) 2n
2n+k

≤ C 2n
2n+k exp(−λ2n).

Letting k →∞ yields the required claim.

2.3. Dimension-Independent Spectral Gaps for the pCN-Algorithm. Using the weak Harris the-
orem, we give necessary conditions on µ (see (1.1)) in terms of regularity and growth of Φ to have
a uniform spectral gap in a Wasserstein distance for P and Pm. We need Φ to be at least locally
Lipschitz; the case where it is globally Lipschitz is more straightforward and is presented first. Using
the notation ρ = 1− (1− 2δ)

1
2 we can express the proposal of the pCN algorithm as

pXn(ξ) = (1− ρ)Xn +
√

2δ ξ.

The following results do all hold for δ in (0, 1
2 ]:

The mean of the proposal (1−ρ)Xn suggests that we can prove that f(‖·‖) is a Lyapunov function
for certain f and that P is d-contracting (for a suitable metric). This relies on having a lower bound
on the probability of Xn+1 being in a ball around the mean. In fact, our assumptions are stronger
because we assume a uniform lower bound on P(px is accepted|px = z) for z in Br(‖x‖) ((1− ρ)x).

Assumption 2.10. There is R > 0, αl > −∞. and a function r : R+ 7→ R+ satisfying r(s) ≤ ρ
2s

for all |s| ≥ R such that for all x ∈ BR(0)c

(2.4) inf
z∈Br(‖x‖)((1−ρ)x)

α(x, z) = inf
z∈Br(‖x‖)((1−ρ)x)

exp (−Φ(z) + Φ(x)) > exp(αl).

Assumption 2.11. Let Φ in (1.1) have global Lipschitz constant L and assume that exp(−Φ)
is γ-integrable.

Theorem 2.12. Let Assumption 2.10 and 2.11 be satisfied with either

1. r(‖x‖) = r ‖x‖a where r ∈ R+ for any a ∈ (1
2 , 1) then we consider V = ‖x‖i with i ∈ N or

V = exp(v ‖x‖), or
2. r(‖x‖) = r ∈ R for r ∈ R+ then we take V = ‖x‖i with i ∈ N.

Under these assumptions µm (µ) is the unique invariant measure for the Markov chain associated
with the pCN algorithm applied to µm (µ). Moreover, define

d̃(x, y) =
√
d(x, y)(1 + V (x) + V (y)) with

d(x, y) = 1 ∧ ‖x− y‖
ε

.

Then for ε small enough there exists an ñ such that for all probability measures ν1 and ν2 on H and
PmH respectively

d̃(ν1P ñ, ν2P ñ) ≤ 1

2
d̃(ν1, ν2),

d̃(ν1P ñm, ν2P ñm) ≤ 1

2
d̃(ν1, ν2)
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for all m ∈ N.

Proof. The conditions of the weak Harris theorem (Proposition 2.6) are satisfied by the Lem-
mata 3.2, 3.3 and 3.4.

A key step in the proof is to verify the d-contraction. In order to obtain an upper bound on
d(P(x, ·),P(y, ·)) (see (2.1)), we choose a particular coupling between the algorithm started at x
and y and distinguish between the cases when both proposals are accepted, both are rejected and
only one is accepted. The case when only one of them is accepted is the most difficult to tackle. By
choosing d = 1 ∧ ‖x−y‖ε with ε small enough, it turns out that the Lipschitz constant of α(x, y) can
be brought under control.

By changing the distance function d, we can also handle the case when Φ is locally Lipschitz
provided that the local Lipschitz constant does not grow too fast.

Assumption 2.13. Let exp(−Φ) be integrable with respect to γ and assume that for any κ > 0
there is an Mκ such that

φ(r) = sup
x 6=y∈Br(0)

|Φ(x)− Φ(y)|
‖x− y‖ ≤Mκe

κr.

Theorem 2.14. Let the Assumptions 2.10 and 2.13 be satisfied with r(‖x‖) = r ‖x‖a where
r ∈ R, a ∈ (1

2 , 1) and either V = ‖x‖i with i ∈ N or V = exp(v ‖x‖).
Then µm (µ) is the unique invariant measure for the Markov chain associated with the pCN

algorithm applied to µm (µ).
For A(T, x, y) := {ψ ∈ C1([0, T ],H), ψ(0) = x, ψ(T ) = y, ‖ψ̇‖ = 1},

d̃(x, y) =
√
d(x, y)(1 + V (x) + V (y)) with

d(x, y) = 1 ∧ inf
T,ψ∈A(T,x,y)

1

ε

ˆ T

0
exp(η ‖ψ‖)dt

and η and ε small enough there exists an ñ such that for all ν1, ν2 probability measures on H and
on PmH respectively and m ∈ N

d̃(ν1P ñ, ν2P ñ) ≤ 1

2
d̃(ν1, ν2)

d̃(ν1P ñm, ν2P ñm) ≤ 1

2
d̃(ν1, ν2).

Proof. This time the Lemmata 3.2, 3.6 and 3.7 verify the conditions of the weak Harris theorem
(Proposition 2.6).

Remark. Our arguments work for δ ∈ (0, 1
2 ]; for δ = 1

2 the pCN algorithm becomes the inde-
pendence sampler and the Markov transition kernel becomes irreducible so that this case can be
dealt by with the theory of Meyn and Tweedie Meyn and Tweedie (2009).

In order to get the same lower bound for the L2
µ-spectral gap, we just have to verify that Lip(δ̃)∩

L∞µ is dense in L2
µ.

Theorem 2.15. If the conditions of Theorem 2.12 or 2.14 are satisfied, then we have the same
lower bound on the L2

µ-spectral gap of P and Pm uniformly in m.
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Proof. By Proposition 2.8 we only have to show that Lip(d̃) ∩ L∞(µ) is dense in L2(H,B, µ).
Since d̃(x, y) ≥ C(1 ∧ ‖x − y‖), one has Lip(‖·‖) ∩ L∞(µ) ⊆ Lip(d̃), so that it is enough to show
that Lip(‖·‖) ∩ L∞(µ) is dense in L2(H,B, µ). Suppose not, then there is 0 6= g ∈ L2(µ) such that

ˆ

fgdµ = 0 for all f ∈ Lip ∩ L∞(µ).

Since all Borel probability measures on a separable Banach space are characterised by their Fourier
transform (Bochner’s theorem, see for example Bogachev (2007)), they are characterised by integrals
against bounded Lipschitz functions. Hence gdµ is the zero measure and hence g ≡ 0 in L2

µ.

2.4. Dimension-Dependent Spectral Gaps for RWM. So far we have shown convergence results
for the pCN. Therefore we present an example subsequently where these results apply but the
spectral gap of the RWM goes to 0 as m tends to infinity. We consider the target measures µm on

Hσm :=
{
x
∣∣∣ ‖x‖σ =

m∑

i=1

i2σx2
i <∞

}

with 0 < σ < 1
2 given by

(2.5) µm = γm = L
(

m∑

i=1

1

i
ξiei

)
ξ

i.i.d∼ N (0, 1).

In the setting of (1.1) this corresponds to Φ = 0. Hence the assumptions of Theorem 2.14 are
satisfied and we obtain a uniform lower bound on the L2

µ-spectral gap for the pCN. For the RWM
algorithm we show that the spectral gap converges to zero faster than any negative power of m if
we scale δ = sm−a for any a ∈ [0, 1).

Using the notion of conductance

(2.6) C = inf
µ(A)≤ 1

2

´

A P(x,Ac)dµ(x)

µ(A)
,

we obtain an upper bound on the spectral gap by Cheeger’s inequality Lawler and Sokal (1988);
Sinclair and Jerrum (1989)

(2.7) 1− β ≤ 2C.

Our main observation is that there is a simple upper bound for the conductance of a Metropolis-
Hastings algorithm because it can only move from a set A if

• the proposed move lies in Ac and
• the proposed move is accepted.

Just considering either event gives rise to simple upper bounds that can be used to make many
results from the scaling analysis rigorous. We denote the expected acceptance probability for a
proposal from x as

α(x) =

ˆ

H
α(x, y)dQ(x, dy).

Considering only the acceptance of the proposal gives rise to

C ≤ inf
µ(A)≤ 1

2

´

A α(x)µ(dx)

µ(A)
.
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In particular, for any set B such that µ(B) ≤ 1
2 , it follows that

C ≤ sup
x∈B

α(x)

and also that
C ≤ 2Eµα(x).

The last result allows us to make scaling results like those in Beskos, Roberts and Stuart (2009b)
rigorous. Similarly, just supposing that the Metropolis-Hastings algorithm accepts all proposals gives
rise to the following bound

C ≤ inf
µ(A)≤ 1

2

´

AQ(x,Ac)dµ(x)

µ(A)
.

We summarise these observations in the subsequent proposition.

Proposition 2.16. Let P be a Metropolis-Hastings transition kernel for a target measure µ with
proposal kernel Q(x, dy) and acceptance probability α(x, y). The L2

µ-spectral gap can be bounded by

(2.8) 1− β ≤ 1− Λ ≤ 2C ≤ 2

{
supx∈B α(x) for any µ(B) ≤ 1

2

2Eµα(x)

and

(2.9) 1− β ≤ 1− Λ ≤ 2C ≤ 2 inf
µ(A)≤ 1

2

´

AQ(x,Ac)dµ(x)

µ(A)
.

In the following Theorem we use the Proposition 2.16 for the RWM algorithm applied to µm as in
Equation (2.5) in order to quantify the behaviour of the spectral gap as m goes to ∞. We consider
polynomial scaling of the step size parameter of the form δm ∼ m−a to zero. For a < 1 the bound
in Equation 2.8 is most useful as the acceptance behaviour is the determining quantity. For a ≥ 1
the bound in Equation 2.9 is most useful as the properties of the proposal kernel are determining
in this regime.

Theorem 2.17. Let Pm be the Markov kernel and α be the acceptance probability associated
with the RWM algorithm applied to µm as in Equation (2.5).

1. For δm ∼ m−a, a ∈ [0, 1) and any p there exists a K(p, a) such that the spectral gap of Pm
satisfies

1− βm ≤ K(p, a)m−p.

2. For δm ∼ m−a, a ∈ [1,∞) there exists a K(a) such that the spectral gap of Pm satisfies

1− βm ≤ K(a)m−
a
2 .

Proof. For the first part of this proof we work on the space Hσ with σ ∈ [0, 1
2) where we

determine σ later. We choose Br(0) such that µ (Br(0)) ≤ 1
4 and by (3.1) below we know that

µm (Bm
r (0)) is decreasing towards µ (Br(0)). Hence for all m larger than some M we know that

µ (Bm
r (0)) ≤ 1

2 . In order to apply Proposition 2.16, we have to gain an upper bound on α(x) in
Bm
r (0). Thus we use u ∧ v ≤ uλv1−λ to bound

α(x, y) = 1 ∧ exp

(
−

m∑

i=1

i2

2
(y2
i − x2

i )

)
≤ exp

(
−

m∑

i=1

i2

2
(y2
i − x2

i )λ

)
.
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Using this inequality, we can find an upper bound on the acceptance probability α(x).

ˆ

αQ(x, dy) ≤
ˆ

m!

(4δπ)
m
2

exp

(
−

m∑

i=1

i2

2

[
(y2
i − x2

i )λ+
(xi − yi)2

2δ

])
dy.

Completing the square and using the normalisation constant yields

≤
ˆ

m!

(4δπ)
m
2

exp

(
−

m∑

i=1

i2

2

[
(λ+

1

2δ
)

(
yi −

xi
2δλ+ 1

)2

− 2δλ2x2
i

(2δλ+ 1)

])
dy

≤(1 + 2λδ)−
m
2 exp

(
m∑

i=1

δλ2i2x2
i

(2δλ+ 1)

)
.

For x ∈ Bm
r (0) in Hσ, using δ = m−a and setting λ = m−b

α(x) ≤ (1 + 2m−(a+b))−
m
2 exp

(
rm2−2σ−a−2b

3

)
.

We want to choose a and b in the above equation such that the RHS goes to zero as m → ∞. In
order to obtain decay from the first factor, we need that a + b < 1 and to prevent growth from
the second a + 2b > 2 − 2σ which corresponds to a + 2b > 1 for σ sufficiently close to 1

2 . This can
be satisfied with b = 2(1−a)

3 and σ = 2+a
6 < 1

2 . In this case the first factor decays faster than any
negative power of m since

(1 + 2m−(a+b))−
m
2 = exp

(
−m

2
log(1 + 2m−(a+b))

)
≤ exp(−Cm1−(a+b)).

For the second part of the poof we use α(x, y) ≤ 1 and A = {x ∈ Rn|x1 ≥ 0} which by using a
symmetry argument satisfies γm(A) = 1

2 to bound the conductance

C

2
≤
ˆ

A

P (x,Ac)dµ

≤
ˆ

A

ˆ

Ac

α(x, y)n!2

(2π)n(2δ)
n
2

exp

(
−1

2

m∑

i=1

i2(x2
i + (xi − yi)2/(2δ)

)
dxdy

≤ .t∞0

ˆ 0

−∞

exp(−1
2

(y1−x1)2

2δ )

2π
√

2δ
dy1 exp

(
−1

2
x2

1

)
dx1

=

ˆ ∞

0

ˆ − x1√
2δ

−∞

exp(−1
2z

2)

2π
dy1 exp

(
−1

2
x2

1

)
dx1.

Combining Fernique’s theorem and Markov’s inequality yields

C ≤ K
ˆ ∞

0
exp(−1

2
(
δ + 1

δ
)x2

1)dx ≤ K
√

2π
δ

δ + 1
≤ K̃m−a2 ,

so that the claim follows again by an application of Cheeger’s inequality.
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3. Spectral Gap: Proofs. We check the three conditions of the weak Harris theorem (Pro-
position 2.6) for globally and locally Lipschitz Φ (see (1.1)) in the Sections 3.1 and 3.2 respectively.
For each condition we use the following lemma for the dependence of the constants l,K, c and s in
the weak Harris theorem on m. This allows us to conclude that there exists ñ(m) ≤ ñ such that

d̃(ν1P ñ, ν2P ñ) ≤ 1

2
d̃(ν1, ν2)

d̃(ν1P ñ(m)
m , ν2P ñ(m)

m ) ≤ 1

2
d̃(ν1, ν2)

for all measures ν1, ν2 probability measures on H and PmH respectively.
Replacing r(s)∧ ρ

2s only weakens the condition (2.4) so we can and will assume that r(s) ≤ ρs/2.

Lemma 3.1. Let f : R→ R be monotone increasing, then
ˆ

f(‖ξ‖)dγm(ξ) ≤
ˆ

f(‖ξ‖)dγ(ξ)

and in particular

(3.1) γm(BR(0)) ≥ γ(BR(0)).

Proof. The truncated Karhunen-Loeve expansion relates γm to γ and yields

m∑

i=1

λiξ
2
i ≤

∞∑

i=1

λiξ
2
i .

Hence the result follows by monotonicity of the integral and of the function f

ˆ

f(‖ξ‖)dγm(ξ) = E(

√√√√f(

m∑

i=1

λiξ2
i )) ≤ E(

√√√√f(

∞∑

i=1

λiξ2
i )) =

ˆ

f(‖ξ‖)dγ(ξ).

This yields Equation (3.1) by inserting f = χBR(0)c .

3.1. Global log-Lipschitz density. In this section we will prove Theorem 2.12 by checking the
three conditions of the weak Harris Theorem 2.6 for the distance-like functions

(3.2) d(x, y) = 1 ∧ ‖x− y‖
ε

.

3.1.1. Lyapunov Functions. Under Assumption 2.10 we show the existence of a Lyapunov func-
tion V . This follows from two facts: First, the decay of V on Br(‖x‖) ((1− ρ)x) and second the
probability of the next step of the algorithm lying in that ball can be bounded below by Fernique’s
theorem, see Proposition A.1. Similarly, we will use the second part of Proposition A.1 to deal with
proposals outside Br(‖x‖) ((1− ρ)x).

Lemma 3.2. If Assumption 2.10 is satisfied with

1. r(‖x‖) = r ∈ R; or
2. r(‖x‖) = r‖x‖a, κ > 0 and a ∈ (1

2 , 1).

Then the function V (x) = ‖x‖i with i ∈ N in the first case and additionally V (x) = exp
(
`‖x‖

)
in

the second case are Lyapunov functions for both P and Pm with constants l and K uniform in m.
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Proof. In both cases we choose R as in Assumption 2.10. Then there exists a constant K1 such
that

sup
x∈BR(0)

PV (x) ≤ sup
x∈BR(0)

ˆ (
‖x‖+

√
2δ ‖ξ‖

)i
dγ(ξ) =: K1 <∞ .

On the other hand, there exists 0 < l̃ < 1 such that for all x ∈ BR(0)c

(3.3) supV (y)
y∈Br(‖x‖)((1−ρ)x)

≤ l̃V (x).

We denote by A = {ω|
√

2δ ‖ξ‖ ≤ r(‖x‖)} the event that the proposal lies in a ball with a lower
bound on the acceptance probability due to Assumption 2.10. This yields the bound

PV ≤ P(A)
[
P(accept|A)l̃V (x) + P(reject|A)V (x)

]
+ E(V (px) ∨ V (x);Ac)

≤ P(A)
[
(1− P(accept|A)(1− l̃)

]
V (x) + E(V (px) ∨ V (x);Ac)

≤ θP(A)V (x) + E(V (px) ∨ V (x);Ac)

for some θ < 1. It remains to consider E(V (px)∨ V (x);Ac) where the differences will arise between
the cases 1 and 2. For the first case we know that by an application of Fernique’s theorem

E(V (px) ∨ V (x);Ac) ≤
ˆ

√
2δ‖ξ‖≥c

‖x‖i ∨
(

(1− ρ) ‖x‖+
√

2δ ‖ξ‖)
)
idγ(ξ)

≤
ˆ

‖ξ‖≥ c√
2δ

(
‖x‖i +K ‖ξ‖p

)
dγ(ξ)

≤ P(Ac)V (x) +K2.

Because a ball around the mean of a Gaussian measure on a separable space always has positive
mass (Theorem 3.6.1 in Bogachev (1998)), we note that

PV (x) ≤ V (x)(P(A)θ + P(Ac)) +K2 ≤ lV (x) +K2,

for some constant l < 1.
For the second case we estimate

E(V (px) ∨ V (x);Ac) ≤ Mv

ˆ

‖η‖>r‖x‖a
ev(‖x‖+

√
2δ‖ξ‖)dγ(ξ).

The right hand side of the above is uniformly bounded in x ∈ BR(0)c by some K2 due to Proposition
A.1. Hence in both cases there exists an l < 1 such that

PV (x) ≤ lV (x) + max(K1,K2) ∀x.

For the m-dimensional approximation Pm the probability of the event A is larger than for P by
Lemma 3.1. Since there is a common lower bound for P(accept|A) l(m) is smaller than or equal to
l. Similarly, Ki(m) is smaller than Ki by Lemma 3.1.
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16 M. HAIRER, A. STUART AND S. VOLLMER

Figure 1. Contraction

3.1.2. The d-Contraction. In this section we show that P is d-contracting for d(x, y) = 1∧ ‖x−y‖ε
by bounding d(P(x, ·),P(y, ·)) (see (2.1)) with a particular coupling. For x and y we choose the
same noise ξ giving rise to the proposals px(ξ) and py(ξ) and the same uniform random variable
for acceptance. Subsequently, we will refer to this coupling as the basic coupling and bound the
expectation of d under this coupling by inspecting the following cases:

1. The proposals for the algorithm started at x and y are both accepted.
2. Both proposals are rejected.
3. One of the proposals is accepted and the other rejected.

Lemma 3.3. If Φ in (1.1) satisfies Assumption 2.10 and 2.11, then P and Pm are d-contracting
for d as in (3.2) with a contraction constant uniform in m.

Proof. By Definition 2.2 we only need to consider x and y such that d(x, y) < 1 which implies
that ‖x− y‖ < ε. Later we will choose ε � 1 so that if ‖x− y‖ < ε, then either x, y ∈ BR(0) or
x, y ∈ Bc

R̃
(0) with R̃ = R − 1 and we will treat both cases separately. We assume without loss of

generality that ‖y‖ ≥ ‖x‖.
For x, y ∈ BR(0) and A = {ω|

√
2δ ‖ξ‖ ≤ R} the basic coupling yields

d(P(x, ·),P(y, ·)) ≤ P(A) [P(both accept|A)(1− ρ)d(x, y)+

P (both reject|A)d(x, y))] + P(Ac)d(x, y) +(3.4)
ˆ

H
|α(x, px)(ξ)− α(y, py)(ξ)| dγ(ξ)

where the last term bounds the case that only one of the proposals is accepted. Using the bound
P(both reject|A) ≤ 1 − P(both accept|A) yields a non-trivial convex combination of d and (1 −
ρ)d because the probability P(both accept|A) is bounded below by exp(− sup{Φ(z)| ‖z‖ ≤ 2R} +
inf{Φ(z)| ‖z‖ ≤ 2R}) due to (1.5). The first two summands in (3.4) form again a non-trivial convex
combination since P(A) > 0 so that there is c̃ < 1 with

d(P(x, ·),P(y, ·)) ≤ c̃d(x, y) +

ˆ

H
|α(x, px)(ξ)− α(y, py)(ξ)| dγ(ξ).
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Note that c̃ is independent of ε. For the last term we use that 1 ∧ exp(·) has Lipschitz constant 1
ˆ

X
|α(x, px)(ξ)− α(y, py)(ξ)|dγ(ξ)

≤
ˆ

H
|Φ(px)− Φ(py)|+ |Φ(x)− Φ(y)| dγ(ξ)

≤ 2L |x− y| ≤ 2Lεd(x, y)

(3.5)

which yields an overall contraction for ε small enough.
Similarly, we get for x, y ∈ BR̃(0)c and B = {ω|

√
2δ ‖ζ‖ ≤ r(‖x‖ ∧ ‖y‖)}

d(P(x, ·),P(y, ·)) ≤P(B)[P(both accept|B)(1− ρ) + P(both reject|B)]d(x, y)

P(Bc)d(x, y) +

ˆ

H
|α(x, px)(ξ)− α(y, py)(ξ)| dγ(ξ).

The lower bound for P(both accept|B) follows this time from Assumption 2.10.
All occurring ball probabilities are larger in the m-dimensional approximation due to Lemma

3.1 and the acceptance probability is larger since inf and sup are applied to smaller sets. Thus the
contraction constant is uniform in m.

3.1.3. The d-Smallness. The d-smallness of the level sets of V is achieved by replacing the
Markov kernel by the n-step one. This preserves the d-contraction and the Lyapunov function. The
variable n is chosen large enough so that if the algorithms started at x and y both accept n times
in a row then d drops below 1

2 . Hence

d(Pn(x, ·),Pn(y, ·)) ≤ 1− 1

2
P(accept n-times).

Lemma 3.4. If S is bounded, then there exists an n and 0 < s < 1 such that for all x, y ∈ S,
m ∈ N and for d as in (3.2)

d (Pnm(x, ·),Pnm(y, ·)) ≤ s and d (Pn(x, ·),Pn(y, ·)) ≤ s .

Proof. In order to obtain an upper bound for d (Pn(x, ·),Pn(y, ·)), we choose the basic coupling
(see Section 3.1.2) as before. Let RS be such that S ⊂ BRS (0) and B be the event that both instances
of the algorithm accept n times in a row. In the event of B it follows by the definition of d (c.f.
(3.2)) that

d(Xn, Yn) ≤ 1

ε
‖Xn − Yn‖ ≤

1

ε
(1− ρ)n ‖X0 − Y0‖ ≤

1

ε
(1− ρ)ndiam S ≤ 1

2

which implies that if X0 and Y0 are in S, then d(Xn, Yn) ≤ 1
2 . Hence

d(Pn(x, ·),Pn(y, ·)) ≤ P(B)
1

2
+ (1− P(B)) · 1 < 1.

Writing ξi for the noise in the i-th step, we bound

P(B) ≥ P
(∥∥∥
√

2δξi
∥∥∥ ≤ R

n
for i = 1 . . . n

)
P
(
both accept ntimes

∣∣∣
∥∥ξi
∥∥ ≤ R

n

)

≥ P
(
‖ζ‖ ≤ R

n

)n
exp
(
− sup
z∈B2R(0)

Φ(z) + inf
z∈B2R(0)

Φ(z)
)n

> 0,
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18 M. HAIRER, A. STUART AND S. VOLLMER

uniformly for all X0, Y0 ∈ BR(0). For the m-dimensional approximation the lower bound exceeds
that in the infinite dimensional case due to Lemma 3.1 and the fact that

− sup
z∈B2R(0)

Φ(z) + inf
z∈B2R(0)

Φ(z) ≤ − sup
z∈B2R(0)

Φ(Pnz) + inf
z∈B2R(0)

Φ(Pnz).

Hence the claim follows.

3.2. Local log-Lipschitz density. Now we allow the local Lipschitz constant

φ(r) = sup
x 6=y∈Br(0)

|Φ(x)− Φ(y)|
‖x− y‖

to grow in r. We used that Φ is globally Lipschitz to prove that P and Pm is d-contracting (c.f.
Equation (3.5)). Now there is no one fixed ε that makes P d-contracting. Instead the idea is to
change the metric in a way such that two points far out have to be closer in ‖·‖H in order to be
considered “close” i.e. d(x, y) < 1. This is inspired by constructions in Hairer and Majda (2010);
Hairer, Mattingly and Scheutzow (2011). Setting

A(T, x, y) := {ψ ∈ C1([0, T ],H), ψ(0) = x, ψ(T ) = y, ‖ψ̇‖ = 1},

we define the two metrics d and d̄ by

(3.6) d(x, y) = 1 ∧ d̄(x, y) d̄(x, y) = inf
T,ψ∈A(T,x,y)

1

ε

ˆ T

0
exp(η ‖ψ‖)dt

where ε and η will be chosen depending on Φ and γ in the subsequent proof. The situation is
different from before because even in the case when “both accept” the distance can increase because
of the weight. In order to control this, we notice that

Lemma 3.5. Let ψ be a path connecting x, y with ‖ψ̇‖ = 1, then for d̄ as in (3.6)

1. 1
ε

´ T
0 exp(η ‖ψ‖)dt < 1 implies

T ≤ J := ε exp (−η(‖x‖ ∨ ‖y‖ − ε) ∨ 0) ≤ ε.

2. d̄(x, y) ≤ ‖x−y‖ε exp (η(‖x‖ ∨ ‖y‖)) and

‖x− y‖
ε

exp (η(‖x‖ ∨ ‖y‖ − J) ∨ 0) ≤ d̄(x, y)

for all points such that d̄(x, y) < 1.
3. For points such that d̄(x, y) < 1

d̄(px, py)

d̄(x, y)
≤ (1− 2δ)

1
2 e−ηρ[‖x‖∨‖y‖+η(‖√2δξ‖+J)].

Proof. In order to prove the first statement, we observe that

ε ≥
ˆ T

0
eη|‖x‖∨‖y‖−t|dt ≥ Teη(‖x‖∨‖y‖−T )∨0) ≥ Teη(‖x‖∨‖y‖−ε)∨0).
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For the second part we denote by ψ the line segment connecting x and y in order to obtain an upper
bound d(x, y). For the lower bound we use ‖ψ‖ ≥ (‖x‖ ∨ ‖y‖ − J) ∨ 0 from the first part combined
with the fact that T ≤ ε. Using the second part we get

d̄(px, py) ≤
1

ε
(1− 2δ)

1
2 ‖x− y‖ eη[(‖x‖∨‖y‖)−ρ(‖x‖∨‖y‖)+

√
2δ‖ξ‖]

≤ (1− 2δ)
1
2 eη[−ρ(‖x‖∨‖y‖)+

√
2δ‖ξ‖+J] 1

ε
‖x− y‖ eη(‖x‖∨‖y‖−J)

≤ (1− 2δ)
1
2 eη[−ρ(‖x‖∨‖y‖)+

√
2δ‖ξ‖+J]d̄(x, y)

which is precisely the required bound.

3.2.1. Lyapunov Functions. This condition neither depends on the distance function d nor on
the Lipschitz properties of Φ. Hence Lemma 3.2 applies.

3.2.2. The d-Contraction. The main difference between local and global Lipschitz Φ is proving
that P and Pm is d-contracting.

Lemma 3.6. If Φ satisfies Assumption 2.10 and 2.13, then P and Pm are d-contracting for d
as in (3.6) with a contraction constant uniform in m.

Proof. First suppose x, y ∈ BR(0) with d(x, y) < 1 and denote the event A =
{
ω| ‖ξ‖ ≤ 2R√

2δ

}
.

First we choose R large, before dealing with the case when η is small and when ε is small. We have

d(P(x, ·),P(y, ·)) ≤ P(A) [P(both accept|A)(1− ρ̃)d(x, y)(3.7)
+ [P(both reject|A)d(x, y)]

+E((α(x, px) ∧ α(y, py))d(px, py);A
c)

+E((1− α(x, px) ∨ α(y, py))d(x, y);Ac)(3.8)
+P(only one accepts) · 1

where the first two lines deal with both accept and both reject in the case of A, the third and fourth
line consider the same case in the event of Ac. The last line deals with the case when only one
accepts. For the first two lines of Equation (3.7) we argue that

P(both accept|A) ≥ inf
x,z∈B3R(0)

P(accepts|px = z) = exp(−Φ+(3R) + Φ−(3R)).

If both are accepted, we know from Lemma 3.5 that

d̄(px, py)

d̄(x, y)
≤ (1− 2δ)

1
2 exp

(
−ηρ (‖x‖ ∨ ‖y‖) + η(

∥∥∥
√

2δξ
∥∥∥+ J)

)

≤ (1− 2δ)
1
2 eη(3R+J) ≤ (1− ρ̃)

where the last step follows for η small enough. Using the complementary probability, we obtain the
following estimate

P(both reject|A) ≤ 1− P(both accept|A) .

Combining both estimates, it follows that P(A) (1− P(both accept|A)(1− ρ̃)) as coefficient in front
of d(x, y). In order to show that P is d-contracting, we have to prove that the expression in the
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third and fourth line of Equation (3.7) is close to P(Ac) · d(x, y). We notice that

E ((1− α(x, px) ∨ α(y, py))d(x, y);Ac) + E ((α(x, px) ∧ α(y, py))d(px, py);A
c)

≤ E (d(px, py) ∨ d(x, y);Ac) ≤ d̄(x, y)E
d̄(px, py)

d̄(x, y)
∨ 1

≤ d(x, y)

ˆ

√
2δ‖ξ‖>2R

1 ∨ eη(
√

2δ‖ξ‖+J)dγ(ξ),

where the last step followed by Lemma 3.5. For small η the above is arbitrarily close to P(Ac)·d(x, y)

by the Dominated Convergence theorem. By writing the integrand as χ√2δ‖ξ‖>2R

(
1 ∨ exp(η(

√
2δ ‖ξ‖+ J)

)

and applying Lemma 3.1, we conclude that this estimate holds uniformly in m. Combining the first
four lines, the coefficient in front of d(x, y) is less than 1 independently of ε. Only P(only one accepts)·
1 is left to bound in terms of d(x, y):

P(only one accepts) =

ˆ

|α(x, px)− α(y, py)| dγ(ξ)

≤
ˆ

(|Φ(px)− Φ(py)|+ |Φ(x)− Φ(y)|)dγ(ξ)

≤ εd(x, y)

ˆ

(φ((1− ρ)R+
√

2δ ‖ξ‖) + φ(R))dγ(ξ).

The integral above is bounded by Fernique’s theorem. Hence for ε small enough, we get an overall
contraction when we combine this with the result above.

Now let x, y ∈ Bc
R̃

(0) with d(x, y) < 1 and without loss of generality we assume that ‖y‖ ≥ ‖x‖.
Similar to the first case we bound with A = {ω|‖

√
2δζ‖ ≤ r(‖x‖)}, we have

d(P(x, ·),P(y, ·)) ≤ P(A) [P(both accept|A)(1− ρ)d(x, y)+

P(both reject|A)d(x, y)] + E (d(x, y) ∨ d(px, py);A
c)

+P(only one accepts) · 1.

If “both accept”, then the contraction factor associated to the event of A is smaller than (1 − ρ)
because r(‖x‖) ≤ ρ

2 ‖x‖ and by an application of Lemma 3.5. For the next term it follows that

E (d(px, py) ∨ d(x, y);Ac) ≤ d̄(x, y)E
d̄(px, py)

d̄(x, y)
∨ 1

≤ d̄(x, y)

ˆ

Ac

1 ∨ e−ρη(‖y‖)+η(‖√2δξ‖+J)dγ(ξ).

Denoting the integral above by I, its integrand by f(ξ) and F > 0, this yields

I ≤ I1 + I2 =

ˆ

f(ξ)dγ(ξ)

ρ(‖y‖−J)+F≥‖√2δξ‖≥r(‖x‖∧‖y‖)
+

ˆ

f(ξ)dγ(ξ)

‖√2δξ‖≥ρ(‖y‖−J)+F

.

For the first part we have the upper bound P(Ac)e
√

2δηF and for the second part we take g ∈ X?

with ‖g‖ = 1. We note that {x|g(x) > R} ⊆ BR(0)c and hence

γ(BR(0)c) ≥ γ({x|g(x) > R}) ≥ exp(−β̃R2 + ζ)
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using the one dimensional lower bound. For the uniformity in m we choose g = e?1. We incorporate
all occurring constants into ζ and use Proposition A.1 to bound

I2 ≤ P(Ac) exp

(
β̃
r(‖x‖)2

2δ
− ρη(‖y‖ − J)

η
√

2δ(ρ(‖y‖ − J) + F )− β
√

2δ(ρ(‖y‖ − J) + F )2 + ζ
)
.

For any τ > 0 we choose F large enough and then η small enough so that I ≤ (1 + τ)P(Ac)d(x, y).
Again the estimates above are independent of ε which we choose small in order to bound P(only one accepts|Ac)
in terms of d(x, y). Calculating as above yields

ˆ

|α(x, px)− α(y, py)| dγ(ξ)

≤
ˆ

|Φ(x)− Φ(y)|+ |Φ(px)− Φ(py)| dγ(ξ)

≤
ˆ

(φ(‖y‖) + φ(‖px‖ ∨ ‖py‖) dγ(ξ) ‖x− y‖

≤
(
Mκe

κ‖y‖ +

ˆ

φ((1− ρ) ‖y‖+
√

2δ ‖ξ‖)dγ(ξ)

)
‖x− y‖

≤ CMκεe
−η(‖x‖∨‖y‖−ε)∨0+κ‖y‖d̄(x, y)

where the last step follows using the upper bound for ‖x− y‖ from Lemma 3.5. Choosing κ = η
2

and ε small enough, we can guarantee a uniform contraction. Checking line by line, the same is true
for the m-dimensional approximation.

3.2.3. The d-Smallness. Analogous to the globally Lipschitz case, we have

Lemma 3.7. If S is bounded, then ∃n ∈ N and 0 < s < 1 such that for all x, y ∈ S, m ∈ N and
for d as in (3.6)

d(Pnm(x, ·),Pnm(y, ·)) ≤ s and d(Pn(x, ·),Pn(y, ·)) ≤ s .

Proof. By Lemma 3.4 d and ‖ · ‖ are comparable on bounded sets. If X0, Y0 ∈ BR(0) and both
algorithms accept n proposals in a row which are all elements of B2R(0), then for n large enough

d(Xn, Yn) ≤ exp(η(2R+ J))

ε
diam(S)(1− 2δ)n/2 ≤ 1

2
.

Hence the result follows analogue to Lemma 3.4.

4. Results Concerning the Sample-Path Average. In this section we focus on sample path
properties of the pCN algorithm which can be derived from the Wasserstein and the L2

µ-spectral
gap. We prove a strong law of large numbers, a CLT and a bound on the MSE. This allows us to
quantify the approximation of µ(f) by

Sn,n0(f) =
1

n

n∑

i=1

f(Xi+n0).
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4.1. Consequences of the Wasserstein Spectral Gap. The immediate consequences of a Wasser-
stein spectral gap are weaker than the results from the L2-spectral gap because they apply to a
smaller class of observables but they hold for the algorithm started at any deterministic point.

4.1.1. Change to a Proper Metric and Implications for Lipschitz Functionals. For the Wasser-
stein CLT Komorowski and Walczuk (2012) we need a Wasserstein spectral gap with respect to a
metric. The reason for this is that the Monge-Kantorovich duality is used for its proof Komorowski
and Walczuk (2012). Recall that Theorem 2.14 yields a Wasserstein spectral gap for the distance

d̃ =

√
(1 + ‖x‖i + ‖y‖i)(1 ∧ d) where

d = inf
T,ψ∈A(T,x,y)

1

ε

ˆ T

0
exp(η ‖ψ‖).

Because d̃ does not necessarily satisfy the triangle inequality, we introduce

d′(x, y) =

√√√√√√
inf

x = z1, . . . , zn = y
n ≥ 2,

n−1∑

j=1

d0(zj , zj+1)(4.1)

d0(x, y) = d1(x, y) ∧ d2(x, y)

d1(x, y) =

{
0 x = y

(1 + ‖x‖i + ‖y‖i) otherwise

d2(x, y) = inf
T,ψ∈A(T,x,y)

F (ψ)

F (ψ) =
1

ε

ˆ T

0
exp(η ‖ψ‖)(1 + ‖ψ‖i)dt.

It is straightforward to verify that d′ is a metric by first showing that the expression inside the
square root is a metric (triangle inequality is satisfied because of the infimum) and using that a
square root of a metric is again a metric.

Moreover, P and Pm have a Wasserstein spectral gap with respect to d′ because of the following
lemma

Lemma 4.1. Provided that ε is small enough, there exists a constant C > 0 such that

d′(x, y) ≤ d̃(x, y) ≤ Cd′(x, y)

for all pairs of points x, y in H.

Proof. Without loss of generality we assume that ‖y‖ ≥ ‖x‖. The inequality d′ ≤ d̃ follows
from Lemma 4.2 since d′ ≤

√
d0 by definition.

In order show that d̃ ≤ Cd′, we will use Lemma 4.2 and reduce the number of summands appearing
in Equation (4.1) for d′. We can certainly assume that there is at most one index j in (4.1) such
that d0(zj , zj+1) = d1(zj , zj+1) because otherwise there are 1 ≤ j < k ≤ n such that

d0(zj , zj+1) = d1(zj , zj+1), d0(zk, zk+1) = d1(zk, zk+1)

which would lead to

d0(zj , zj+1) + · · ·+ d0(zk, zk+1) ≥ 2 + ‖zj‖i + ‖zk+1‖i > d1(zj , zk+1).
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Hence the expression could be made smaller by removing all intermediate points between zj and
zk+1, contradiction.

Because d2 is a Riemannian metric, it satisfies the triangle inequality in a sharp way in the sense
that d2(x, y) = infz

(
d2(x, z) +d2(z, y)

)
. As a consequence, the infimum is not changed by assuming

that in Equation (4.1) there is no index j such that

d0(zj , zj+1) = d2(zj , zj+1), d0(zj+1, zj+2) = d2(zj+1, zj+2).

Combining these two facts, Equation (4.1) thus reduces to

(d′(x, y))2 = min

{
d0(x, y), inf

z2,z3
d2(x, z2) + d1(z2, z3) + d2(z3, y)

inf
z2
d2(x, z2) + d1(z2, y), inf

z2
d1(x, z2) + d2(z2, y)

}
.(4.2)

Recalling Lemma 4.2, it remains to show that d′ ≥ C
√
d0 with d′ given by (4.2). This is of course

non-trivial only if (x, y) is such that d′(x, y) <
√
d0(x, y). Therefore we assume this fact from now

on.
Suppose first that ‖y‖ ≤ Q, for some constant Q > 0 to be determined later. Since d′(x, y) 6=√
d0(x, y), there is at least one j such that d0(zj , zj+1) = d1(zj , zj+1) which leads to

1 + 2Qi ≥ d0(x, y) ≥
(
d′(x, y)

)2 ≥ 1 ,

so that the bound (1 + 2Qi)d′(x, y) ≥
√
d0(x, y) indeed follows in this case.

Suppose now that ‖y‖ ≥ Q. Again, one summand d0(zj , zj+1) in Equation (4.2) satisfies

d0(zj , zj+1) = d1(zj , zj+1) ,

thus giving rise to a simple lower bound on d′:

(4.3) d′(x, y) ≥
√

1 + ‖zj‖i .

Because of (4.2), zj+1 is either equal to y or connected to y through a path ψy ∈ A(T, zj+1, y)
which is such that

(4.4) F (ψy) ≤ 1 + 2 ‖y‖i

where F (ψ) is as in the definition of d2. By the same reasoning as in the proof of Lemma 4.2, for
Q large enough it is sufficient to consider paths starting in y and such that ‖ψ(t)‖ ≥ ‖y‖ /2. The
bound (4.4) thus yields an upper bound on ‖zj+1 − y‖ by

(4.5) 1 + 2 ‖y‖i ≥ F (ψy) ≥
1

ε
‖zj+1 − y‖ exp(η ‖y‖ /2) .

Combining this with (4.3), we have

d′(x, y)2 ≥ 1 + (‖y‖ − ‖zj+1 − y‖)i ≥ 1 + ‖y‖i − i ‖y‖i−1 ‖zj+1 − y‖

≥ 1 +
‖y‖i

2
+

(
‖y‖i

2
− ε(1 + 2 ‖y‖i) exp(−η ‖y‖ /2)

)
,

Provided that ε < 1/4 and Q is large enough, the third summand is positive so that d′(x, y)2 ≥
1
4d1(x, y) ≥ 1

4d0(x, y) concluding the proof.
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Lemma 4.2. There is a C > 0 such that d0 as defined in Equation (4.1) satisfies

d0(x, y) ≤ d̃(x, y)2 ≤ Cd0(x, y) for all x, y.

Proof. We assume again that ‖y‖ ≥ ‖x‖. In order to prove that d0(x, y) ≤ d̃(x, y)2, we only
have to show that

inf
T,ψ∈A(T,x,y)

F (ψ) ≤ inf
T,ψ∈A(T,x,y)

1

ε

ˆ T

0
exp(η ‖ψ‖)dt(1 + ‖x‖i + ‖y‖i) .

Replacing ψ(t) by
(1 ∧ ‖y‖/‖ψ(t)‖)ψ(t) ,

in the expressions above does not cause an increase. Hence it is sufficient to consider paths ψ which
satisfy

(4.6) ‖ψ(t)‖ ≤ ‖y‖ , t ∈ [0, T ].

The bound d0 ≤ d̃2 then follows at once from

1 + ‖ψ‖i ≤ 1 + ‖x‖i + ‖y‖i .

We proceed now to show that d̃(x, y)2 ≤ Cd0(x, y) for which we only have to consider

(4.7) d2(x, y) = inf
T,ψ∈A(T,x,y)

1

ε

ˆ T

0
exp(η ‖ψ‖)(1 + ‖ψ‖i)dt ≤ (1 + ‖x‖i + ‖y‖i)

since the minimum expressions in d̃2 and d0 have (1 + ‖x‖i + ‖y‖i) in common.
We will first use this to show that x and y have to be close if ‖y‖ is large. We will show that

any path ψ for which the expression in d2 is close to the infimum has to satisfy ‖y‖ ≥ ψ≥ ‖y‖2 .
Hence 1+‖ψ‖i and (1+‖x‖i+‖y‖i) are comparable. In order to gain a lower bound on d2(x, y), we
distinguish between paths ψ which intersects or do not intersect BR(0). If the path lies completely
outside the ball, we have

d2(x, y) ≥ 1

ε
‖x− y‖ exp(ηR)(1 +Ri).

If ψ and BR(0) intersect, then d2(x, y) is larger than d2(BR(0), y) which by symmetry corresponds
to

d2(x, y) ≥ 1

ε

ˆ ‖y‖−R

0
exp(η(‖y‖ − t))(1 + (‖y‖ − t)i)dt

≥ 1

ε
(‖y‖ −R) exp(η(‖y‖ −R)dt(1 + (‖y‖ −R)i).

We choose R = ‖y‖
2 and note that ‖y‖2 ≥

‖x−y‖
4 , leading in both cases to

d2(x, y) ≥ 1

4ε
‖x− y‖ exp(η ‖y‖ /2)(1 +

‖y‖i
2

).

By (4.7) this implies

(4.8) ‖x− y‖ ≤ 4ε exp(−η ‖y‖2 )

1 + ‖y‖i /2

(
1 + 2 ‖y‖i

)
.
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For x and y in BQ(0) we have that (d̃)2 ≤ (2Qi + 1)d0 because we can assume ‖ψ(t)‖ ≤ ‖y‖ as
above . It is only left to consider x, y ∈ BQ̃(0)c for Q̃ = Q − 4ε exp(−ηQ2 )(1 + 2Qi) because of
Equation (4.8). Subsequently, we will show that for Q and hence Q̃ large enough, it is sufficient for
the infimum expression for d2 to consider paths ψ that do not intersect BR(0) for R = ‖y‖

2 .
Suppose that the path ψ would intersect BR(0). Then the functional is larger than the shortest

path ψ̂ to the boundary of the ball and hence

d2 ≥ F (ψ̂) ≥ 1

ε

ˆ ‖y‖−R

0
eη(‖y‖−t)(1 + (‖y‖ − t)i)dt

=
1

ε


exp(η ‖y‖)(η−1(1 + ‖y‖i) +

i∑

j=1

η−1−j i!

(i− j)! ‖y‖
i−j)

− exp(ηR)(η−1(1 +Ri) +
i∑

j=1

η−1−j i!

(i− j)!R
i−j)


(4.9)

by i+ 1 integrations by parts. Let l be the line connecting x and y, then using (4.8) yields

F (l) ≤ 1

ε
‖x− y‖ eη‖y‖(1 + ‖y‖i) ≤ 4 exp(η

‖y‖
2

)(1 + 2 ‖y‖i)2.

For R = ‖y‖
2 and Q̃ large enough we have F (ψ) > F (l). Therefore for all t ∈ [0, T ] ‖y‖ ≥ ψ≥ ‖y‖ /2

and thus
2i+1(1 + ‖ψ‖i) ≥ (1 + ‖x‖i + ‖y‖i)

which yields that max(2Qi + 1, 2i+1)d0 ≥ d̃2.

4.1.2. Strong Law of Large Numbers. In this section we will prove a strong law of large numbers
for Lipschitz functions. Since µm (µ) are the unique invariant measures for P (Pm) (respectively),
µm (µ) is ergodic and Birkhoff’s ergodic theorem applies. However, this theorem only applies to
almost every initial condition but we are able to extend it to every initial condition in this case
which yields a strong law of large numbers.

Theorem 4.3. In the setting of Theorem 2.12 or 2.14, suppose that supp µ = H and h : H → R
has Lipschitz constant L with respect to d̃, then for arbitrary X0 ∈ H

∣∣∣∣∣
1

n

n∑

i=1

h(Xi)− Eµh

∣∣∣∣∣
a.s→ 0.

Proof. By Birkhoff’s ergodic theorem, we know that this is true for measurable h and every
initial condition in some set of full measure A. Because µ has full support, for any t > 0 we can
choose Y0 ∈ A with d̃(X0, Y0) ≤ t2. Hence

∣∣∣∣∣
1

n

n∑

i=1

h(Xi)− Eµh

∣∣∣∣∣ ≤
∣∣∣∣∣
1

n

n∑

i=1

h(Y i)− Eµh

∣∣∣∣∣+

∣∣∣∣∣
1

n

n∑

i=1

(h(Xi)− h(Y i))

∣∣∣∣∣

≤
∣∣∣∣∣
1

n

n∑

i=1

h(Y i)− Eµh

∣∣∣∣∣+
1

n

n∑

i=1

Ld̃(Xi, Y i).
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By the Wasserstein spectral gap, we can couple Xn and Y n such that

Ed̃(Xn, Y n) ≤ Crnd̃(X0, Y 0)

for some 0 < r < 1. An application of Markov’s inequality yields

P
(
d̃(Xn, Y n) ≥ c

)
≤ C r

nd̃(X0, Y 0)

c
.

Since Birkhoff’s theorem applies to the Markov process started at Y0, we have

P

[
lim sup

∣∣∣∣∣
1

n

n∑

i=1

h(Xi − Eµh)

∣∣∣∣∣ ≥ c
]

= P

[
lim sup

1

n

n∑

i=1

∣∣h(Xi)− h(Y i)
∣∣ ≥ c

]

≤ C L

c(1− r) d̃(X0, Y 0).

Setting c = t
L yields

P

(
lim sup

∣∣∣∣∣
1

n

n∑

i=1

h(Xi − Eµh)

∣∣∣∣∣ ≤ t
)
≥ 1− t C

1− r

and because t was chosen arbitrarily, the result follows.

4.1.3. Central Limit Theorem. The result above does not give any rate of convergence. With a
CLT on the other hand it is possible to derive (asymptotic) confidence intervals and to estimate
the error for finite n. Because of Lemma 4.1 and arguments from Lemma 3.2, it is straightforward
to verify that our assumptions imply those needed for the Wasserstein CLT in Komorowski and
Walczuk (2012). This results in the following theorem

Theorem 4.4. If the conditions of Theorem 2.12 or 2.14 are satisfied, then there exists σ ∈
[0,+∞) such that

lim
n→+∞

1

n
E

(
n∑

i=1

f̃(Xs)

)2

= σ2

where f̃ := f − µ(f) and f is Lipschitz with respect to d′. Moreover, we have

lim
T→∞

P(
1√
n

n∑

i=1

f̃(Xs) < ξ) = Φσ(ξ), ∀ξ ∈ R

where Φσ(·) is the distribution function of N (0, σ2) a zero mean normal law whose variance equals
σ2.

4.2. Consequences of L2
µ-Spectral Gap. Under the assumptions of Theorem (2.12) or (2.14), we

have proved the existence of an L2
µ-spectral gap in Section 2.2.2. Now we may use all existing

consequences for the ergodic average with and without burn in (n0 = 0)

Sn,n0(f) =
1

n

n∑

j=1

f(Xj+n0) Sn = Sn,0.

The following result of Kipnis and Varadhan (1986) (see also Łatuszyński and Roberts (2011) whence
the statement was adapted) then yields a CLT:
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Proposition 4.5. Consider an ergodic Markov chain with transition operator P which is re-
versible with respect to a probability measure µ. Let f ∈ L2 be such that

σ2
f,P =

〈
1 + P

1− P f, f
〉
<∞,

then for X0 ∼ µ the expression
√
n(Sn − µ(f)) converges weakly to N (0, σ2

f,P ).

In our case, provided that f is mean-zero, it follows from the L2-spectral gap that

σ2
f,P ≤

2µ(f2)

1− β .

Due to Theorem 2.14, we have a lower bound on the spectral gap 1 − β of P and 1 − βm of
Pm which is uniform in m. Thus the ergodic average of the pCN algorithm applied to the target
measures µ and µm has an m-independent upper bound on the asymptotic variance.

The result of Proposition 4.5 has been extended to µ for almost every initial condition in Cuny
and Lin (2009) which also applies to our case.

A different approach due to Rudolf (2012) is to consider the MSE

eν(Sn,n0 , f) = (Eν,K
∣∣Sn,n0(f)− µ(f)2

∣∣)1/2.

Using Tschebyscheff’s inequality, this results in a confidence interval for S(f). We can bound it by
using the following proposition from Rudolf (2012):

Proposition 4.6. Suppose that we have a Markov chain with Markov operator P which has an
L2
µ-spectral gap 1 − β. For p ∈ (2,∞] let n0(p) be the smallest natural number which is greater or

equal to

(4.10)
1

log(β−1)





p
2(p−2) log( 32p

p−2)
∥∥∥ dνdµ − 1

∥∥∥
p
p−2

p ∈ (2, 4)

log(64)
∥∥∥ dνdµ − 1

∥∥∥
p
p−2

p ∈ [4,∞].

Then
sup
‖f‖p≤1

eν(Sn,n0 , f) ≤ 2

n(1− β)
+

2

n2(1− β)2
.

In our setting n0(p) is finite for ν = γ under the additional assumption that for all u1 > 0 there
is a u2 such that

Φ(‖x‖) ≤ u1 ‖x‖2 + u2.

Using Fernique’s theorem, this implies that dγ
dµ − 1 has moments of all orders.

5. Conclusion. From an applications perspective, the primary thrust of this paper is to develop
an understanding of MCMC methods in high dimension. Our work has concentrated on identifying
the (possibly lack of) dimension dependence of spectral gaps for the standard random walk method
RWM and a recently developed variant pCN adapted to measures defined via a density with respect
to a Gaussian. It is also possible to show that the function space version of the MALA Beskos,
Kalogeropoulos and Pazos (2013) has a spectral gap if, in addition to the assumptions in this
article, the gradient of Φ satisfies strong assumptions and the gradient step is very small. There is
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also a variant of the Hybrid Monte-Carlo methods Beskos et al. (2011) adapted to the sampling of
measures defined via a density with respect to a Gaussian and it would be interesting to employ
the weak Harris theory to study this algorithm.

Other classes of target measures, such as those arising from Besov prior measures Lassas, Saksman
and Siltanen (2009); Dashti, Harris and Stuart (2012) or an infinite product of uniform measures
in Schwab and Stuart (2012) would also provide interesting applications. The proposal of the pCN
is reversible and has a spectral gap with respect to the Gaussian reference measure. For arbit-
rary reference and target measures, the third author has recently proved that for bounded Φ the
Metropolis-Hastings algorithm has a spectral gap if the proposal is reversible and has a spectral gap
with respect to the reference measure Vollmer (2013).

More generally, we expect that the weak Harris theory will be well-suited to the study of many
MCMC methods in high dimensions because of its roots in the study of Markov processes in infinite
dimensional spaces Hairer, Mattingly and Scheutzow (2011). In contrast, the theory developed in
Meyn and Tweedie (2009) does not work well for the kind of high dimensional problems that are
studied here.

From a methodological perspective, we have demonstrated a particular application of the theory
developed in Hairer, Mattingly and Scheutzow (2011), demonstrating its versatility for the analysis
of rates of convergence in Markov chains. We have also shown how that theory, whose cornerstone
is a Wasserstein spectral gap, may usefully be extended to study L2-spectral gaps and resulting
sample path properties. These observations will be useful in a variety of applications not just those
arising in the study of MCMC.

All our results were presented for separable Hilbert spaces but in fact they do also hold on an
arbitrary Banach space. This can be shown by using a Gaussian series (c.f. Section 3.5 in Bogachev
(1998)) instead of the Karhunen-Loeve expansion and the m-independence is due to Theorem 3.3.6
in Bogachev (1998).

APPENDIX A: GAUSSIAN MEASURES

As a consequence of Fernique’s Theorem, we have the following explicit bound on exponential
moments of the norm of a Gaussian random variable, which is needed to show that P and Pm are
d-contracting (see Section 3.2.2).

Proposition A.1. For β small enough, there exists a constant Fβ such that
ˆ

X

exp(β ‖u‖2)dγ(u) = Fβ .

Furthermore, for any α ∈ R+ there is a constant Cα,β such that for K > α
2β

ˆ

{‖u‖≥K}

exp(α ‖u‖)dγ(u) ≤ Cα,βe−βK
2+αK .

Proof. The first claim is just Fernique’s theorem, see for example Bogachev (1998); Da Prato
and Zabczyk (1992); Hairer (2010). Using integration by parts and Fubini, we get

ˆ

‖x‖≥K

f(‖x‖)dγ = f(K)γ(‖x‖ ≥ K) +

ˆ ∞

K
γ(‖x‖ ≥ t)f ′(t) dt.
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Setting f(x) = exp(αx) and applying Fernique’s Theorem yields
ˆ

‖x‖≥K

exp(α ‖x‖)dγ ≤ Fβ exp(−βK2 + αK) + Fβα

ˆ ∞

K
exp(−βt2 + αt) dt .

Since, for K as in the statement, one verifies that

βt2 − αt ≥ βK2 − αK + β(t−K)2 ,

the required bound follows at once.
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DIMENSION-INDEPENDENT MCMC SAMPLING FOR INVERSE
PROBLEMS WITH NON-GAUSSIAN PRIORS

SEBASTIAN J. VOLLMER∗

Abstract. The computational complexity of MCMC methods for the exploration of complex
probability measures is a challenging and important problem. A challenge of particular importance
arises in Bayesian inverse problems where the target distribution may be supported on an infinite
dimensional space. In practice this involves the approximation of measures defined on sequences of
spaces of increasing dimension. Motivated by an elliptic inverse problem with non-Gaussian prior, we
study the design of proposal chains for the Metropolis-Hastings algorithm with dimension indepen-
dent performance. Dimension-independent bounds on the Monte-Carlo error of MCMC sampling for
Gaussian prior measures have already been established. In this paper we provide a simple recipe to
obtain these bounds for non-Gaussian prior measures. To illustrate the theory we consider an elliptic
inverse problem arising in groundwater flow. We explicitly construct an efficient Metropolis-Hastings
proposal based on local proposals, and we provide numerical evidence which supports the theory.

Key words. MCMC, inverse problems, Bayesian, spectral gaps, non-Gaussian

AMS subject classifications. 65C40, 60J22, 60J05, 35R30, 62F15

1. Introduction. In many applications in science and technology the main un-
knowns cannot be observed directly or a direct observation would be destructive. A
prime example for this is computed tomography where the aim is the reconstruction
of the properties of a human body given measurements at the rim of the X-ray tube.
Often it is possible to model the data as the output of a mathematical model taking
the unknowns as parameters. The area of inverse problems is concerned with the
reconstruction of these parameters from data. Classically, this is achieved by choos-
ing the parameter which minimises a regularized least squares functional. Whereas
it is difficult to quantify the uncertainty for this method, it is straightforward in the
Bayesian approach to inverse problems. The Bayesian method is based on the idea
that not all parameter choices are a priori equally likely. Instead, the a priori knowl-
edge about these parameters is modelled as a probability distribution - called the
prior. By specifying the distribution of the noise, the parameters and the observed
data can then be treated as jointly distributed random variables. Under certain con-
ditions on the prior, model and noise, there exists a unique conditional distribution
of the parameters given the data. This distribution is called the posterior and is an
update of the prior using the data. In this way uncertainty can be quantified using
the posterior variance or the posterior probability of a set in the parameter space.
Usually, the posterior is only expressed implicitly as an unnormalised density with
respect to the prior. For this reason sampling algorithms are used to approximate
posterior expectations by the sample average. The most famous sampling algorithms
are those of Metropolis-Hastings type which were introduced by N. Metropolis [39] and
generalised by W. K. Hastings [23]. The idea of the Metropolis-Hastings algorithm is
to add an accept-reject step to a Markov chain proposal so that the resulting Markov
chain converges to the target measure. For a recent review of Markov Chain Monte
Carlo (MCMC) algorithms we refer the reader to [8]. In this article, we consider
target measures arising from Bayesian inverse problems. In this case the underlying
mathematical models are often based on PDEs or integral operators that have to
be approximated for computations. Appropriate reviews are contained in [26] and
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[51]. The former is a key reference as the Bayesian approach is applied to real world
applications using MCMC and optimisation techniques. This reference shows that
the resulting methods can compete with state-of-the regularisation techniques in, for
example, dental X-ray imaging. Whereas this reference applies the Bayesian method
to a discretised version of the inverse problem, the survey article [26] concerns the
Bayesian approach to the full infinite dimensional problem which was originally de-
veloped in [10]. This approach was also taken independently in [32, 29]. We design
efficient proposals for Metropolis-Hastings algorithms for target measures arising from
the Bayesian approach to inverse problems.

The overall error in estimating posterior expectation using MCMC can be re-
duced by a better approximation to the underlying continuum model or by increasing
the number of samples used in the average. Under limited computing power, this
results in a trade-off between approximation and Monte-Carlo error which has quan-
titatively been investigated in [24]. This trade-off is influenced by the fact that for
many sampling algorithms the Monte-Carlo error increases with the dimension of the
state space. Thus, even if the number of samples stays fixed, a finer approximation can
lead to a worse Monte-Carlo error. For the Bayesian approach to inverse problems,
the prior, the posterior and some Metropolis-Hastings algorithms can be formulated
on appropriate function spaces. The Monte-Carlo error of these algorithms for a fixed
number of MCMC steps is only effected up to a point by the dimensionality of the
state space. This insight was first properly stated by A. M. Stuart, J. Voss and P.
Wiberg in [53]. These three authors pointed out the need for dimension indepen-
dent sampling algorithms and constructed such methods for conditioned diffusions in
the additive noise setting. This aim has been achieved by constructing well-defined
sampling algorithms for measures defined via a density with respect to Gaussian mea-
sures on function spaces. This subject has then been developed further, both for
conditioned diffusion and Bayesian inverse problems, and is surveyed in [5] and [11].
Recently, we have made this insight rigorous for the preconditioned Crank-Nicolson
sampling algorithm by considering the convergence rate of underlying Markov chains
in terms of the L2-spectral gaps [21]. In the inverse problem setting, this corresponds
to posteriors arising from priors given by a density with respect to a Gaussian mea-
sure. However, having a density with respect to a Gaussian measure is not a natural
assumption for all applications. In image processing for example, Bayesian methods
are used to recover and reconstruct images and Gaussian priors that tend to remove
or blur the edges which are supposed to be recovered. This effect is described in
detail in [7]. Recovering the sharp interfaces between different rocks is also important
for applications in geophysics. This has lead to the investigation of non-Gaussian
priors for example in [13, 22, 30, 31]. In this paper we extend the idea of dimension
independent sampling to Bayesian inverse problems with non-Gaussian priors.

In general, we assume that the target measure µ is a Borel measure on the Banach
space X. It is given by

(1.1) µ ∝ Lµ0

where µ0 is the reference Borel probability measure on X. The main result in this
article is based on the observation that the proposal kernels for function space sam-
pling algorithms in [11] are all reversible and have an L2

γ-spectral gap when applied
to the Gaussian reference measure γ. If an MCMC algorithm for a target measure µ
has an L2

µ-spectral gap, then asymptotic and non-asymptotic confidence intervals can
be derived for the Monte-Carlo error for any L2-function f in terms of the variance
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Varµ(f) and a lower bound on the L2-spectral gap. More details on this can be found
in Section 3.1. This motivates our main result which can be summarized as follows:

Theorem 1.1. Suppose that µ ∝ Lµ0, L is bounded above and away from zero
and the proposal Markov kernel Q has an L2

µ0
-spectral gap. Then the lazy versions

of the resulting Metropolis-Hastings Markov kernel have an L2
µ-spectral gaps. The

lazy version of a Markov chain follows the transition with probability 1
2 and does

not make a transition with probability 1
2 . The resulting Markov chain has a positive

spectrum and therefore a bound on the second largest eigenvalue is enough to obtain
an L2

µ0
-spectral gap. This fact is well-known in the literature and goes at least back

to [36]. Thus, our strategy for Bayesian inverse problems will be to design proposals
that are reversible with respect to the prior and that have an L2

µ0
-spectral gap. The

Metropolis-Hastings algorithm will then perform an accept-reject step according to
the likelihood in order to produce samples from the posterior. This result should be
viewed in context of our recent results in [21] demonstrating that the L2-spectral gap
of the preconditioned Crank-Nicolson (pCN) algorithm with respect to the Gaussian
reference measure is preserved for the corresponding Metropolis-Hastings kernel. In
the same article, we used the Ornstein-Uhlenbeck proposal and assumed that L in
(1.1) is log-Lipschitz. However, no global bounds on L were needed in order to prove
the preservation of the L2

µ-spectral gap. In this way the main result here can be
viewed as an extension to a much larger class of proposals and reference measures
under partially stronger assumptions.

A related result has been proved for the Gibbs sampler applied to perturbations
of Gaussian measures in [1]. However, it is not clear how it could be generalized for
arbitrary reference measure.

Our main result stated above is proved by expressing the L2
µ-spectral gap in terms

of the associated Dirichlet form in Section 3.2. The the proof is similar to that of the
comparison Theorem [16]. With this method we only obtain a bound on the upper
L2
µ-spectral gap but not the L2

µ-spectral gap (see Section 3.2). This problem can be
circumvented by considering the lazy chain.

As guiding application, we consider the posterior arising from the inverse prob-
lem of reconstructing the diffusion coefficient from noisy measurements of the pressure
in a Darcy model of groundwater flow. The underlying continuum model then cor-
responds to a linear elliptic PDE in divergence form. The Bayesian approach to
the inverse problem is taken by placing a prior based on a series expansion with
uniformly distributed coefficients. In [50], well-definedness of the Bayesian inverse
problem and a general Polynomial Chaos (gPC) method for approximating posterior
expectations are established for this inverse problem. For a full comparison of the
gPC method to MCMC algorithms, we refer the reader to [24]. In this research ar-
ticle, the Monte-Carlo error of the Metropolis-Hastings algorithms is bounded using
convergence results for Markov chains from [40]. However, these results assume the
Markov chain associated with the Metropolis-Hastings algorithm is φ-irreducible. On
function spaces, this condition seems only to be verifiable in special cases such as
the independence sampler (IS) algorithm. The IS is an MCMC algorithm making
independent proposals from one distribution. This choice of proposal leads to a poor
performance especially if the posterior is concentrated. The ergodicity properties of
the algorithm are investigated in [38]. Our main result allows us to extend bounds
on the Monte-Carlo error in [24] to a large class of locally moving algorithms. In
particular we design Reflection Random Walk Metropolis (RRWM) algorithms and
show that it has the same asymptotic complexity as the IS algorithm using the main
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result of this article. Finally, we provide numerical evidence that the RRWM and the
IS algorithms are robust with respect to an increase in dimension. Furthermore, the
simulations show that the RRWM algorithm is a substantial improvement over the IS
algorithm especially for concentrated measures.

We give a brief exposition of Bayesian inverse problems and Metropolis-Hastings
algorithms on general state spaces in Section 2. In Section 3, we introduce L2-spectral
gaps and the consequences for the sample average before we prove our main theorem.
Section 4 focuses on elliptic inverse problems. We construct the RRWM sampling
algorithm which satisfies the conditions of our main theorem for the previously intro-
duced elliptic inverse problem. In Section 5, we compare the RRWM, the standard
Random Walk Metropolis (RWM) and the IS algorithms using numerical simulations
for the posterior arising from this particular inverse problem.

2. Review of Bayesian Inverse Problems and Metropolis-Hastings Al-
gorithms. This section is devoted to giving a brief summary on the relevant material
on Bayesian inverse problems and to giving an introduction to Metropolis-Hastings
algorithms on general state spaces. For more details we refer the reader to [51, 52]
and [54, 8] respectively. The main idea of the Bayesian approach is to treat the pa-
rameters, the output of the mathematical model and the data as jointly distributed
random variables. The randomness of the parameters is introduced artificially to sub-
jectively model the uncertainty based on the a priori knowledge. The distribution of
the parameters is called the prior. In the Bayesian framework the conditional proba-
bility distribution of the parameters given the noisy data is called the posterior. It is
an update of the prior using the data and can be viewed as the solution to the inverse
problem because it describes the a posteriori uncertainty about the parameters. The
posterior is a very important tool because it can be used to

• obtain point estimates for the unknown in an inverse problem such as the
posterior mean or the MAP estimator which can be related to the Tikhonov
regularisation, see [14].

• quantify the uncertainty through the posterior variance or the posterior prob-
ability of a set in the parameter space.

We concentrate on the latter and note that both quantities can be written as pos-
terior expectations. However, the calculation of posterior expectations is difficult to
establish because the normalization constant is unknown. This is where Metropolis-
Hastings algorithms come into the play. They can be used to approximate expecta-
tions without using the normalization constant because only ratios of the densities
are needed. In order to implement a Metropolis-Hastings algorithm, the parameter
space and the forward problem have to be discretised leading to a high dimensional
state space. Therefore it is crucial that the algorithm performs well as the dimension
increases which might be due to a a finer discretisation of the underlying contin-
uum model. The performance of the algorithm can be measured by convergence of
the underlying stochastic process to equilibrium. We survey different ways how the
convergence rate is measured and provide them at the end of Section 2.2.

2.1. Bayesian Inverse Problems. In the following we consider a general in-
verse problem for which the data is generated by

y = G(a) + η ∈ Y.
Here η is the observational noise, a ∈ X is the input of the mathematical model, for
example the initial condition or coefficients for a PDE, and G is the forward operator,
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a mapping between the Hilbert spaces X and Y . In this setting the inverse problem
is concerned with the reconstruction of the input a to the model G given its noisy
output, the data y. The problem has typically to be regularised in some way because
G can be non-injective and η is unknown. Classically, this is done by choosing a as
the minimiser of a regularised least squares functional. Regularisation can also be
approached by placing a prior µ0(da) probability measure on a containing all the a
priori information. If, in addition, the forward operator G and the distributions of
η is given, then (a, y) can be treated as jointly varying random variables. Under
mild assumptions, there exists a conditional probability measure on a which is called
the posterior, an update of the prior using the data. In contrast to the minimiser
of a least squares functional, the posterior is continuous in the data with respect to
the total variation and the Hellinger distance. The posterior is also continuous with
respect to approximations of the forward model. For the precise statements of these
results we refer the reader to the surveys [51] and [52]. Due to the latter result,
it is possible to bound the difference between expectations calculated with respect
to the posterior associated with the infinite dimensional and the discretised forward
model. In Sections 2.2 and 3, we explain how the Metropolis-Hastings algorithm can
be used to approximate expectations with respect to the posterior associated with the
discretised forward model and how the resulting Monte-Carlo error can be bounded.
In order to use Metropolis-Hastings algorithm we specify the posterior more explicitly.
For finite dimensional distributions given as probability densities Bayes’ rule yields

(2.1) posterior ∝ likelihood× prior,

more details for classical Bayesian statistics can be found in [4].
We consider a generalisation of Bayes’ rule to infinite dimension. In this article,

we only consider finite dimensional data, that is Y = RN , but the results in [51]
and [52] allow the data to be infinite dimensional as well. In the case of finite data,
where the observational noise has a Lebesgue density ρ, the Bayesian framework can
be summarised as follows

Prior a ∼ µ0

Noise η with pdf ρ(η)

Likelihood y|a r.v. with pdf ρ(y − G(a))

L(a) = ρ(y − G(a))

Posterior
dµy

dµ0
(a) ∝ L(a)

(2.2)

Subsequently, we drop the y and hope that this does not cause any confusion for
the reader. The important point to note here is that the Equations (2.1) and (2.2) are
of the same form as the general target measure for the Metropolis-Hastings algorithm
as in Equation (1.1) which will be reviewed in the next section.

2.2. The Metropolis-Hastings Algorithm on General State Spaces. The
common idea of MCMC algorithms is to create a Markov chain with a prescribed
invariant measure, called the target measure. Samples of this Markov chain under
(mild) conditions satisfy a law of large numbers and can thus be used to approximate
expectations with respect to the target measure. Under stronger conditions it is
possible to control the resulting random error using a central limit theorem (CLT) or
to establish bounds on the mean square error.
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In this article, we consider the application of Metropolis-Hastings algorithms to
Bayesian inverse problems previously introduced in Section 2.1. In order to imple-
ment Metropolis-Hastings algorithms to approximate posterior expectations such as
the mean or the variance we have to discretise and approximate G. Nevertheless some
Metropolis-Hastings algorithms can be formulated on function spaces and it is con-
ceivable that those perform better as the dimension of the approximation increases
than those that cannot be formulated on function spaces. We have made this rigorous
for the preconditioned Crank-Nicolson and the standard Random Walk Metropolis
(RWM) algorithms for Gaussian prior in [21]. In the present article, we present
this problem for non-Gaussian priors. For this reason we formulate the Metropolis-
Hastings algorithm on general state spaces following [54].

The idea of the Metropolis-Hastings kernel is to add an independent accept-
reject step to a proposal Markov kernel Q(x, dy) in order to produce a Markov kernel
P (x, dy) with µ as an invariant measure, that is

µP =

∫

X

µ(dx)P (x, dy) = µ(dy).

Subsequently, we will discuss a choice of the acceptance probability such that µ is
invariant for P . Thereafter we consider the reversibility of both the proposal and
Metropolis-Hastings kernel. This property is important because it yields error bounds
on the sample average in combination with an L2-spectral gap (c.f. Section 3). We will
close this section by reviewing convergence results for Metropolis-Hastings algorithms.

The Metropolis-Hastings algorithm accepts a move from x to y proposed by the
kernel Q(x, dy) with acceptance probability α(x, y). Thus, the algorithm takes the
following form

Algorithm Initialise X0. For i=0,. . . ,n do:
Generate Y ∼ Q(Xi, ·), U ∼ U(′,∞) independently and set

Xi+1 =

{
Y if α(Xi, Y ) > U

Xi otherwise
.

The transition kernel P (x, dy) associated with the Metropolis-Hastings algorithm
can be written as

P (x, dy) = α(x, y)Q(x, dy) + δx(dy)

(
1−

∫

E

Q(x, dy)α(x, y)

)
.

If the Radon-Nikodym derivative dµ(dy)Q(y,dx)
dµ(dx)Q(x,dy) exists, then µ is invariant for P for

the choice

(2.3) α(x, y) := min

(
1,
dµ(dy)Q(y, dx)

dµ(dx)Q(x, dy)

)
.

In finite dimensions a common dominating measure is the Lebesgue measure. How-
ever, in infinite dimensions there is no equivalent of the Lebesgue measure. Further-
more, the Feldmann-Hajek theorem (c.f. [12]) implies that Q(x, dy) corresponding
to a Gaussian random walk is mutually singular for different x. Nevertheless, it is
instructive to consider the case if there is a common dominating measure λ, that is

µ ∝ Lλ and Q(x, dy) = q(x, y)λ(dy),
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then

(2.4) α(x, y) =
L(y)q(y, x)

L(y)q(x, y)
∧ 1.

Note that we can work with the unnormalised density because the acceptance prob-
ability is based on the ratio of L at x and y. In fact, µ is not only invariant for the
Metropolis-Hastings kernel P but but the kernel P is also reversible with respect to
µ (see [54]), which is defined subsequently.

Definition 2.1. A Markov kernel P is reversible with respect to a measure µ if

µ(dx)P (x, dy) = µ(dy)P (y, dx).

If the proposal Q is reversible with respect to the prior µ0, then (2.3) reduces to

(2.5) α(x, y) = min

(
1,
d L(y)µ0(dy)Q(y, dx)

d L(x)µ0(dx)Q(x, dy)

)
=
L(y)

L(x)
∧ 1.

The problem in designing (efficient) proposals on function spaces is that the
Radon-Nikodym derivative in Equation (2.3) does often not exist. This follows from
different almost sure properties of µ(dx) and

∫
Q(y, dx)dµ(y) such as quadratic varia-

tion or regularity properties. The simplest proposal which preserves these properties
is to pick ν with the same almost sure properties and use the proposal kernel

Q(x, dy) = ν(dy).

The resulting algorithm is called independence sampler (IS) because the proposal does
not depend on the current state x.

For Bayesian inverse problems it is natural to design proposals that are reversible
for the prior because this preserves the almost sure properties and leads to a simple
acceptance rule only involving the likelihood (c.f. Equation (2.5)). In particular this
is the case for the IS algorithm with ν = µ0 .

In general, Metropolis-Hastings algorithms are run in order to approximate
∫
µ(dx)f(x)

by

(2.6) Sn,n0(f) =
1

n

n0+n∑

i=n0

f(Xi)

where n0 is the burn-in corresponding to throwing away the first n0 samples in order
to reduce the bias. The resulting error takes the form.

en,n0
(f) = µ(f)− Sn,n0

(f).

The complexity of Metropolis-Hastings algorithms can be quantified as

number of necessary steps× cost of one step.

The cost of one step is usually easy to quantify and depends on the problem at
hand. The number of necessary steps depends on the prescribed error level (for
example fixed width (asymptotic) confidence interval see [25], [33] and [47] ) and the
convergence properties of the Markov chain. If Xi were i.i.d. samples, the central
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limit theorem yields that the error is of order O(n−
1
2 ). A large part of the literature

is concerned with proving that this is still the case for the correlated samples of an
algorithm or even bounding the leading constant in O(n−

1
2 ). The methods which are

used in the literature are related to different notions of convergence of the Markov
chain associated with an Metropolis-Hastings algorithm to its equilibrium. These can
broadly be classified as follows [40, 47]:

1. For a metric d on the space of measures, such as the total variation or the
Wasserstein metric, the rate of convergence to equilibrium can be charac-
terised through the decay of d(νPn, µ) where ν is the initial distribution of
the Markov chain.

2. For the Markov operator P the convergence rate is given as the operator
norm of P on a space of functions from X to R modulo constants. The most
prominent example here is the L2-spectral gap (see Section 3).

3. In the regeneration and the so-called split-chain approach the evolution of
the algorithm is split into independent pieces. In this case the CLT of the
Markov chain follows from the CLT for i.i.d random variables.

The regeneration and total variation methods have been very successful in obtaining
rates for finite dimensional problems. An excellent review of this is given in [45].
However, in that article it is assumed that the algorithm is ψ-irreducible, that is the
existence of a positive measure φ such that

φ(A) > 0⇒ P (x,A) > 0 ∀x.

This property often fails for infinite dimensional problems because the transition prob-
abilities tend to be mutually singular for different starting points (this is even the case
for a Gaussian random walk). One exception is the IS algorithm [24].

Having introduced Bayesian inverse problems and Metropolis-Hastings algorithms
on general state spaces, we are now in the position to formulate and prove the main
result of this article.

3. L2-Spectral Gaps for Metropolis-Hastings algorithms. Metropolis-Hastings
algorithms play an important role for the approximation of µ(f) by Sn,n0

(f) given
by Equation (2.6) with error en,n0(f). Therefore much theory is aimed at establish-
ing (asymptotic) bounds on the error. We will first define () L2-spectral gaps and
state the appropriate theorems form the literature that allow us to bound the error in
terms of an L2-spectral gap. Here lies the importance of our main theorem because
it establishes an L2

µ-spectral gap for a lazy versions of the Metropolis-Hastings chains
for the posterior in terms of the L2

µ0
-spectral gap of the corresponding proposal chain

for the prior.

3.1. The L2-Spectral Gap and its Implications. In order to define L2-
spectral gaps, we recall how a Markov kernel P with invariant measure µ acts on
L2
µ(X). Recall that L2

µ(X) is the set of all Borel-measurable functions on X such that

‖f‖2L2
µ

=

∫

X

f2(x)dµ(x) <∞.

The Markov kernel P acts naturally on L2
µ(X) as

Pf(x) =

∫

X

P (x, dy)f(y).
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Jensen’s inequality implies that the spectrum σ(P ) of P is contained in the unit disk.
If P is reversible such as the transition operator of the Metropolis-Hastings algorithm
then the spectrum is real valued, thus σ(P ) ⊆ [−1, 1]. Moreover P always has an
eigenvalue 1 as P1 = 1. The L2

µ-spectral gap is given by the difference between 1 and
the modulus of the second largest the largest eigenvalue (in terms of the modulus) of
Markov operator restricted to L2µ.The following definition is based on the variational
characterisation of the largest eigenvalue of the linear operator P modulo constants.
This can be represented as the difference between 1 and the spectral radius of the
operator P restricted to orthogonal complement of the space of constant functions
which we denote by L2

0(µ).
Definition 3.1. ( L2

µ-spectral gap) A Markov operator P with invariant measure
µ has an L2

µ-spectral gap 1− β if

β = sup
f∈L2

µ

‖P (f − µ(f))‖2
‖f − µ(f)‖2

= sup
f∈L2

0(µ)

‖Pf‖2
‖f‖2

< 1.

3.1.1. Characterisation of L2
µ-Spectral Gaps. For a self-adjoint operator

A : H → H the smallest and largest eigenvalue are charcterised by

(3.1) λHmin(A) = inf
f∈H

〈Af, f〉
|f |2

and λHmax(A) = sup
f∈H

〈Af, f〉
|f |2

,

respectively. We will write λ := λ
L2

0(µ)
min (P ) and Λ := λ

L2
0(µ)

min (P ). In this way the
L2
µ-spectral gap takes the form

(3.2) 1− β = min{1− λ, 1-Λ}.

This motivates the following notions.
Definition 3.2. For a Markov kernel P , we refer to the quantities 1 − λ and

1-Λ as the lower and upper L2
µ-spectral gap, respectively.

These notions are introduced because we will only be able to obtain a lower bound
for the upper L2

µ-spectral gap. In some sense, an upper L2
µ-spectral gap is sufficient as

it is possible to modify the chain resulting in an L2
µ-spectral gap of almost the same

size. The modification consists of adding an additional rejection step resulting in the
so-called lazy-chain which we review at the beginning of Section 3.2.

The upper spectral gap 1 − λL
2
0(µ)

max (P ) is given by the smallest eigenvalue λL
2
0(µ)

min
of I − P on L2

0(µ) can be characterised as

(3.3) 1− λL
2
0(µ)

max (P ) = inf
f∈L2

0(µ)

〈(I − P )f, f〉
|f |2

= inf
f∈L2(µ)

〈(I − P )Πf,Πf〉
|Πf |2

where Π : L2
0(µ)→ L2(µ) is the orthogonal projection onto L2

0(µ) given by

Πf = f − µ(f).

The denominator can be rewritten as

|Πf |2 = V arµ(f) =

∫
(f − µ(f))

2
dµ

=

∫
f2dµ− µ(f)2 =

1

2

∫
µ(dx)µ(dy) (f(x)− f(y))

2
.(3.4)
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The nominator in (3.3) can be rewritten as

〈(I − P )(f − µ(f)), f − µ(f)〉 = 〈(I − P )f, f − µ(f)〉 = 〈(I − P )f, f〉

=

∫
µ(dx)P (x, dy)

(
f(x)2 − f(x)f(y)

)
dy

=
1

2

∫
µ(dx)P (x, dy) (f(x)− f(y))

2
dy =: EPµ (f, f).

The bilinear form E(f, f) is the Dirichlet form associated with the Markov chain
given through the transition kernel P . There is a large literature on studying Markov
processes through their Dirichlet form. We refer the reader to [48] for a short survey
for time-continuous Markov processes, to [17] for generalities of the theory and to [35]
for an review for discrete Markov chains. We only need the characterisation of the
upper spectral gap

(3.5) 1− λL
2
0(µ)

max = inf
f∈L2(µ)

EPµ (f, f)

Var(f)

that we have just derived and which will be used to derive our main theorem in Section
3.2.

3.1.2. Implications of L2
µ-Spectral Gaps. The two main implications of an

L2
µ-spectral gap are a CLT for Sn,n0

(f) which implies an asymptotic bound on the
error of size O( 1√

n
) and a non-asymptotic bound on the mean square error. The latter

yields non-asymptotic confidence intervals using Chebyshev’s inequality.
In the following we present the the precise statement of the CLT due to Kipnis

and Varadhan [27]. The following version is taken from [34].
Proposition 3.3. (Kipnis-Varadhan) Consider an ergodic Markov chain with

transition operator P which is reversible with respect to a probability measure µ and
which has an L2

µ-spectral gap 1− β. For f ∈ L2 we define

σ2
f,P =

〈
1 + P

1− P f, f
〉
.

Then for X0 ∼ µ the expression
√
n(Sn − µ(f)) converges weakly to N (0, σ2

f,P ).
Moreover, the following inequality holds

σ2
f,P ≤

2µ((f2 − µ(f)2))

(1− β)
<∞.

The non-asymptotic bounds on the mean square error is due to Rudolf [47] and
take the following form

Proposition 3.4. Suppose that we have a Markov chain with Markov operator
P having an L2

µ-spectral gap 1− β. For p ∈ (2,∞] let n0(p) be defined by

(3.6) n0(p) ≥ 1

log(β−1)





p
2(p−2) log( 32p

p−2 )
∥∥∥ dνdµ − 1

∥∥∥
p
p−2

p ∈ (2, 4)

log(64)
∥∥∥ dνdµ − 1

∥∥∥
p
p−2

p ∈ [4,∞].

Then for Sn,n0
as in Equation (3.6) and f ∈ L2

µ

sup
‖f‖2≤1

E



(
µ(f))− 1

n

n0+n∑

i=n0

f(Xi)

)2

 ≤ 2

n(1− β)
+

2

n2(1− β)2
.
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If a Metropolis-Hastings algorithm has an L2
µ-spectral gap, then the two results

above can be used to derive asymptotic and non-asymptotic confidence intervals and
levels for the Monte-Carlo error en,n0

(f) = µ(f) − Sn,n0
(f). The CLT only pro-

vides asymptotic confidence intervals. In contrast, bounds on the MSE implies non-
asymptotic confidence intervals using Chebyshev’s inequality. Moreover, the size of
the confidence intervals can be shrank using the ’median trick’ which estimates Ef
through the median of multiple shorter runs leading to exponential tight bounds. This
trick was developed for MCMC algorithms in[42] and another good reference is given
by [33].

3.2. Main Result . In order to bound the L2
µ-spectral gap, we need an upper

bound on Λ and a lower bound on λ. However, due to the construction of the lazy
chain, an upper bound on Λ is enough to a obtain a L2

µ-spectral gap for the lazy chain.
For a Markov chain with transition kernel P we define the associated lazy Markov
chain as P̃ = 1

2 (I + P ). This transition can be interpreted as a two step procedure.
We are throwing a coin and

• if it comes up heads, the Markov chain makes a transition according to P .
• if it come up tails, the Markov chain does not make a transition.

. It is straightforward to see that

σ(P̃ ) ⊆ [
1 + λ

2
,

1 + Λ

2
].

Thus, P̃ has a spectral gap if Λ < 1. Its size can be optimized be choosing the
acceptance probability dependent on Λ and if a bound is available on λ instead of 1

2 .
The following theorem provides an explicit lower bound on the L2

µ-spectral gap
of the lazy version of the Metropolis-Hastings chain in terms of the L2

µ0
-spectral gap

of the proposal chain and in terms of the bounds on the density of the posterior with
respect to the prior.

The following result is close in spirit to the comparison theorem for discrete
Markov chains obtained in [16].

Theorem 3.5. Suppose that the proposal kernel Q satisfies a lower bound on the
upper L2

µ0
-spectral gap 1− λL

2
0(µ)

max (P ) > 0 and the target measure takes the form

µ =
L

Z
µ0.

Then the upper L2
µ-spectral gap satisfies

(
1− λL

2
0(µ0)

max (Q)
) L?3
L3
?

≥ 1− λL
2
0(µ)

max (P ) ≥ L4
?

L?4

(
1− λL

2
0(µ0)

max (Q)
)

where L? := inf L ≤ L ≤ supL = L?. In particular the lazy version P̃ has an L2
µ-

spectral gap 1− βlazy satisfying

1

2

(
1− λL

2
0(µ0)

max (Q)
) L?3
L3
?

≥ 1− βlazy ≥
1

2

L4
?

L?4

(
1− λL

2
0(µ0)

max (Q)
)
.

Proof. From Equation (3.4) follows that

L2
?

Z2
Varµ(f) ≤ Varµ0(f) ≤ L?2

Z2
Varµ(f).
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Similarly we notice that

EPµ (f, f) =
1

2

∫
µ0(dx)Q(x, dy)

L

Z
α(x, y) (f(x)− f(y))

2

≥ L?
Z
α?

1

2

∫
µ0(dx)Q(x, dy) (f(x)− f(y))

2

≥ L2
?

ZL?

(
1− λL

2
0(µ0)

max (Q)
)
Varµ0(f)

≥ L4
?

Z3L?

(
1− λL

2
0(µ0)

max (Q)
)
Varµ(f)

≥ L4
?

L?4

(
1− λL

2
0(µ0)

max (Q)
)
Varµ(f).

Thus we can conclude that

1− λL
2
0(µ)

max (P ) = inf
f∈L2(µ)

EPµ (f, f)

Var(f)
≥ L4

?

L?4

(
1− λL

2
0(µ0)

max (Q)
)
.

The other inequality is obtained in the following way

EQµ (f, f) =
1

2

∫
µ0(dx)Q(x, dy)

L

Z
α(x, y) (f(x)− f(y))

2

≥ L?
Z

1

2

∫
µ(dx)P (x, dy) (f(x)− f(y))

2

≥ L?
Z

(
1− λL

2
0(µ)

max (P )
)
Varµ(f)

≥ L3
?

Z3

(
1− λL

2
0(µ)

max (P )
)
Varµ0

(f).

The result for the lazy chain follows from the discussion at the beginning of this
Section.

This result highlights the insight that the reference measure is crucial for designing
efficient sampling algorithms on function spaces. A typical example would be the use
of a Markov chain that has an L2

µ0
-spectral gap where µ0 is the prior of a Bayesian

problem. If the likelihood is bounded, then the lazy version of the resulting Metropolis-
Hastings algorithm with this chain as the proposal has an L2

µ-spectral gap with µ being
the posterior. However, the result is not limited to this situation because µ0 and µ
can be arbitrary measures such that the density of µ with respect to µ0 is bounded.

Remark 1. For a fixed target measure a larger L2
µ0
-spectral gap of Q implies a

larger lower bound on the L2
µ-spectral gap of P . In particular the largest lower bound

is achieved for the IS algorithm. It is import to note that this does not imply that this
choice leads to the largest spectral gap for P . In fact, the simulations in Section 5
suggest otherwise.

Remark 2. The results obtained in [1] for the Gibbs sampler applied to a per-
turbation of a Gaussian measure suggest that the sharper inequalities

(
L?
L?

)
(1− βprop) ≤ 1− β ≤

(
L?

L?

)
(1− βprop).

might hold. This seems to be an interesting question for further investigation. More-
over, it is worth mentioning that these inequalities might also apply directly to the
chain and not only to a lazy version of it.
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4. Application to an Elliptic Inverse Problem. The theoretical result of
the previous section was motivated by studying the reconstruction of the diffusion
coefficient a given noisy observations of the pressure p. We approach this inverse
problem in the Bayesian framework by imposing a prior based on a series expansion
with uniform coefficients.

Firstly, we will set up the forward problem and review the literature on the result-
ing inverse problem focusing on the Bayesian approach. Secondly, we will describe our
prior, impose Gaussian observational noise and then show that the resulting posterior
has a bounded density with respect to this prior. The rest of the section is devoted
to constructing appropriate proposal kernels and proving a lower bound on their L2

µ0
-

spectral gap. Thus, our main theorem implies a lower bound on the L2
µ- spectral gaps

of the corresponding Metropolis-Hastings algorithms, in particular the RRWM algo-
rithms. Whereas the simulations in Section 5 suggest that the RRWM outperforms
the IS algorithm, our main result guarantees a lower bound on the spectral gap that
is of the same order. Moreover, the construction of the RRWM is important in its
own right because it constitutes an efficient sampling algorithm for elliptic inverse
problems.

4.1. The Underlying PDE and Well-Definedness of the Forward Model.
The forward problem is based on the relation between p and a modelled by the
following elliptic PDE with Dirichlet boundary conditions

{
−∇ · (a∇p) = g(x) in D
p = 0 on ∂D

(4.1)

where D is a bounded domain in Rd and p and a are scalar functions on D. We assume
that a? ≥ a(x) ≥ a? > 0 for all almost every x ∈ D. The subset of L∞(D)-functions
that satisfy this condition is denoted by

L∞+ :=
{
u ∈ L∞

∣∣∣ ess inf
D

u > 0
}
.

If, additionally, g is in the Sobolev space H−1, then the solution operator p(x; a) :
L∞+ → H1, mapping to the unique weak solution of (4.1), is well-defined (for details
we refer the reader to [52]). We suppose that the forward operator G, giving rise to
the data, is based on the solution operator as follows

(4.2) G(a) = O (p(·; a))

where O is called the observation operator. Additionally, we suppose that is is equal
to O = (l1, . . . , lN ) with li ∈ H−1.

The inverse problem associated with the above forward problem is well-known and
it is particularly relevant in oil reservoir simulations and the modelling of groundwater
flow, see for example [37]. A survey of classical least squares approaches to this inverse
problem can be found in [28] for which recently error estimates have been obtained in
[55]. A rigorous Bayesian formulation of this inverse problem with log-Gaussian priors
and Besov priors is given in [15] and [13] respectively, both are reviewed in [52]. There
is also an extensive literature in the uncertainty quantification community studying
how uncertainty propagates through the forward model. This can be investigated by
considering different realisations of the input. This approach can be combined with
the finite element [18] and Galerkin methods [2] used to approximate the underlying
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equation. For the elliptic problem under consideration, this has been studied in [9]. In
fact, it can be more efficient to use generalised Polynomial Chaos (gPC) [49] instead of
Monte Carlo methods. Recently, gPC methods also have been applied to the elliptic
inverse problem considered in this article [50, 24]. Since gPC often suffers from a large
constant and has only been developed for a few inverse problems, it is important to
construct efficient samplers tailored for the prior and likelihood at hand. Moreover,
also MCMC can be speeded up using the multi level approach. The expectation of
interest is written as difference corresponding to a finer and finer discretization such
that more MCMC samples are used for coarser discretisations [24].

4.2. Prior on an expansion of the Diffusion Coefficient . Following [24, 50]
we choose a prior on the coefficients (u1, . . . , uJ) for J ∈ N ∪ {∞} giving rise to the
diffusion coefficient

a(u)(x) = ā(x) +
∑

j∈J
γjujψj(x)(4.3)

where ‖ψi‖L∞ = 1. We suppose that ui
i.i.d.∼ U(−1, 1) which corresponds to a prior

given by

µ0
J =

J⊗

j=1

U(−1, 1.)

Additionally, the choice of γi is supposed to satisfy a? = inf ā −∑J
j=1 γj > 0 for all

choices of J . In particular {γi} have to be summable, a ∈ L∞+ µ0-a.s. and the solution
operator p is well-defined for µ0 almost every a(u).

We would like to note that similar probability measures have been studied for the
propagation of uncertainty in [9].

4.3. Bounds on the Density of the Posterior. We suppose the data is given
by

y = G(a(u)) + η

where η ∼ N (0,Γ). The well-definedness of the corresponding posterior for J ∈
N ∪ {∞} has been proven in [50] and [52]. It takes the form

dµ

dµ0
∝ exp

(
−1

2
‖y − G(a)‖2Γ

)
.

We also know that

‖G(a)‖Γ ≤ ‖Γ‖2N max
i
‖li‖H−1 sup

−1≤ai≤1
‖p(a)‖H1 ≤ C ‖Γ‖2N max

i
‖li‖H−1 a

−1
?

where a? = ess inf
D

a. Note that C depends on N (see Equation (4.2)) but can be
chosen uniformly in J . This gives rise to the following upper and lower bounds on
the likelihood

L? = 1

L? = exp

(
−2C2

∥∥Γ−1
∥∥1

2
N2
(

max
i
‖li‖H−1

)2

a−2
?

)
.
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4.4. Spectral Gaps for the Prior and the Posterior. In order to apply
our main result, we have to choose a proposal kernel Q that is reversible and has an
L2
µ0
-spectral gap with respect to µ0 = U(−1, 1)

J .
Given any kernel that has an L2

U(−1,1)-spectral gap we may apply the tensori-
sation property of L2-spectral gaps (see e.g. [3, 19]) to conclude that applying this
kernel to each component yields a kernel with the same spectral gap for U(−1, 1)

J .
Whereas we construct the one dimensional proposal distributions explicitly below,
it is worth pointing out that it is possible to obtain an appropriate one-dimensional
proposal using the Metropolis-Hastings kernel for U(−1, 1) with a one-dimensional
proposal distribution. Then the resulting Markov kernel is uniformly ergodic under
mild assumptions [45] implying an L2

U(−1,1)-spectral gap [44]. Note that the resulting
proposal on [−1, 1]J can be accepted even if some of the one-dimensional Metropolis-
Hastings algorithms have rejected their proposal.

Alternatively, a Markov kernel with L2
U(−1,1) -spectral gap can be obtained by

considering a random walk with symmetric proposal

QRW(x, dy) = q(x− y)dy

QRW(x, dy) = L(x+ ξ), where ξ ∼ q̃

and repeatedly reflecting y at the boundaries −1 and 1. The reflection can be repre-
sented according to the following function

R(x) =





y y ≤ 1

2− y 1 < y < 3

−4 + y 3 ≤ y ≤ 4

, where y = x mod 4.

We call the Metropolis-Hastings algorithm based on tensorisations of this proposal
Reflection Random Walk Metropolis (RRWM) algorithm. In this way we can write
the proposal kernel as

(4.4) QRRWM(x, dy) = L (R(x+ ξ))

where ξ ∼ q̃. Its density with respect to the Lebesgue measure takes the form

(4.5) qRRWM(x, dy) =
∑

k∈Z
q̃(x− y + 4k) + q̃(x+ y + 4k + 2).

The proposal kernelQRRWM is reversible with respect to U(−1, 1) because qRRWM(x, y) =
qRRWM(y, x). In the following we consider the RRWM with uniform random walk
(ξ ∼ U(−ε, ε)) and with standard random walk (ξ ∼ N (0, ε2)) which we call Reflec-
tion Uniform Random Walk Metropolis (RURWM) and Reflection Standard Random
Walk Metropolis (RSRWM), respectively. In contrast to the RSRWM, the proposal
of the RURWM has a density qRURWM

ε with closed form. For ε < 1 it is given by
(4.6)

qRURWM
ε (x, y) ∝





1 −1 ≤ x, y ≤ 1, |x− y| ≤ ε, y > −x− 2 + ε, y < −x+ 2− ε
2 −1 ≤ x, y ≤ 1, y ≤ −x− 2 + ε or y ≥ −x+ 2− ε
0 otherwise

.

The following result shows that the lazy versions of the RURWM have an L2-spectral
gap of order ε2.
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Theorem 4.1. There is c > 0 such that the L2
U(−1,1)-spectral gap 1 − βε of

QRURWM
ε for ε ≤ 1 satisfies

1− βε ≥ cε2.

Proof. We will first prove that for ε small enough there is an ε-independent lower
bound on the L2

µ0
-spectral gap of

(
QRURWM
ε

)n with n(ε) =
⌈

1
ε2

⌉
. This is achieved by

showing that [−1, 1] is a small set for
(
QRURWM
ε

)n. This implies uniform ergodicity
and in turn a lower bound on the L2

U(−1,1)-spectral gap of
(
QRURWM
ε

)n. A lower bound
on the L2

U(−1,1)-spectral gap of QRURWM
ε can then be obtained using the spectral

theorem. By q̃ε(x, y) = 1(x−ε,x+ε)(y) we denote the density of the unreflected random
walk. The density qRURWM

ε,n of
(
QRURWM
ε

)n is point-wise larger than q̃ε,n because each
y might have several preimages under R (c.f. Equation (4.6)). In order to show that
[−1, 1] is a small set we need to obtain a uniformly lower bound on the transition
density q̃ε,n. This is achieved using a local limit theorem from [43].

Theorem 4.2. (Theorem 13 in Section 7 of [43]) Let {Xn} be a sequence of
independent random variables having a common distribution with zero mean, non-
zero variance, and finite absolute moment E |X1|k of some integer order k ≥ 3. Let
the random variable 1

σ
√
n

∑n
j=1Xj for some n = N a bounded density pN (x). Then

pn(x) = φ(x) +
k−2∑

v=1

qν(x)

nν/2
+ o

(
1

n(k−2)/2

)
.

where φ(x) = 1√
2π

exp
(
−x2

2

)
is the density of N (0, 1).

By calculating q1 = 0 we may conclude that
Corollary 4.3. Let Un

i.i.d.∼ U(−1, 1) then the density of pn of 1√
n/3

∑n
j=1 Uj

satisfies

pn(x) = φ(x) +O(
1

n
)

We denote the probability density of ε
∑n
i=1 Ui by p̃

ε
n(x) which is related to pn

through

p̃εn(x) = pεn


 x

ε
√

1
3n


 1√

1
3nε

.

Using n(ε) =
⌈

1
ε2

⌉
and Corollary 4.3 we know that

∣∣∣∣∣∣
p̃εn(ε)(x)− φ


 x

ε
√

1
3n(ε)


 1

ε
√

1
3n(ε)

∣∣∣∣∣∣
≤ 1

ε
√

1
3n(ε)

∣∣∣∣∣∣
pn


 x

ε
√

1
3n(ε)


− φ


 x

ε
√

1
3n(ε)



∣∣∣∣∣∣

≤
√

3C
1

n(ε)
.
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Since pn is symmetric and log-concave infx∈[−2,2] p̃n(ε)(x) = p̃εn(ε)(2) the aim is to
obtain a lower bound on p̃εn(2). This achieved by noting

φ


 2

ε
√

1
3n(ε)


 1

ε
√

1
3n(ε)

≥ φ
(

2
√

3
) √3

2
=: 2l.

For all ε ≤ ε0 small enough and hence n(ε) large enough
∣∣∣∣∣∣
p̃εn(ε)(x)− φ


 x

ε
√

1
3n(ε)


 1

ε
√

1
3n(ε)

∣∣∣∣∣∣
≤ l ∀x.

Using the triangle inequality this yields a uniform lower bound on the transition kernel

q̃ε,n(x, y) ≥ p̃εn(ε)(2) ≥ φ


 2

ε
√

1
3n(ε)


 1

ε
√

1
3n(ε)

− l ≥ l ∀x, y ∈ [−1, 1].

Therefore qRURWM
ε,n also satisfies

qRURWM
ε,n (x, y) ≥ q̃ε,n(x, y) ≥ l ∀x, y ∈ [−1, 1].

Thus, the state space [−1, 1] is a small set and Theorem 8 in [45] implies that
∥∥∥
(
QRURWM
ε

)n·k
(d, dy)− U(−1, 1)

∥∥∥
TV
≤ (1− l)k.

For reversible Markov processes uniform ergodicity implies an L2
U(−1,1)-spectral gap of

the same size, see for example [47]. Hence
(
QRURWM
ε

)n has an L2
U(−1,1)-spectral gap

of size 1-β̂ = l. The L2
U(−1,1)-spectral theorem for self-adjoint operators now implies

that the L2
U(−1,1)-spectral gap of QRURWM

ε

1− βε = 1− (1− l) 1
n ≥ l

n
≥ l

2
ε2.

It is left to treat 1 ≥ ε > ε0, for those ε we choose n = n(ε0) =
⌈

1
ε20

⌉

∣∣∣∣∣∣
p̃εn(ε0) (x)− φ


 x

ε
√

1
3n(ε0)


 1

ε
√

1
3n(ε0)

∣∣∣∣∣∣
=

∣∣∣∣∣∣
pn(ε0)


 x

ε
√

1
3n(ε0)


 1

ε
√

1
3n(ε0)

− φ


 x

ε
√

1
3n(ε0)


 1

ε
√

1
3n(ε0)

∣∣∣∣∣∣
≤
√

3ε0
ε

C
1

n(ε0)

≤ ε0
ε
l.

On the other hand

φ


 2

ε
√

1
3n(ε0)


 1

ε
√

1
3n(ε0)

≥ φ
(√

32
ε0
ε

) ε0
ε

√
3

2
≥ ε0

ε
2l.
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Thus we know similar to the above that

qRURWM
ε,n (x, y) ≥ q̃ε,n(x, y) ≥ ε0

ε
l ∀x, y ∈ [−1, 1].

And therefore know that the L2
U(−1,1)-spectral gap of (QRURWM

ε )n(ε0) is bounded below
by ε0

ε l. Using the spectral theorem we know that the L2
U(−1,1)-spectral gap 1− βε of

QRURWM
ε satisfies

1− βε ≥ 1−
(

1− ε0
ε
l
) 1
n(ε) ≥ ε0

ε
l

1

n(ε)
≥ ε30

2ε
l =

ε30
ε3
l

2
ε2 ≥ ε30

l

2
ε2

In a similar manner it can also be shown that the proposal of the RSRWM has an
L2
µ0
-spectral gap of order ε. In particular, the lower bound on the transition density

of the random walk is much more straightforward.
The lower bound on the spectral gap of the resulting lazy versions of Metropolis-

Hastings algorithms follows now from our main theorem.
Corollary 4.4. Let Q be a Markov kernel that has an L2

U(−1,1)
-spectral gap

1 − βprop, J ∈ N ∪ {∞} and QJ =
⊗J

j=1Q(aj , dãj). Then the lazy version of the
Metropolis-Hastings transition kernel PJ for µJ with proposal QJ has an L2

µJ -spectral
gap 1− βJ and there is a J-independent lower bound of the form

1− β ≥ 1

2
exp

(
−8C2

∥∥Γ−1
∥∥N2

(
max
i
‖li‖H−1

)2

a−2
?

)
(1− βprop)2.

In this section, we have constructed the RRWM algorithm for the elliptic inverse
problem with prior based on a series expansion with uniformly distributed coefficients.
In the next section, we will compare this algorithm to the IS and RWM algorithms
using simulations.

5. Numerical Comparison of Different MCMC Algorithms for a par-
ticular Elliptic Inverse Problem. In this section, we apply the Random Walk
Metropolis (RWM) algorithm, the Importance Sampling (IS) and the Reflection Ran-
dom Walk Metropolis (RRWM) algorithms to the posterior arising from the elliptic
inverse problem considered in Section 4. We use the resulting simulations to illustrate
the following two aspects:

• On the one hand the acceptance probability of the standard RWM algorithm
decreases quickly as the dimension of the state space increases. On the other
hand, the relation between the step size and the acceptance probability of the
RRWM algorithm is not affected by the dimension.

• The performance of the IS algorithm is only affected up to a point by the
dimension J of the state space. However, it does not perform well for concen-
trated target measures. However, choosing an appropriate step size for the
RRWM algorithm leads to a good performance.

We first describe the implementation of the forward model, the choice of prior and
the implementation of the IS, the RWM and the RRWM algorithms. Even-though
our result only applies to the lazy version of the Metropolis-Hastings algorithm, we
believe that this is artificial and present simulations for the non-lazy versions.

The remaining part of the section is then divided into presenting the dependence
of the relationship between step size and acceptance rate on the dimension as well as
the decay of the autocorrelation.
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5.1. The Setup. We consider the elliptic inverse problem as described in Section
4 on the domainD = [0, 1]. In this case there is an explicit formula linking the pressure
p and the diffusion coefficient a which has been implemented using a trapezoidal rule.
We choose the prior as in Equation (4.3) on the coefficients ui, that is

µ0
J =

J⊗

j=0

U(−1, 1).

These coefficients give rise to the diffusion coefficient

(5.1) a(u)(x) = ā(x) +
J∑

j=0

γjujψj(x) where aj
i.i.d.∼ U(−1, 1).

For our simulations we set

ā(x) = 4.38.

ψ2j−1(x) = cos(2πjx), γ2j =
1

j2
, K ≥ j ≥ 1

ψ2j(x) = sin(2πjx), γ2j−1 =
1

j2
, K ≥ j ≥ 1

ψ0(x) = 1, γ0 = 1.

Note that the lower bound a(x) ≥ 1 is independent of J = 2K. Data corresponds to
evaluations of the pressure uniformly spaced at distance d apart

y = G(a†) + η = (p(id) + ηi)
b1/dc
i=0

where η ∼ N (0, σ2I) and a† is fixed input which is generated a draw from the prior.
Subsequently, we consider the IS, RWM, RURWM and RSRWM algorithms with

the following proposal kernels

QIS(x, dy) = µ0(dy)(5.2)

QRWM
ε (x, dy) = N (x, εId×d) (dy)(5.3)

QRURWM
ε (x, dy) = ⊗di=1L (R(x+ εξ)) , ξ ∼ U(−1, 1)(5.4)

QRSRWM
ε (x, dy) = ⊗di=1L (R(x+ εξ)) , ξ ∼ N (0, 1).(4.4)

Note that the Metropolis-Hastings acceptance ratio, as described in Section 2,
implies that the RWM algorithm simply rejects any proposal outside the unit cube.

5.2. Acceptance Probabilities for the RWM and RRWM Algorithms.
In Figure 5.1, we have plotted the acceptance probability against the step size for the
RWM, RURWM and RSRWM algorithms for different choices of K. The target for
both is the posterior arising from 33 measurements with σ = 0.05 with artificial data.

The step size parameter ε affects the performance of all three algorithm. On the
one hand large step sizes are beneficial because the algorithm can explore the state
space more quickly whereas they lead to a small acceptance ratio (see Figure 5.1).
On the other hand small step sizes lead to a high acceptance ratio but to highly
correlated samples. The IS algorithm does not have a step size parameter and its
average acceptance probability does not depend on the dimension. For this choice of
parameters it is approximately 4.4%.

Article II: Dimension-Independent MCMC Sampling for Inverse Problems with
Non-Gaussian Priors

170



20 Sebastian J. Vollmer

Figure 5.1 clearly illustrates that the acceptance probability of the RWM algo-
rithm for a fixed step size deteriorates as the dimension increases. One reason for
the decay of the acceptance probability of the RWM algorithm is that the probability
of the proposal lying outside [0, 1]d increases to 1 as d → ∞. Moreover, there is no
visible impact of the dimension on the acceptance probability for the RURWM and
RSRWM algorithms.

5.3. Autocorrelation of the IS, the RWM, the RURWM and the RSRWM
Algorithms. Even though our lower bound on the L2

µ-spectral gap is smaller for the
RRWM algorithms than for the IS algorithm (cf. Remark 1), the numerical results in
this section suggest that the RRWM algorithms outperforms the IS algorithm espe-
cially if µ is peaked. The peakedness of µ is achieved by observing p on a fine mesh
with small noise (dx = 0.03 and σ = 0.03).

The computational cost of both algorithms is nearly the same because the cost
of computing the likelihood is more expensive than generating the proposal, which
is slightly more expensive for the RRWM algorithm. Subsequently, we compare the
RWM, the IS, the RURWM and the RSRWM algorithm by plotting the autocorre-
lation. We consider K = 25 (K = 250) corresponding to an expansion with 25 sine
and 25 (250) cosine coefficients and a constant term thus giving rise to a 51 (501)
dimensional problem.

In order to compare the RWM and RRWM algorithms in a fair way we choose
the step size ε for in a way to get an acceptance rate close to 0.135. This is motivated
for the RWM algorithm by the optimal scaling results in [41]. The optimality of this
acceptance rate is indicated by proving that the properly rescaled samples converge
to a Langevin diffusion whose time scale depends on the acceptance rate of the RWM
algorithm. An acceptance rate of 0.135 corresponds to the largest time scale and thus
to a quicker convergence to equilibrium of the Langevin diffusion. For the RRWM
algorithms the acceptance rate is not affected by the choice of J . However, it is
reasonable to choose a step size with acceptance probability bounded away from one
and zero.

For the lazy version of the RRWM algorithm we know that the L2
µ-spectral gap

is bounded below and thus the asymptotic variance of the CLT (c.f. Proposition
3.3) for f ∈ L2

µ is bounded above. The asymptotic variance can be related to the
autocorrelation which is given by

ci = Cov(f(X0), f(Xi))

where Xi is the evolution of the corresponding Markov chain. It is well known that
the asymptotic variance is equal to the integrated autocorrelation [20, 40] which is
given by

σ2 = c0 + 2
∞∑

i=0

ci.

We consider the Markov chain resulting from the IS, the RWM, the RURWM and
the RSRWM algorithm on the state space [−1, 1]J+1. We denote by ui the i =
0, . . . , J projections onto the i + 1-th coordinate. In the following we consider the
autocorrelation for u0 (c.f. Equation 5.1) for the algorithms mentioned above.

Simulations for d = 0.1 and σ = 0.1 are presented in Figure 5.2 which shows that
the autocorrelation of the RURWM, the RSRWM and the IS algorithm is only affected
up to a point by the dimension of the state space. In contrast, the autocorrelation
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(a) Acceptance rate vs. step size for the RWM algorithm

(b) Acceptance rate vs. step size for the RURWM algorithm

(c) Acceptance rate vs. step size for the RSRWM algorithm

Figure 5.1: Dependence of the acceptance probability on the dimension

Article II: Dimension-Independent MCMC Sampling for Inverse Problems with
Non-Gaussian Priors

172



22 Sebastian J. Vollmer

(a) 51-dimensional state space, acceptance
rate: RWM 14.1%, IS 3.9%, RURWM 24.8%
RSRWM 27.7%

(b) 501-dimensional state space, acceptance
rate: IS 4.6%, RWM 14.4%, RURWM 26.6%,
RSRWM 28.7%

Figure 5.2: Autocorrelation arising from posterior for σ=0.1 and d = 0.1

(a) 51-dimensional state space, acceptance
rate: IS 0.0001%, RWM 25.4%, RURWM
21%,RSRWM 24.6%

(b) 501-dimensional state space, acceptance
rate: IS 0.04%, RWM 14.2%, RURWM 30%,
RSRWM 25.5%

Figure 5.3: Autocorrelation arising from posterior for σ=0.05 and d = 0.05

of the RWM decays much slower for the 501 dimensional state space as for the 51
dimensional state space. In Figure 5.3, we consider the decay of the autocorrelation
of the IS, the RWM, the RURWM and the RSRWM algorithms for more observations
and lower observational noise (d = 0.04 and σ = 0.03). This has the effect that the
measure concentrates in smaller regions of the state space making it harder to sample
from. Figure 5.3 illustrates that the RURWM and the RSRWM algorithms can be
tuned to work well for concentrated target measures such as this measure whereas the
IS algorithm, even though dimension independent, behaves poorly.

For a fixed step size the RWM algorithm deteriorates as the dimension increases
because the probability that one component steps outside [−1, 1] converges to one. If
the step size is scaled to zero appropriately the performance of the RWM algorithm
deteriorates slower but for a large enough state space even the IS algorithm outper-
forms the RWM algorithm in any case. The reason for this is that Corollary 4.4 yields
a dimension independent lower bound on the performance of the IS, RURWM and
RSRWM algorithms.

6. Conclusion and Avenues of Further Research. In this article, we have
shown that it is possible to transfer L2-spectral gaps from the proposal Markov kernel
to the lazy version of the Metropolis-Hastings Markov kernel. This yields theoretical
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bounds for a large class of proposals for non-Gaussian measures on function spaces.
Our main assumption is that the density with respect to the reference measure is
bounded above and below. This is a very restrictive condition but it is difficult to
prove any results in great generality under weaker assumptions. The assumption that
the density is bounded above and below on bounded sets seems weak enough. Both
assumptions only differ in the tails and restricting the problem to a large enough
set decreases the probability of a sampling algorithm leaving it in the duration of a
simulation to almost zero. But it is often the tail behaviour which prevents algorithms
from satisfying the desired convergence properties, see for example [46] which describes
the phenomenon for the Langevin diffusion. This effect is also described in [6], but it
is not clear what impact this behaviour has on the sample average.

Our main result justifies the use of sampling methods other than the IS algorithm
for the Bayesian elliptic inverse problem considered above. However, our bounds do
not show that locally moving algorithms, as the RURWM and RSRWM algorithms
designed in Section 4, are asymptotically better than the IS algorithm. Comparing
two sampling algorithms is difficult since it depends on the specific target. More-
over, the performance also depends on the choice of the parameters for example the
step size of the algorithms. Nonetheless, rigorously showing that the RURWM and
RSRWM algorithms outperforms the IS algorithm, even in a special case, would be
an interesting result.

Moreover, the range of the posterior density goes to infinity as the variance of the
noise goes to zero. This suggests that sampling methods perform worse and worse as
the observational noise goes to zero. Getting precise asymptotics of this behaviour
would lead to a better understanding of the performance of sampling algorithms for
Bayesian inverse problems.

As mentioned in Section 4, the proposal kernels of the RURWM and RSRWM
algorithms are based on a tensorisation of Markov kernels for the uniform distribution
on [−1, 1]. It is also interesting to consider tensorisation of Metropolis-Hastings ker-
nels for the uniform distribution on [−1, 1]. Whereas we used the explicit structure
of the prior, an interesting direction for more complicated priors is to use Metropolis-
Hastings chains or combinations, such as tensorisation. This can lead to good propos-
als for another Metropolis-Hastings chain. Note that even if some of the Metropolis-
Hastings algorithms in the tensorisation reject, the overall proposal can still be ac-
cepted. A deeper investigation of this approach can lead to a better understanding
and guidelines for the design of efficient proposals. An interesting special case are
MCMC algorithms for Bayesian inverse problems formulated on the coefficients of a
Fourier series expansion. Usually the coefficients corresponding to high frequencies
have only little impact on forward problem and hence the inverse problem. Developing
proposals that exploit this phenomenon should also be pursued.

In this article, we considered the application of Metropolis-Hastings algorithms
to the Bayesian approach to an elliptic inverse problem. A particular interesting
extension would be to consider a multi-scale diffusion coefficient because there is
interest in the fine and coarse scale properties of the permeability for example in
subsurface geophysics. Homogenization results imply that different combinations of
fine and coarse scales lead to effectively the same homogenized problem thus leading
to a lack of identifiability. This also seems to be a very interesting idea.
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Abstract. In the Bayesian approach, the a priori knowledge about the input of a

mathematical model is described via a probability measure. The joint distribution

of the unknown input and the data is then conditioned, using Bayes’ formula, giving

rise to the posterior distribution on the unknown input. In this setting we prove

posterior consistency for nonlinear inverse problems: a sequence of data is considered,

with diminishing fluctuations around a single truth and it is then of interest to show

that the resulting sequence of posterior measures arising from this sequence of data

concentrates around the truth used to generate the data. Posterior consistency justifies

the use of the Bayesian approach very much in the same way as error bounds and

convergence results for regularisation techniques do. As a guiding example, we consider

the inverse problem of reconstructing the diffusion coefficient from noisy observations

of the solution to an elliptic PDE in divergence form. This problem is approached

by splitting the forward operator into the underlying continuum model and a simpler

observation operator based on the output of the model.

In general, these splittings allow us to conclude posterior consistency provided

a deterministic stability result for the underlying inverse problem and a posterior

consistency result for the Bayesian regression problem with the push-forward prior.

Moreover, we prove posterior consistency for the Bayesian regression problem based

on the regularity, the tail behaviour and the small ball probabilities of the prior.
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1. Introduction

Many mathematical models used in science and technology contain parameters for which

a direct observation is very difficult. A good example is subsurface geophysics. The

aim in subsurface geophysics is the reconstruction of subsurface properties such as

density and permeability given measurements on the surface. Based on the laws of

physics a forward model is designed. The forward model maps the input parameters to

measurements which we will call the data. Inverting such a relationship is non-trivial

and lies in the focus of the area of inverse problems. Classically, these parameters are

estimated by minimisation of a regularised least squares functional which is based on

the data output mismatch (Tikhonov). The idea of this approach is to use optimisation

techniques aiming at parameters that produce nearly the same noiseless output as the

given noisy data while being not too irregular. However, it is difficult to quantify how the

noise in the data translates into the uncertainty of the reconstructed parameters for this

method. The reason being that the solution is a point estimate which depends among

others on the choice of the norms used. On the contrary, uncertainty quantification is

much more straightforward in the Bayesian approach. The basic idea of the Bayesian

method is that not all parameter choices are a priori equally likely. Instead, the

parameters are artificially treated as random variables by modelling their distribution

using a priori knowledge. This distribution is accordingly called the prior. For a specific

forward model and given the distribution of the observational noise, the parameters and

the data can be treated as jointly varying random variables. Under mild conditions, the

prior can then be updated by conditioning the parameters on the data.

The posterior is one of the main tools for making inference about the parameters.

Possible estimates include approximation of the posterior mean or the maximum a

posteriori (MAP) estimator. Moreover, it is possible to quantify the uncertainty of the

reconstructed parameter by posterior variance or posterior probability of a set around

for example an estimate of the parameters under consideration.

The main focus of this article lies on posterior consistency which quantifies the

quality of the resulting posterior in a thought experiment. As for any evaluation for

an approach to inverse problems, an identical twin experiment is performed, that is for

a fixed set of parameters and artificial data is generated. It is conceivable to expect

that, under appropriate conditions, the posterior concentrates around this set of ’true’

parameters. Results of this type are called posterior consistency. It justifies the Bayesian

method by establishing that this method recovers the ’true’ parameters sometimes with

a specific rate.

So far, there are only posterior consistency results available for linear forward

models and mainly Gaussian priors [30, 1, 35, 20]. In this article, we prove posterior

consistency of nonlinear inverse problems with explicit bounds on the rate. The

main idea behind our posterior consistency results is to use stability properties of the

deterministic inverse problem to reduce posterior consistency of a nonlinear inverse

problem to posterior consistency of a Bayesian non-parametric regression problem. Our
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guiding example is the inverse problem of reconstructing the the diffusion coefficient

from measurements in an elliptic boundary value problem. More precisely, we consider

an elliptic partial differential equation (PDE) with Dirichlet boundary conditions
{
−∇ · (a∇p) = f(x) in D

p = 0 on ∂D
(1)

where D is a bounded smooth domain in Rd. In the following, we will refer to p as

the pressure because Equation (1) models for instance the relationship between the

permeability an pressure. The forward problem associated with Equation (1) consists

in computing p given a and the source term f . The inverse problem is concerned

with estimating the diffusion coefficient a, given f and noisy values or functionals of p

and introduced with more detail in Section . s For this guiding example the required

stability results are due to [36]. However, our methods are generally applicable to inverse

problems with deterministic stability results. These are often available in the literature

because they are also needed for convergence results of the Tikhonov regularisation

(consider for example Theorem 10.4. in [17]). Finally, we complete our reasoning by

proving appropriate posterior consistency results for the corresponding Bayesian non-

parametric regression problem.

Structure of this Article

In Section 2, we both review preliminary material and give a detailed exposition of our

main ideas, steps and results. In Section 3, we provide novel posterior consistency results

for Bayesian non-parametric regression. In order to evaluate the rate for the regression

problem, we compare our rates to those for Gaussian priors for which optimal rates are

known. These results are needed in order to obtain posterior consistency for the elliptic

inverse problem in Section 4. We obtain explicit rates for priors based on a series

expansion with uniformly distributed coefficients. In Section 5, we draw conclusions

and mention other inverse problems to which this approach is applicable. The appendix

contains a detailed summary of relevant technical tools such as Gaussian measures and

Hilbert scales which are used in the proofs of our main results.
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2. Preliminaries and Exposition to Posterior Consistency for Nonlinear

Inverse Problems

Our crucial idea for proving posterior consistency for a nonlinear Bayesian inverse

problem is the use of stability results which allow us to break it down to posterior
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consistency of a Bayesian regression problem. Because the proofs are quite technical, it

is worth becoming familiar with the outline of our main ideas first. Therefore this section

is intended to motivate, review and summarise our investigation of posterior consistency

for a nonlinear inverse problem leaving technical details to the Sections 3 and 4. For

the convenience of the reader we also repeat the relevant material on Bayesian inverse

problems in Section 2.1 without proofs, thus making our exposition self-contained. In

Section 2.2, we precisely define posterior consistency in this setting and place it within

the literature. Subsequently, we introduce an elliptic inverse problem as guiding example

for which we apply our method using stability results from [36].

Finally, we conclude our exposition by giving a general abstract theorem of posterior

consistency for nonlinear inverse problems with stability results in Section 2.4.

2.1. Summary of the Bayesian Approach to Inverse Problems on Hilbert Spaces

The key idea of Bayesian inverse problems is to model the input a ∈ X of a mathematical

model, for example an initial condition or a coefficient of a PDE, as random variable

with distribution µ0(da) based on a priori knowledge. This distribution is called the

prior which is updated based on the observed data y. The resulting distribution µy is

called posterior and lies in the focus of the Bayesian approach.

We assume that the data is modelled as

y = G(a) + ξ (2)

with G being the forward operator, a mapping between the Hilbert spaces X and Y , and

with the observational noise ξ. The aim of the inverse problem is the reconstruction of

a given the data y. Because G might be non-injective and ξ is unknown, the problem

is not exactly solvable as stated. If the distribution of the noise ξ is known, then a and

y can be treated as jointly varying random variables. Under mild assumptions on the

prior, the distribution of the noise and the forward operator, there exists a conditional

probability measure on a, called the posterior µy. It is an update of the prior using the

data and models the a posteriori uncertainty. Therefore it can be viewed as the solution

to the inverse problem itself. In this way it is possible to obtain different explanations

of the data corresponding to different modes of the posterior.

In this article, we assume that the law of the observational noise µξ = N (0,Γ) is a

mean-zero Gaussian with covariance Γ. In this case Bayes’ rule can be generalised for

any G mapping into a finite dimensional space Y . It follows that

dµy

dµ0

(a) ∝ exp

(
−1

2
‖G(a)− y‖2

Γ

)
∝ exp

(
−1

2
‖G(a)‖2

Γ + 〈y,G(a)〉Γ − ‖y‖
2
Γ

)
(3)

∝ exp

(
−1

2
‖G(a)‖2

Γ + 〈y,G(a)〉Γ
)
.

By ‖·‖Γ we denote the norm of the Cameron-Martin space (Hµξ , 〈·, ·〉Γ) of µξ that

is the closure of Y with respect to 〈·, ·〉Γ = 〈Γ−1·, ·〉 (see Appendix A for more details).
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A proper derivation of Equation (3), including the fact that its last line is also valid for

functional data, and an appropriate introduction to Bayesian inverse problems can be

found in [40] and [41]. All in all the Bayesian approach can be summarised as

Prior a ∼ µ0

Noise ξ ∼ N (0,Γ)

Posterior dµy

dµ0
∝ exp

(
−1

2
‖G(a)‖2

Γ + 〈y,G(a)〉Γ
)
.

(4)

As one can see in this example, the posterior can usually only be expressed implicitly as

an unnormalised density with respect to the prior. Thus, in order to estimate the input

parameters or perform inference using the posterior, it has to be probed using either

• sampling methods, such as MCMC which aim at generating draws from the

posterior or

• variational methods for determining the location of an infinitesimal ball with

maximal posterior probability.

The second approach is also called the maximum a posteriori probability (MAP)

estimator. It can be viewed as an extension to many classical methods for inverse

problems. For example, it can be linked to the L2-Tikhonov regularisation by considering

a Gaussian prior and noise [11]. This relates the choice of norms in the Tikhonov

regularisation to the choice of the covariance of the prior and the noise.

These regularisation techniques can be justified by convergence results. Similarly,

inference methods based on the posterior can be justified by posterior consistency, a

concept which we introduce in the next section.

2.2. Posterior Consistency for Bayesian Inverse Problems

As for any approach to inverse problems, the Bayesian method can be evaluated by

considering an identical twin experiment. Therefore a fixed input a†, called the ’truth’,

is considered and data is generated using a sequence of forward models

yn = Gn(a†) + ξn

which might correspond to the increasing amount of data or diminishing noise. For each

n we denote the posterior corresponding to the prior µ0, the noise distribution µξn and

the forward operator Gn by µyn. Under appropriate assumptions, the posterior µyn is well-

defined for y = G(a) + ξ given by Bayes’ rule in Equation (4) for µ0-a.e. a and µξn-a.e.

ξn (c.f. [41]). This Bayes’ rule does not give rise to a well-defined measure for arbitrary

y. However, we will pose assumptions such that the normalising constant in the Bayes’

rule will be bounded above and below for every a† belonging to a particular set and

µξn-a.e. y = yn = Gn(a†) + ξn. We will denote these posteriors by µyn . This sequence of

inverse problems is called posterior consistent if the posteriors µyn concentrate around

the ’truth’ a†. We quantify the concentration by the posterior probability assigned to

the ball Bd
ε . Here Bd

ε denotes a ball of radius ε with respect to a metric d.
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In the following we define this concept precisely and place it within the literature

before closing this section by relating posterior consistency to small ball probabilities

for the prior.

Definition 1. (Analogue to [22]) A sequence of Bayesian inverse problems

(µ0,Gn,L(ξn)) is posterior consistent for a† with rate εn ↓ 0 and with respect to a metric

d if for

yn = Gn(a†) + ξn,

there exists a constant M and a sequence ln → 1 such that

Pξn
(
µyn
(
Bd
Mεn

(a†)
)
≥ ln

)
→ 1. (5)

We simply say that (µ0,Gn,L(ξn)) is posterior consistent if the above holds for any fixed

constant εn = ε > 0.

Two important special cases of this definition are

• posterior consistency in the small noise limit:

L (ξn) = L
(

1√
n
ξ

)
and Gn = G

• posterior consistency in the large data limit:

L (ξn) = ⊗ni=1L (ξ) and Gn=
∏n

i=1Gi = (G1, . . . ,Gn).

In the above formulation Gi corresponds to different measurements while L(·) denotes

the law of a random variable.

There exists a variety of results for posterior consistency and inconsistency for

statistical problems. Two important examples are the identification of a distribution

from (often i.i.d.) samples or density estimation [14, 22, 43, 28]. The former is

concerned with considering a prior distribution on a set of probability distributions

and the resulting posterior based on n samples of one of these probability distributions.

In [16], Doob proved that if a countable collection of samples almost surely allows the

identification of the generating distribution, then the posterior is consistent for almost

every probability distribution with respect to the prior. This very general result is not

completely satisfactory because it does not provide a rate and the interest may lie in

showing posterior consistency for every possible truth in a certain class. Moreover, some

surprisingly simple examples of posterior inconsistency have been provided for example

by considering distributions on N [21]. The necessary bounds for posterior consistency

(c.f. Equation (5)) can be obtained using the existence of appropriate statistical tests

which are due to bounds on entropy numbers. These methods are used in a series of

articles, for example in [22, 39, 43, 23]. This idea has also recently been applied to the

Bayesian approach to linear inverse problems in [35].

In general, posterior consistency for infinite dimensional inverse problems has

mostly been studied for linear inverse problems in the small noise limit where the prior

is either a sieve prior, a Gaussian or a wavelet expansion with uniform distributed
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coefficients [30, 1, 35, 20]. Except for [35], all these articles exploit the explicit structure

of the posterior in the conjugate Gaussian setting, that means that we have a Gaussian

prior as well as a Gaussian posterior.

In contrast, we consider general priors, general forward operators and Gaussian

noise in this article. Usually, the posterior has a density with respect to the prior as

in Equation (4). However, it is possible to provide examples where both the prior and

posterior are Gaussian but not absolutely continuous. This can be achieved using for

example Proposition 3.3 in [2].

Subsequently, we assume that the posterior has a density with respect to the prior

implying that the posterior probability of a set is zero whenever the prior probability

of this set is zero. Therefore it is necessary that a† is in the support of the prior giving

rise to the following definition.

Definition 2. The support of a measure µ in a metric space (X, d) is given by

suppd(µ) =
{
x
∣∣∣µ
(
Bd
ε (x) > 0 ∀ε > 0

)}
.

It is natural to expect that the posterior consistency rate depends on the behaviour

of µ0

(
Bd
ε (a†)

)
as ε → 0. Asymptotics of this type are called small ball probabilities.

We recommend [32] as a good survey and refer the reader to [34] for an up-to-date list

of references. In this article, we consider algebraic rates of posterior consistency, that

means we take εn = n−κ in Definition 1. In order to establish these rates of posterior

consistency, we consider small ball asymptotics of the following form

log(µ0(Bd
ε (a†)) % −ε−ρ,

where ρ > 0 and with the notation as in Appendix A.

Both posterior consistency and the contraction rate depend on properties of the

prior. This suggests that we should choose a prior with favourable posterior consistency

properties. From a dogmatic point of view the prior is only supposed to be chosen

to match the subjective a priori knowledge. In practice priors are often picked based

on their computational performance whereas some of their parameters are adapted to

represent the subjective knowledge. An example for this is the choice of the base measure

and the intensity for a Dirichlet process [28].

Finally, we would like to conclude this Section by mentioning that it has been

shown in [15] that posterior consistency is equivalent to the property that the posteriors

corresponding to two different priors merge. The yet unpublished book [23] contains

a more detailed discussion about the justification of posterior consistency studies for

dogmatic Bayesians.

2.3. An Elliptic Inverse Problem as an Application of our Theory

The aim of this section is to set up the elliptic inverse problem for which we will prove

posterior consistency (c.f. Section 2.2) both in the small noise and the large data limit.

In a second step we describe the available stability results and how they can be used to
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reduce the problem of posterior consistency of a nonlinear inverse problem to that of a

linear regression problem. We end this section by stating a special case of our posterior

consistency results in Section 4.

Our results do not only apply to this particular elliptic inverse problem but to any

nonlinear inverse problem with appropriate stability results (c.f. Section 2.4). However,

the results for the elliptic inverse problem are of particular interest because it is used in

oil reservoir simulations and the reconstruction of the groundwater flow [46, 36, 27].

The forward model corresponding to our elliptic inverse problem is based on the

relation between p and a given by the elliptic PDE in 1.

We would like to highlight that the relation between a and p is nonlinear. Under the

following assumptions, the solution operator p(x; a) to the above PDE is well-defined

[24].

Assumption 1. (Forward conditions) Suppose that

(i) D is compact, satisfies the exterior sphere condition (see [24]) and has a smooth

boundary;

(ii) a ∈ C1(D) ∩ C(D̄) and f is smooth in D̄;

(iii) a > amin > 0 and f > fmin > 0 in Equation (1).

Under these assumptions, the regularity results from [24] yield the following forward

stability result.

Proposition 2.1. If a1 and a2 satisfy Assumption 1 and are elements of Cα for α ≥ 1,

then

‖p(·; a1)− p(·; a2)‖Cα+1 ≤M ‖a1 − a2‖Cα . (6)

The inverse problem is concerned with the reconstruction of a given the data

yn = Gn(a) + ξ,

which is related to p in the following way.

Assumption 2. The forward operator G can be split into a composition of the solution

operator p and an observation operator O, that is

Gn(a) = On (p(·; a)) . (7)

The Bayesian approach to the Elliptic Inverse Problem (EIP) summarises as

Model −∇ · (a∇p(·; a)) = f(x) in D, p = 0 on ∂D

Prior µ0 on a

Data y = Gn(a) + ξn = On(p(·, a)) + ξn, ξn ∼ N (0,Γn)

Posterior dµn

dµ0
(a) ∝ exp

(
−1

2
‖Gn(a)‖2

Γn
+ 〈y,G(a)〉Γn

)
.

(EIP)

A rigorous Bayesian formulation of this inverse problem, with log-Gaussian priors and

Besov priors has been given in [12] and [10] respectively. In [38] the problem is considered

Article III: Posterior Consistency for Bayesian Inverse Problems through Stability and
Regression Results

185



Posterior Consistency for Bayesian Inverse Problems 9

with a prior based on a series expansion with uniformly distributed coefficients (see

Section 4.1.1). In the same article, a generalised Polynomial Chaos (gPC) method is

derived in order to approximate posterior expectations.

We consider posterior consistency as set up in Definition 1 in the following cases:

• the small noise limit with On = Id corresponding to a functional observation and

an additive Gaussian random field as noise such that

yn = p(·;u) +
1√
n
ξ;

• the large data limit with On = (exi)
n
i=1 where exi are evaluations at xi ∈ D. In this

case the data takes the form

yn = {p(xi; a)}ni=1 + ξn.

Posterior consistency in both cases are based on a stability result which can be

derived by taking a as the unknown in Equation (1). This leads to the following

hyperbolic PDE

−∇a · ∇p− a∆p = f. (8)

Imposing Assumption 1, it has been established that there exists a unique solution

a to this PDE without any additional boundary conditions:

Proposition 1 (Corollary 2 on page 220 in [36]). Suppose p arises as a solution to

Equation (1) with a as diffusion coefficient satisfying Assumption 1. Then Equation (8)

is uniquely solvable for any f ∈ L∞(D) and a such that

‖a‖∞ ≤ D (amin, fmin, ‖∇a‖∞) ‖p‖∞.
Moreover, if a1 and a2 satisfy these assumptions, then

‖a1 − a2‖∞ ≤M ‖a1‖C1 · ‖p(·, a1)− p(·, a2)‖C2 .

The stability result above and a change of variables (Theorem Appendix B.1)

implies

µyn(BL∞
ε (a†)) = µ̃yn(p(BL∞

ε (a†)) ≥ µ̃yn
(
BC2

ε
M

(p†)
)
.

This statement reduces posterior consistency of the EIP in L∞ to posterior consistency

of the following Bayesian Regression Problem (BRP) in C2

Prior µ̃0 = p?µ0 on p

Data y = On(p) + ξn, ξn ∼ N (0,Γn)

Posterior dµ̃yn

dµ̃0
(p) ∝ exp

(
−1

2
‖O(p)‖2

Γn
+ 〈y,O(p)〉Γn

)

with On = Id or On = (exi)
n
i=1

(BRP)

where p is now treated as the unkown, that is the prior and the posterior are now

formulated on the pressure space. Moreover, p?µ0 denotes the push forward of the prior
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under p. Note that for On = Id the BRP can also be viewed as the simplest linear

inverse problem.

The required posterior consistency results for the BRP can be derived from those

in Section 3 using interpolation inequalities. In this way we obtain posterior consistency

results in Section 4 a special case of which is the following theorem:

Theorem 2.2 (4.1). Suppose that the prior µ0 satisfies

a(x) ≥ λ > 0 ∀x ∈ D and ‖a‖Cα ≤ Λ for µ0-a.e. a and for α > 1

Let the noise be given by ξ ∼ N (0,(-∆Dirichlet)
−r). If α > r+ d

2
− 2 and α > r− 1, then

(EIP) is posterior consistent for any a† ∈ suppCαµ0 in the small noise limit with respect

to the C α̃-norm for any α̃ < α.

This approach is not limited to the EIP as the following section shows.

2.4. Posterior Consistency through Stability Results

In Section 2.3, we present our main idea, that is the reduction of the problem of posterior

consistency of the EIP to that of the BRP. The main ingredients of this reduction are

the stability result that was summarised in Proposition 1 and the posterior consistency

results for the BRP. This approach is not limited to the EIP but it is applicable to any

inverse problem for which appropriate stability results are available. This is the case for

many inverse problems such as the inverse scattering problem in [31] or the Calderon

problem in [3]. We would like to point out that these stability results are also crucial

for proving the convergence of regularisation methods (see Theorem 10.4 in [17]).

Theorem 2.3. Suppose Gn = On ◦ G with G : (X, ‖ · ‖X) → (Y, ‖ · ‖Y ) and

On : (Y, ‖ · ‖Y )→ (Z, ‖ · ‖Z). Moreover, we assume that

• there exists a stability result of the form

‖a1 − a2‖X ≤ b(‖G(a1)−G(a2)‖Y )

where b : R+ → R+is increasing and, b(0) = 0;

• the sequence of Bayesian inverse problems (G?µ0,On,L(ξn)) is posterior consistent

with respect to ‖ · ‖Y for all p† ∈ A with rate εn.

Then (µ0,Gn,L(ξn)) is posterior consistent with respect to ‖ · ‖X for all a† ∈ G−1(A)

with rate b(εn).

Proof. Using the notation of Section 2.3, we denote the posteriors for the Bayesian

inverse problems (µ0,Gn,L(ξn)) and (G?µ0,On,L(ξn)) by µyn and µ̃y, respectively. Then

a change of variables (c.f. Theorem Appendix B.1) implies

µy(BX
b(εn)(a

†)) ≥ µ̃y(BY
εn(G(a†))).
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3. Posterior Consistency for Bayesian Regression

As described in the previous section, for many inverse problems posterior consistency

can be reduced to posterior consistency of a BRP (c.f. Section 2.4) using stability results.

Thus, with the results obtained in this section we may conclude posterior consistency

for apparently harder nonlinear inverse problems. For the EIP this is achieved by an

application of the results in Theorem 3.3 and 3.7. Because the derivation of these two

results is quite technical, we first give a summary and we recommend the reader to

become familiar with both theorems but to skip the technical details on the first read.

It is classical to model the response as

yn = On(p) + ξn.

In the following we consider two Bayesian regression models with

• On = Id and the noise is a Gaussian random field that is scaled to zero like

ξn = n−
1
2 ξ or

• On = (exi)
n
i=1 and L(ξn) = ⊗ni=1N (0, σ2) corresponding to evaluations of a function

with additive i.i.d. Gaussian noise.

These models represent the large data and the small noise limit, respectively.

We prove posterior consistency for both problems under weak assumptions on the

prior. This is necessary because the BRPs resulting from nonlinear inverse problems

are usually only given in an implicit form. For both cases we are able to obtain a

rate assuming appropriate asymptotic lower bounds on the small ball probabilities of

the prior around a† (see Section 2.2). Moreover, posterior consistency with respect to

stronger norms can be obtained using prior or posterior regularity in combination with

interpolation inequalities which is the subject of Section 3.3.

For the large data limit, that is On = (exi)
n
i=1, we obtain posterior consistency

with respect to the L∞-norm in Section 3.2. We assume an almost sure upper bound

on a Hölder norm for the prior and an additional condition on the locations of the

observations. The latter is justified by construction of a counterexample.

For the small noise limit, that is On = Id, we prove posterior consistency with

respect to the Cameron-Martin norm of the noise in Section 3.1. This norm corresponds

to the ‖·‖1-norm in the Hilbert scale with respect to the covariance operator Γ. Both

the Cameron-Martin norm and Hilbert scales are introduced in Appendix A. If an

appropriate ‖·‖s-norm is µ0-a.s. bounded, we obtain an explicit rate of posterior

consistency. Otherwise, the rate is implicitly given as a low-dimensional optimisation

problem. However, the condition for mere posterior consistency takes a simple form.

Corollary 3.1. (See Corollary 3.5 for the case of general noise)
Suppose that the noise is given by ξ ∼ N (0, (−∆)−r) and µ0 (exp(f‖p‖eHs)) < ∞ for
s > r + d

2
and f > 0. Then the posterior is consistent in Hr for any a† ∈ suppHr if e

and λ =
s−r− d

2

s−r satisfy the following conditions

e > −1 +
√

8− 8λ if λ ∈
[
0, 1

2

]

e > 2− 2λ if λ ∈ 1
2 , 1.
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Remark 1. If the prior is Gaussian, then the above inequality is satisfied because e = 2

and the RHS is less than 2 for any λ ∈ (0, 1). Thus, the only remaining condition is

s > r + d
2
.

Remark 2. It is worth pointing out that for the large class of log-concave measures it

is known that e ≥ 1, for details consult [5].

In the statistics literature regression models are mainly concerned with pointwise

observations. Despite its name this is also true for functional data analysis (see [19]).

However, the regression problem associated with On = Id can be viewed as a particular

linear inverse problem. As described in the introduction, this has been studied for

Gaussian priors in [30] and [1]. Although our focus lies on establishing posterior

consistency for general priors and non-linear models, we also obtain rates which in

the special case of Gaussian priors are close to the optimal rates given in the references

above.

3.1. The Small Noise Limit for Functional Response

In the following we study posterior consistency for a Bayesian regression problem

assuming that the data takes values in the Hilbert space H. In particular we deal

with the regression model

y = a+
1√
n
ξ (9)

with y, a and ξ all being elements of H. Moreover, we suppose that the observational

noise ξ is a Gaussian random field µξ = N (0,Γ) on H and we assume that it satisfies

the following assumption.

Assumption 3. Suppose there is σ0 ≥ 0 such that Γσ is trace-class for all σ > σ0, that

is
∞∑

k=1

λ2σ
k <∞.

Imposing this assumption, it becomes possible to quantify the regularity of the

observational noise in terms of the Hilbert scale defined with respect to the covariance

operator (c.f. Appendix A). More precisely, this is possible due to Lemma Appendix

A.2. from [1].

The regression model in Equation (9) is a special case of a general inverse problem

as considered in Equation (2). Hence the corresponding posterior takes the following

form (c.f. Equation (4)).

dµy

dµ0

= Z(n, ξ) exp

(
−1

2
n ‖a‖2

1 + n 〈a, y〉1
)
. (10)

Remark 3. We note that the above formula cannot be derived by a direct application of

the Cameron-Martin formula to µ0. Instead, it follows from writing the joint distribution

as density with respect to a product measure of the prior and the noise distribution using
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the Cameron-Martin formula. Equation (10) then follows from a conditioning result, see

[41] for more details.

Assuming that the data takes values in the Hilbert space H, Equation (10) can

simply be derived by an application of the Cameron-Martin lemma in combination with

the conditioning lemma (Lemma 5.3 in [26]). We generate data for a fixed ’truth’ a†

y = a† +
1√
n
ξ. (11)

By changing the normalising constant, we may rewrite the posterior in the following

way

dµy

dµ0

= Z(n, ξ) exp
(
−n

2

∥∥a− a†
∥∥2

1
+
√
n
〈
a− a†, ξ

〉
1

)
. (12)

The normalising constant is bounded above and below for yn = Gn(a†) + ξn for

µξn-a.e. ξ. In fact, this holds under weaker assumptions than needed for our results.

Lemma 3.2. Suppose µ0 (exp (f ‖a‖es)) < ∞ for s > 1 + σ0 and e > 2σ0
s−1+σ0

. Then the

normalising constant in Equation (12) is bounded for µξn-a.s. and every a† ∈ Hs above

and away form zero.

Proof. See Appendix D.

The expression above suggests that the posterior concentrates in balls around the

truth in the Cameron-Martin norm. First, we make this fact rigorous for priors which

are a.s. uniformly bounded with respect to the ‖ · ‖s-norm. In a second step, we assume

that the prior has higher exponential moments. Considering Gaussian priors, we show

that our rate is close to the optimal rate obtained in [30].

3.1.1. Posterior Consistency for Uniformly Bounded Priors The following theorem can

be viewed as a preliminary step towards Theorem 3.4 which contains our most general

posterior consistency result for the Bayesian regression problem in the small noise limit.

While containing our main ideas, the following result also establishes an explicit rate

for posterior consistency which will be used for the EIP in Section 4.

Theorem 3.3. Suppose that the noise satisfies Assumption 3 and

‖a‖s ≤ U µ0-a.s. (13)

for s > 1 + σ0. If a† ∈ suppH1(µ0) and a† ∈ Hs, then µyn is consistent in H1.

Additionally, if the following small ball asymptotic is satisfied

log(µ0(B1
ε (a
†)) % −ε−ρ, (14)

then this holds with rate Mn−κ for any κ < min
{

1
2(2−λ)

, 1
2+ρ

}
with λ = s−1−σ0

s−1
.
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Proof. Our proof is based on the observation that posterior consistency is implied by

the existence of a sequence of subsets Sn such that µξ(Sn)→ 1 and

sup
ξ∈Sn

µyn(B1
εn−κ(a†)c)

µyn
(
B1
εn−κ(a†)

) → 0 for n→∞ (15)

where yn = a† + 1√
n
ξ. This implication holds because

µyn(B1
εn−κ(a†)) + µyn(B1

εn−κ(a†)c) = 1

and thus

sup
ξ∈Sn

µyn(B1
εn−κ(a†)c)

µyn
(
B1
εn−κ(a†)

) ≤ δ ⇒ 1

1 + δ
≤ sup

ξ∈Sn
µyn
(
B1
εn−κ(a†)

)
(16)

which together with µξ(Sn) → 1 implies posterior consistency, for details see Equation

(5).

Fix γ > 0. Then Sn = B1−σ0−γ
K′n

(0) with K ′n ↑ ∞ as n → ∞ sufficiently slow. We

notice that Lemma Appendix A.2 implies that Pξ(ξ ∈ B1−σ0−γ
K′n

(0))→ 1 as n→∞. The

remainder of the proof will be devoted to showing that Equation (15) holds. We bound〈
a− a†, ξ

〉
1

by smoothing ξ at the expense of a− a†
∣∣〈a− a†, ξ

〉
1

∣∣ ≤
∣∣∣
〈

Γ−1+
1−σ0−γ

2 (a− a†),Γσ0−1+γ
2 ξ

〉
1

∣∣∣
≤
∥∥a− a†

∥∥
1+σ0+γ

‖ξ‖1−σ0−γ

≤
∥∥a− a†

∥∥
1+σ0+γ

K ′n ∀ξ ∈ B1−σ0
K′n

(0).

Interpolating between H1 and Hs for s (c.f. Lemma Appendix A.1) yields
∣∣〈a− a†, ξ

〉
1

∣∣ ≤ K ′n
∥∥a− a†

∥∥λ
1

∥∥a− a†
∥∥1−λ
s
≤ Kn

∥∥a− a†
∥∥λ

1
(17)

with λ = s−1−σ0−γ
s−1

. An application of Equation (12) yields the following upper bound

µy(B1
ε
nκ

(a†))≥Z(n, ξ) inf
a∈B1

ε
2n
−κ

exp
(
−n‖a− a†‖2

1 −
√
n
〈
a− a†, ξ

〉
1

)
µ0

[
B1

ε
2
n−κ
(
a†
)]

≥Z(n, ξ) exp

[
−n1−2κ

[
ε‖a− a†‖1

2

]2

−Knn
1
2
−λκ
( ε

2

)λ
]
µ0

[
B1

ε
2
n−κ
(
a†
)]
.(18)

Similarly, we obtain the following upper bound

µy
(
B1
εn−κ

(
a†
))
≤ Z(n, ξ) sup

a∈B1
εn−κ (a†)

exp
(
−n‖a− a†‖2

1 +Kn

√
n
∥∥a− a†

∥∥λ
1

)
.

The expression in the exponential in Equation (12) can be rewritten as a function

f(d) = −nd2 +Knn
1
2dλ of d = ‖a− a†‖ which is decreasing on [(Knλn

− 1
2/2)

1
2−λ ,∞). If

− 1

2(2− λ)
< −κ, (19)
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then
∥∥a− a†

∥∥2

1
∈ [(Knλn

− 1
2/2)

1
2−λ ,∞) for a ∈ B1

εn−κ(a†) and n large enough leading to

µy
(
B1
εn−κ(a†)

)
≤ Z(n, ξ) exp

(
−ε2n1−2κ + n

1
2
−κλελKn

)
. (20)

We now derive sufficient conditions for n1−2κ to be the dominant term in the exponential

in the Equations (18) and (20) implying Equation (15). This is the case if, in addition

to Inequality (19),

1− 2κ >
1

2
− κλ and

log µ0

(
B1

εn−κ
2

(a†)

)
& − n1−2κ

hold. The first line is equivalent to Inequality (19) and using Inequality (14) the second

line is implied by

1− 2κ > κρ. (21)

Thus, the Inequalities (19) and (21) imply that −n1−2κ is the dominant term in the

Inequalities (18) and (20) establishing Equation (15). Letting γ → 0 concludes the

proof.

3.1.2. Extension to the Case of Unbounded Priors In the following we weaken the

assumptions of Theorem 3.3 by assuming that the prior has exponential moments of

‖·‖es. The price we pay is that the algebraic rate of convergence is implicitly given as a

low-dimensional optimisation problem.

Theorem 3.4. Suppose that the noise satisfies Assumption 3, the prior satisfies the

small ball asymptotic

log(µ0(B1
ε (a
†)) % −ε−ρ

and
∫

exp(3f ‖a‖es)dµ0(a)< ∞ for f > 0 and e > 0 for s > 1 + σ0. If the following

optimisation problem has a solution κ? > 0, then for any κ < κ? the posterior µyn is

consistent in H1 for a† in Hs with rate n−κ.

Maximize κ with respect to κ, p ≥ 1, η, θ ≥ 0 subject to

1

2
+ η

p

q
− κλp < 1− 2κ (C.3)

1

2
− η + (1− λ)qθ < 1− 2κ (C.4)

ρκ < eθ (C.6)

ρκ < 1− 2κ (C.7)

λp < 2 (C.8)(
η
p

q
− 1

2

)
1

2− λp < −κ (C.11)

(1− λ)q < e (C.13)
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(

1

2
− η
)(

1 +
1

e− (1− λ)q

)
< max(1− 2κ, θe) (C.16)

where λ := s−1+σ0
s−1

.

Proof. See Appendix C.

Remark 4. In general, e(s) might depend on s for
∫

exp(3f ‖a‖es)dµ0(a)< ∞ to hold.

Therefore the rate might be improved by optimising over different s > 1 + σ0.

Whereas the algebraic rate in Theorem 3.4 is implicit, the following corollary yields

a simple condition implying posterior consistency.

Corollary 3.5. Suppose that the noise satisfies Assumption 3, a† ∈ suppH1(µ0) and∫
exp(3f ‖a‖es)dµ0(a)<∞ for f > 0, e > 0 and s > 1 + σ0. If one of the following two

conditions holds

0 < λ ≤ 1

2
and e > −1 + 2

√
2
√

1− λ or

1

2
< λ < 1and e > 2− 2λ,

then µyn is posterior consistent for a† in Hs.

Proof. It follows from the proof of Theorem 3.4 that we only have to find η, θ ≥ 0, p ≥ 1

and s such that the Inequalities (C.3), (C.4), (C.8), (C.13) and (C.16) are satisfied.

Choosing η as large as Inequality (C.3) permits, that is η := 1
2(p−1)

− ε, extends the

range of solutions of the other inequalities ((C.4) and (C.16)) containing η. Similarly,

choosing θ as large as (C.4) permits, that is θ := 0.5+η
(1−λ)q

−ε, extends the range of solutions

of Inequality (C.16). Letting ε→ 0 in (C.16) yields

p ≥ 1

λp < 2 (C.8)

(1− λ)q < e (C.13)

(p− 2)
(

p−1
e(p−1)+(λ−1)p

+ 1
)

2(p− 1)
< max

(
1,

e

2− 2λ

)
. (22)

Now it is left to perform a case-by-case analysis. Starting from Inequality (22),

the first two cases are e
2−λ < 1 and e

2−λ ≥ 1. For these cases we have to treat

e(−1 + p) + p(−1 + λ) < 0 and e(−1 + p) + p(−1 + λ) ≥ 0 separately in order to

rearrange Equation (22) to a quadratic inequality in p. The details are tedious but

straightforward algebra.

Remark 5. We would like to point out that the Remarks 1 and 2 are also valid for this

more general Corollary 3.5.

Article III: Posterior Consistency for Bayesian Inverse Problems through Stability and
Regression Results

193



Posterior Consistency for Bayesian Inverse Problems 17

3.1.3. Comparison for the Special Case of Gaussian Priors In the special case of

a Gaussian prior with covariance operator that is jointly diagonalisable with noise

covariance, we evaluate the consistency rate in Theorem 3.4 by comparing it with the

optimal rates obtained in [30]. By numerically solving the optimisation problem in

Theorem 3.4, we indicate that our rates are close to the optimal rate.

First, we introduce the assumptions on the prior and the noise covariance and state

our result in this setting. In a second step, we reformulate the problem in the language

of [30] and present their result. We close this section by comparing both posterior

consistency rates.

We suppose that the prior is Gaussian µ0 = N (0, C0) and that the covariance

operators C0 of the prior and Γ of the noise are jointly diagonalisable over {ei} denoting

an orthonormal basis of eigenvectors. Furthermore, we assume that the eigenvalues µ2
j

and λ2
j of C0 and Γ satisfy

µj = j−t (23)

λj = j−r, (24)

where t and r, are the rates of the exponential decay for µ and λ, respectively. The

inner product of the Hilbert scale with respect to Γ can now explicitly be written as

〈x, y〉r =
∞∑

j=1

µ−2r
j xjyj, ‖x‖2

r =
∞∑

j=1

µ−2r
j x2

j .

Moreover, we remark that Assumption 3 is satisfied with σ0 = 1
2r

. The covariance

operator C̃0 of µ0 on Hs has eigenvalues µj|Hs = j−t+rs which can be seen by denoting

Saek := kaek and calculating

Eµ0 〈x, u〉Hs 〈x, v〉Hs = Eµ0
〈
x, S2sru

〉
H
〈
x, S2srv

〉
H (25)

=
〈
C0S

2sru, S2sru
〉
H =

〈
S2srC0u, v

〉
Hs .

In order to conclude that C̃0 is trace-class on Hs, we need to impose that t > rs + 1
2

.

In this case, we know from Example 2 and Proposition 3 in Section 18 of [33] that the

small balls asymptotic

log(µ0(B1
ε (a
†)) % −ε−ρ

is satisfied for µ0 with ρ = −1
t−r−1

.

For this problem we adapt Theorem 3.4 by optimising over s in the appropriate

range as described in Remark 4. Moreover, Fernique’s theorem [4] for Gaussian measures

motivates us setting e = 2 and ρ = −1
t−r−1

as discussed above.

Corollary 3.6. Let the prior and the observational noise be specified as in Equation

(23) and (24). If the following optimisation problem has a solution κ? > 0, then for any

κ < κ? the posterior µyn is consistent in H1 for a† in Hs with rate n−κ.

Maximize κ with respect to κ, p ≥ 1, η, θ ≥ 0, 1 + 1
2r
< s <

t− 1
2

r
subject to

1

2
+ η

p

q
− κλp < 1− 2κ
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1

2
− η + (1− λ)qθ < 1− 2κ

1

t− r − 1
κ < 2θ

1

t− r − 1
κ < 1− 2κ (26)

(
η
p

q
− 1

2

)
λp < − κ

λp < 2

(1− λ)q < 2(
1

2
− η
)(

1 +
1

2− (1− λ)q

)
< max(1− 2κ, θ2)

where λ := s−1−σ0
s−1

.

We now recast our problem reformulating it in the setting and notation of [30].

Letting ζ be H-valued white noise, our problem corresponds to recovering a from

y = a+
1√
n

Γ
1
2 ζ.

This problem is equivalent to

Ỹ = Ka+
1√
n
ζ (27)

where K = Γ
1
2 . Let {fn} be an orthonormal basis of eigenvectors of Γ on H. In order

to adapt the notation of [30], we write H2 := H and note that H1 will be equivalent to

the Cameron-Martin space which takes the form

H1 = SrH2
:=
{
v ∈ H2|v =

∑
vifi s.t.

∑
v2
i i

2r <∞
}

with orthonormal basis ek = fk/k
r. Moreover, let K : H1 → H2 be defined as

Kek := Γ−
1
2 ek =

λk
kr
fk.

In order to match Assumption 3.1 in [30], we have to bound the eigenvalues κi of KTK

as follows

M−1i−p ≤ κi ≤Mi−p.

We determine these eigenvalues by noting that

〈
KTfk, ej

〉
H2

= 〈fk, Kej〉H2
= δjk

λk
kr
.

The calculation above yields

KTKfk =

(
λk
kr

)2

fk

and thus

κk =

(
λk
kr

)2

� 1 = n0 ⇒ p = 0.
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As in Equation (25), we identify the covariance operator of µ0 on H1 through its

eigenvalues

λ̃k � k−2t+2r.

By Theorem 4.1 in [30] the posterior contraction rate is given by

n−
α∧β

1+2α+2p

where −1 − 2α = −2t + 2r (compare Equation (3.5) in [30]) and β is the regularity of

the truth. As above, we suppose that β ≥ α resulting in

κopt =
t− r − 1

2

2(t− r)− 1
.

In Figure 1, we use numerical optimisation to compare our rate to the optimal one for

r = 1 with varying t.

Just considering Inequality (26) (essential to our approach since this implies that

the Cameron-Martin term dominates the prior measure c.f. Equation (C.2)) yields an

explicitly solvable optimisation problem giving rise to

κbound =
t− r − 1

2(t− r)− 1
.

The term κbound is an analytic upper bound on the solution κCor to the optimisation

problem in Corollary 3.6 because the other inequality constraints in Equation (26) are

not necessarily satisfied. Thus, even if we are able to improve our bounds, there is

a genuine gap between our rate and the optimal rate in the case of Gaussian priors.

The reason for this gap is that Theorem 3.4 is applicable to any prior satisfying the

stated regularity and small ball assumptions. Nevertheless, Figure 1 indicates that the

obtained rates are quite close. In contrast, [30] is only applicable to Gaussian priors for

which the Gaussian stucture of the prior and the posterior are explicitly used.

3.2. Pointwise Observations in the Large Data Limit

We consider the following non-parametric Bayesian regression problem

yi = a(xi) + ξi i := 1, . . . , n (28)

with a : D → R, D a bounded domain and ξi
i.i.d.∼ N (0, σ2) representing i.i.d. mean-zero

Gaussian noise with standard deviation σ. We assume that a prior µ0 is supported on

C(D,R) resulting in a posterior of the form

dµyn

dµ0

∝ exp

(
−

n∑

i=1

(a(xi)− yi)2

2σ2

)
.

Subsequently, we will prove posterior consistency for this problem for the case D = [0, 1].

However, the same reasoning applies to any bounded domain D ⊆ Rd but the actual

posterior consistency rate depends on d.
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Figure 1. Posterior consistency rate for the Bayesian regression model with the

noise and prior given in Equations (23) and (24). We denote the rate obtained in

[30] and the one based on Corollary 3.6 as κopt and κCor, respectively. We also plot

κbound = t−r−1
2(t−r)−1 an upper bound on the rate that is obtainable with our method

which is based on the small ball asymptotics of the prior.

As in the previous section, we suppose that the data yi in Equation (28) is generated

for a fixed ’truth’ a†. Hence

yi = a†(xi) + ξi

dµy1:n

dµ0

∝ exp

(
−

n∑

i=1

(
a(xi)− a†(xi)

)
2 + 2

(
a(xi)− a†(xi)

)
ξi

2σ2

)
. (29)

In this setup posterior consistency depends on the properties of the prior as well as

on the sequence {xi}i∈N. In the following, we discuss appropriate assumptions on both

giving rise to Theorem 3.7. Moreover, we relate this result with its assumptions to the

literature.

Assumption 4. There exist β ∈ (0, 1] and L > 0 such that

‖a‖β ≤ L and ‖a‖∞ ≤ L µ0-a.s..

As n increases, we gain more and more information about the function a. In

particular, if {xi}i∈N is dense in [0, 1] it is even possible to reconstruct the value of a†(x)

from yi. More precisely, let x ∈ [0, 1] be arbitrary, then there are
∣∣xnj − x

∣∣ ≤ 1

j
2
β

such

that

a(x) = lim
J→∞

1

J

J∑

j=1

a(xnj).

However, we will see that this is not sufficient for posterior consistency. In fact,

we will give an example of posterior inconsistency for this case. So far, the problem of

Article III: Posterior Consistency for Bayesian Inverse Problems through Stability and
Regression Results

197



Posterior Consistency for Bayesian Inverse Problems 21

posterior consistency for this type of regression problems has mainly been investigated

for random evaluation points xi which are known as random covariates. Appropriate

results of this type can be found in [39, 44]. An exception is [6] where posterior

consistency without a rate with respect to the L1-norm for deterministic xi is shown.

The result of [6] is obtained under the following assumption.

Assumption 5. Suppose that there exists a constant K such that whenever b− a ≥ 1
Kn

for 0 < a < b < 1 there is at least one i such that xi ∈ (a, b).

The above condition guarantees that the number of observations in each interval

satisfies a lower bound proportional to its size. More precisely, an interval of size n−κ has

at least order n1−κ for n being large enough. This can be seen by chopping the interval

into intervals of size 1
Kn

. In contrast to [6], we are also able to obtain a posterior

consistency rate under this assumption. Posterior consistency without a rate can be

concluded under the following weaker Assumption.

Assumption 6. We suppose that for {xi}i∈N there exists a K > 0 such that for any

a < b ∈ [0, 1] there is an N(a, b) such that

Fn(b)− Fn(a) ≥ K(b− a) ∀n > N(a, b)

where Fn denotes the empirical distribution of {xi}ni=1.

Theorem 3.7. Suppose that the Assumptions 4 and 6 are satisfied. Then µy1:n is

posterior consistent with respect to the L∞-norm for any a† ∈ suppCβ(µ0). Moreover, if

Assumption 5 and the small ball asymptotic

log(µ0(BL∞
ε (a†)) % −ε−ρ

are satisfied, then µy1:n is posterior consistent with respect to the L∞-norm with any rate

n−κ and

κ < min

{
1

2(2 + 1
β
)
,

2β

(2β + 1)(2 + ρ)

}
.

Proof. As in Theorem 3.3, posterior consistency is implied by

sup
(ξ1,...,ξn)∈Sn

µy1:n(BL∞
εn−κ(a†)c)

µy1:n
(
BL∞
εn−κ(a†)

) → 0 for n→∞

for increasing sets Sn such that µξ((ξ1, . . . , ξn) ∈ Sn) → 1. For notational convenience

we write h := a−a†, S :=
√∑n

i=1 h(xi)2 and we denote by η a generic N (0, σ2) random

variable. This allows us to rewrite the posterior in Equation (29) as

dµy1:n

dµ0

∝ Z(n, η) exp

(
− 1

2σ2
(S2 + 2Sη)

)
. (30)

Since y1:n is finite dimensional, it is easy to see that Z(n, η) is bounded from above and

below. Again, fixing γ > 0, we only need to consider η ∈ Bnγ (0). Thus, for 0 < lε < 1

we have a lower bound on

µy1:n
(
BL∞
ε

(
a†
))
≥ Z(n, η) exp

(
−nl

2
ε ε

2

2σ2
− lεεn

1
2nγ

σ2

)
µ0

(
BL∞
lεε

(
a†
))
.
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In order to derive an upper bound on µy1:n(BL∞
ε (a†)c), let a ∈ BL∞

ε (a†)c be chosen

arbitrarily and notice that f(S) = −S2 + Snγ is decreasing for S > nγ. The upper

bound on µy1:n(BL∞
ε (a†)c) therefore boils down to a lower bound on S that is larger

than nγ. In fact, there is x̂ such that
∣∣a†(x̂)− a(x̂)

∣∣ ≥ ε. Applying Hölder continuity to

a ∈ BL∞
ε (a†)c yields

∣∣a†(x)− a(x)
∣∣ ≥ ε/2 for x ∈ (x̂−∆x, x̂+ ∆x]

for ∆x =
(
ε

4L

) 1
β . Let I be the following index set

I = {i|xi ∈ (x̂−∆x, x̂+ ∆x]} .
For n larger than Nε = max {N(i∆x, (i+ 1)∆x)|i = 0 . . . b1/∆xc − 1} it follows that

K
1

2
∆x ≤ Fn (x̂+ ∆x)− Fn (x̂−∆x) =

|I|
n
.

If we only consider xi with i ∈ I, we obtain that

S ≥
√
ε2

4
nK

∆x

2

which gives rise to the following upper bound

µy1:n
(
BL∞
ε

(
a†
)
c
)
≤ Z(n, ξ) exp

[
−nε

2K∆x

8σ2
+

(
K

2
∆x

)
1
2
ε

4σ2
n

1
2

+γ

]
. (31)

By choosing lε small enough, we also know that

µy1:n
(
BL∞
ε (a†)c

)

µy1:n (BL∞
ε (a†))

→ 0 as n→∞.

In order to obtain a rate of posterior consistency, we use κ̃ > κ and hence

µyn
(
BL∞
n−κ
(
a†
))
≥ µyn

(
BL∞
n−κ̃
(
a†
))
≥ Z(n, ξ) exp

[
− 1

2σ2
n1−2κ̃ − 1

2σ2
n

1−κ̃
2

+γ − cnκ̃ρ
]
.(32)

Thus, Equation (31) implies that

µy1:n
(
BL∞
n−κ
(
a†
)
c
)
≤ Z(n, ξ) exp

(
− K

8σ2(4L)
1
β

n1−(2+ 1
β

)κ +
K

1
2n

1
2
−κ(1+ 1

2β
)

2σ2
√

2(4L)
1
β

)
. (33)

The first term in the exponential in Equation (32) is dominant over the corresponding

term in Equation (33) by choosing

κ̃ := κ(1 +
1

2β
) + γ.

Moreover, the first term in the Equations (32) and (33) is dominant over the other terms

respectively if

1− 2κ̃ > κ̃ρ

1− 2κ̃ >
1− κ̃

2
+ γ

1−
(

2 +
1

β

)
κ >

1

2
− κ

(
1 +

1

2β

)
.
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These three inequalities are respectively implied by

1− ργ − 2γ(
1 + 1

2β

)
(2 + ρ)

> κ

2− 10γ

6
(

1 + 1
2β

) > κ

1

2 + 1
β

> κ.

Choosing γ small enough, we see that µyn is consistent in L∞ with any rate

κ < min





1

3(1 + 1
2β

)
,

1(
1 + 1

2β

)
(2 + ρ)



 .

The assumptions in the theorem above can be justified because a slight violation

leads to the example of posterior inconsistency in the next section.

3.2.1. Example of Posterior Inconsistency In this section, we construct a

counterexample to illustrate that despite the strong Assumption 4 it is not sufficient for

{xi}ni=1 to be dense in order to establish posterior consistency. Given such a sequence

it is always possible to extract a subsequence satisfying Assumption 6. Even though all

the other observations can be viewed as additional, we will choose a prior so that the

posterior sequence is not consistent.

In the following, we choose the prior concentrated on functions g which are

continuous, satisfy g(1
2
) = 0 and are linear on [0, 1

2
] and [1

2
, 1]. By identifying g(0) and

g(1) with the first and second component respectively the following two-dimensional

example can be extended to the setting of Equation (28). This extension is an example

of posterior inconsistency with respect to the Lp-norm for 1 ≤ p ≤ ∞ because any of

these norms is equivalent to ‖(g(0), g(1))‖ for an arbitrary norm on R2.

Example 1. We consider the following prior on R2

µ0 = M
∞∑

k=1

δ( 1√
k
,0
) exp

(
−2k2

)
+ δ( 1

2
√
k
,1
) exp

(
−k2

)

and we choose a† = (0, 0) as ’truth’. The data consists of n and nθ with 0 < θ < 1 being

measurements of the form

yi = a†1 + ξi and ỹi = a†2 + ξ̃i with ξi, ξ̃i
i.i.d.∼ N (0, 1),

respectively. Consequently, the posterior takes the form

µ(y1:n,ỹ1:nθ ) ∝ µ0(da1, da2) exp


−1

2

n∑

j=1

(a1 − ξj) 2 − 1

2

nθ∑

j=1

(
a2 − ξ̃j

)
2


 .
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Here, posterior consistency of µ(y1:n,ỹ1:nθ ) is equivalent to the statement that for any K

there is ln ↑ 1 such that

Pη

(
µ(y1:n,ỹ1:nθ )

( ∞⋃

k=K

(
1√
k
, 0)

)
≥ ln

)
→ 1 for n→∞.

We will not only show that µ(y1:n,ỹ1:nθ ) is posterior inconsistent but also that there is

ln ↓ 0 such that for A =
⋃∞
k=1( 1

k
, 0)

Pη
(
µ(y1:n,ỹ1:nθ ) (A) ≤ ln

)
→ 1 for n→∞.

Because of µ(y1:n,ỹ1:nθ )(A) + µ(y1:n,ỹ1:nθ )(Ac) = 1, we may proceed as in the proofs of the

Theorems 3.3 and 3.7 and thus it is enough to construct sets of increasing Pξ-probability

such that on these sets

µ(y1:n,ỹ1:nθ )(A)

µ(y1:n,ỹ1:nθ )(Ac)
=

∑
k exp

(
−1

2

∑n
j=1

(
1√
k
− ξj

)
2 − 1

2

∑nθ

j=1 ξ̃
2 − 2k2

)

∑
k exp

(
−1

2

∑n
j=1

(
1

2
√
k
− ξj

)
2 − 1

2

∑nθ

j=1

(
ξ̃j − 1

)
2 − k2

)

=

∑
k exp

(
−1

2

∑n
j=1

1
k
− 2

k
ξj − 2k2

)

∑
k exp

(
−1

2

∑n
j=1

1
4k
− 1√

k
ξj − 1

2

∑nθ

j=1 1− 2ξ̃k − k2
) → 0.

The Pξ-probabilities of |∑n
j=1 ξj| > Mn

1
2

+γ and |∑nθ

j=1 ξ̃j| > Mn
1
2

+γ are exponentially

small in n. Thus, it is enough to consider
∑

k exp
(
−1

2
n 1
k
− 2k2

)
∑

k exp
(
−1

2
n 1

4k
− k2

) =

∑√n
k exp

(
−1

2
n 1
k
− 2k2

)
+
∑∞√

n exp
(
−1

2
n 1
k
− 2k2

)
∑√n

k exp
(
−1

2
n 1

4k
− k2

)
+
∑∞√

n exp
(
−1

2
n 1

4k
− k2

)

≤ max

{
exp

(
−3

4

√
n

)
, exp(−n)

}
→ 0 as n→∞.

Hence we have shown that µyn is not posterior consistent.

This example relies on the prior having strong correlations between its two

components. Therefore it seems an interesting question how the assumptions on µ0

can be strengthened in order to relax those on {xi} .

3.3. Convergence in Stronger Norms

We conclude this section by showing that interpolation inequalities can be used in order

to strengthen the norm in which the posterior concentrates. In particular we consider

the small noise limit as described in Section 3.1.

Suppose we know that the posterior concentrates around the truth a† in the

Cameron-Martin norm ‖·‖1. In order to show consistency in ‖·‖r, we write
{∥∥a− a†

∥∥
r
> ε
}
⊂
{∥∥a− a†

∥∥λ
1

∥∥a− a†
∥∥1−λ
s

> ε
}

⊂
{∥∥a− a†

∥∥λ
1
>

ε

K

}
∪
{∥∥a− a†

∥∥1−λ
s

> K
}
.
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The posterior probability of the first set is small due to the posterior consistency in

H1. The posterior probability of the second set is small due to the tails of the prior

and the posterior. Obtaining estimates of this type can be done similarly to the steps

subsequent to Equation (C.12) in the proof of Theorem 3.4. Using this technique, it is

also possible to apply the results of this section to the EIP in the next section. A similar

technique based on interpolation inequalities between Hlder spaces applies to the large

data limit and is also used for the EIP.

4. Posterior Consistency for an Elliptic Inverse Problem

In Section 2.3, we introduced the idea of reducing posterior consistency of the EIP to

that of the BRP. For this example we demonstrate our method for both the small noise

and the large data limit. We start by giving the proof for the small noise limit in detail

before sketching the same steps for the large data limit. We emphasise the case of

posterior consistency in the small noise limit because of its analogy with convergence

results for regularisation methods.

4.1. Posterior Consistency in the Small Noise Limit

Using Theorem 3.3 from Section 3 to conclude posterior consistency of the EIP (c.f.

Section 2.3) is not entirely straightforward because we have to lift the posterior

consistency for the BRP to C2. Moreover, we have to find appropriate assumptions on

the prior µ0 so that the push forward prior p?µ0 satisfies the assumptions of the Theorem

3.3. Again, a rate of posterior consistency is obtained if the prior satisfies appropriate

small ball asymptotics. In a second step we verify those for the so-called uniform priors

which are based on a series expansion with uniformly distributed coefficients, for details

see below or consider [38, 29, 41].

In order to formulate assumptions on µ0 implying that p?µ0 satisfies the assumptions

of Theorem 3.3, we assume for simplicity that ξ ∼ N (0, (−∆Dirichlet)
−r) where ∆Dirichlet

denotes the Laplacian with homogeneous Dirichlet conditions. In this case the abstract

Hilbert scale Hs (c.f. Appendix A) corresponds to the standard Sobolev space

Hrs. Thus, the almost sure bounds in Theorem 3.3 are implied by the appropriate

assumptions on the prior and classical results from [18, 24].

Moreover, the choice ξ ∼ N (0, (−∆Dirichlet)
−r) also implies that Assumption 3 holds

for σ0 = d
2r

. This is due to the fact that the operator (−∆Dirichlet)
−r has eigenvalues λ2

k

with λk � k−2r/d (see Section Appendix A for notation) where d denotes the dimension

of the domain D. These results are called Weyl asymptotics and further details can be

found in [45] and [37].

The following theorem summarises the consequences for the posterior consistency

of the EIP.

Theorem 4.1. Suppose that the noise is given by ξ ∼ N (0, (−∆Dirichlet)
−r) and that the
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prior µ0 satisfies

a(x) ≥ λ > 0∀x ∈ D and ‖a‖Cα ≤ Λ for µ0-a.e. a and for α > 1.

If α > r+ d
2
− 2, β+ 1 > r and a† ∈ suppCβµ0, then the EIP is posterior consistent with

respect to the C α̃-norm for any α̃ < α. Additionally, if

log(µ0(BCβ

ε (a†)) % −ε−ρ

then the EIP is posterior consistent with respect to the L∞-norm with rate n−κ for any

κ such that

κ <

(
α

α + 2 + d
2
− r ∧ 1

)(
1

2 + ρ
∧ α

2
(
α + 1 + d

2r

)
)
.

Before proving Theorem 4.1, we notice that forward stability results (as Proposition

2.1) can be used to transfer small ball asymptotics from µ0 to µ̃0 = p?µ0.

Lemma 4.2. If the prior satisfies the small ball asymptotic

log
(
µ0(BCβ

ε (a†)
)
% −ε−ρ,

then

log
(
µ̃0(BCβ+1

ε (p†)
)
% −ε−ρ.

Proof. Proposition 2.1 implies that
∥∥a− a†

∥∥
Cβ

≤ ε⇒
∥∥p− p†

∥∥
Cβ
≤Mε

and p
(
BCβ

ε

(
a†
))
⊆ BCβ+1

Cε

(
p†
)
.

Hence the statement follows.

Having established Lemma 4.2, we are now in the position to prove the main

theorem of this section.

Proof of Theorem 4.1. Subsequently, M will denote a generic constant in different

contexts that may change form line to line. We will first prove posterior consistency in

L∞ before we use an interpolation inequality to bootstrap it to C α̃. In order to prove

posterior consistency in the L∞-norm, it is enough to show posterior consistency of the

BRP in the C2-norm because

µyn(BL∞
ε (a†)) = µ̃yn(p(BL∞

ε (a†)) ≥ µ̃yn
(
BC2

ε
M

(p†)
)

(34)

which follows by an application of Proposition 1 and a change of variables (see Theorem

Appendix B.1). Using Theorem 6.19 from [24], we may conclude that

‖p‖Hα+2 . ‖p‖Cα+2 ≤ K µ̃0-a.s..

Since α + 2 > r, p is µ̃0-a.s. an element of the Cameron-Martin space of µξ as it

corresponds to Hr. Posterior consistency of the BRP with respect to the Hr-norm is

now implied by Theorem 3.3. Its conditions are satisfied because

‖p‖Hs ≤MΛ µ̃0-a.s.
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with

s =
α + 2

r
> 1 +

d

2r
= 1 + σ0.

Furthermore, Proposition 2.1 and the fact that a† ∈ suppCβµ0 imply that p(a†) ∈
suppHr µ̃0 . In order to bootstrap to posterior consistency in the C2-norm, we use a

generalisation of the Sobolev embedding theorem for Besov spaces and an interpolation

inequality between Besov spaces on domains (for details consult [42]). We first note

that Bτ
22 = Hτ and Cτ = Bτ

∞∞ for τ /∈ Z. In particular Theorem 4.33 in [42] implies

that

‖g‖
B
r− d2−γ∞∞

≤M‖g‖Hr

for γ > 0 being small. If r > d
2
+2, we can conclude posterior consistency in the C2-norm

because

BC2
ε
M

(p†) ⊇
{
p|‖p− p†‖

B
r− d2−γ∞∞

≤ ε

M

}
⊇
{
p|‖p− p†‖Hr ≤

ε

M

}
(35)

holds for γ small enough. Otherwise, we use the interpolation inequality between Besov

spaces subject of Theorem 4.17 in [42]

‖g‖C2+γ ≤ ‖g‖θ
B
r− d2−γ∞∞

‖g‖1−θ
Bα+2
∞∞

(36)

for γ small enough and with θ = α
α+2+ d

2
−r+γ . Similar to Equation (35), it follows that

BC2
ε
M

(p†) ⊇
{
p|‖p− p†‖θ

B
r− d2−γ∞∞

≤ ε

KM

}
⊇
{
p|‖p− p†‖Hr ≤

εθ
−1

M

}
.

The Equations (35) and (37) allow us to bootstrap the posterior consistency of µ̃yn

to C2. Equation (34) implies posterior consistency of µyn in the L∞-norm. Similarly,

we bootstrap to posterior consistency in C α̃ for α̃ < α using the same interpolation

technique as above.

In order to obtain a rate for posterior consistency, we first note that

log(µ0(BCβ

ε (a†)) % −ε−ρ implies

log(µ̃0(Br
ε (a
†)) % −ε−ρ

due to Lemma 4.2. Now Theorem 3.3 implies posterior consistency of the sequence of

posteriors µ̃yn in Hr with any rate κ such that

κ <
1

2 + ρ
∧ α + 1

2
(
α + 1 + d

2r

) .

Using the interpolation inequality as above gives rise to posterior consistency forµ̃yn in

C2+α with rate n−κ for any κ such that

κ <

(
α

α + 2 + d
2
− r ∧ 1

)(
1

2 + ρ
∧ α

2
(
α + 1 + d

2r

)
)
.

As above, this implies the same rate of posterior consistency for µyn in L∞.
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4.1.1. Uniform Prior In this section, we establish a rate of posterior consistency for the

EIP with the so-called uniform prior introduced in [41, 29, 38]. This choice of the prior

was motivated by the preceding analysis in the uncertainty quantification literature, see

for instance [7, 8]. It is given by

µ0 = L
(
a0(x) +

∞∑

i=1

γiziψi(x)

)
zi

i.i.d.∼ U [−1, 1] (37)

where L denotes the law of a random variable. Moreover, we suppose that ‖ψi(x)‖Cβ =

1, γi > 0 and S =
∑∞

i=1 γi <∞ such that

0 < amin ≤ a ≤ amax µ0-a.s..

In order to obtain a rate for the EIP with this prior, we derive a small ball asymptotic

under an appropriate assumption on the decay of {γi}.
Assumption 7. There exists ν? ∈ (0, 1) such that for all ν > ν?

Sν =

( ∞∑

i=1

γνi

) 1
ν

<∞.

Since the series in Equation (37) is absolutely convergent, we assume without loss

of generality that γi is decreasing. This allows us to use the following classical inequality

from approximation theory [13]
(∑

n>N

γn

)
≤ N1− 1

νSν . (38)

Lemma 4.3. Suppose that µ0 is given as in Equation (37), Assumption 7 is satisfied

with ν? and

a† =
∞∑

i=1

γiz
†
iψi(x) where z†i ∈ [−1, 1].

Then for any ν > ν?

log µ0(BCβ

ε (a†)) & −ε−
1

1
ν−1 .

Proof. We obtain an asymptotic lower bound on the small ball probability by choosing

an appropriate subset Dε(a
†) of BCβ

ε (a†). We denote a generic element of this set by

a =
∞∑

i=1

γiziψi(x).

Choosing Nε such that
∑∞

i=Nε
γi ≤ ε

2
, the corresponding terms contribute at most ε

2
to

the difference
∥∥a† − a

∥∥. The subset Dε(a
†) prescribes intervals for zi i = 1 . . . Nε such
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that this contribution is at most ε
2
, too. More precisely, let ν? < ν̃ < ν, then Equation

(38) implies
∑

n>Nε

γn ≤ N
1− 1

ν
ε Sν̃ ≤

ε

2

for Nε ≥
(

2Sν̃
ε

) 1
1
ν−1 . Let the subset Dε(a

†) ⊆ BCβ

ε (a†) be given by
{
a|
(
z†i > 0 ∧ z†i −

ε

2S
≤ zi ≤ z†i

)
∨
(
z†i ≤ 0 ∧ z†i +

ε

2S
≥ zi ≥ z†i

)
1 ≤ i ≤ Nε

}
.

Then

µ0

(
BCβ

ε (a†)
)

≥
( ε

2S

)Nε

log µ0

(
BCβ

ε (a†)
)

& Nε log ε & −ε− 1
ν−1 .

Combining Lemma 4.3 and Theorem 4.1 results in the following theorem which

characertises posterior consistency for this class of priors.

Theorem 4.4. Let the prior µ0 be defined as in Equation (37) and let Assumption

7 be satisfied. Additionally, we assume that α ≥ β ≥ r + 1, α > r + d
2
− 2 and

‖a‖α ≤ K µ0 − a.s.. Then the posterior µyn is consistent for any

a† =
∞∑

i=1

γiz
†
iψi(x) where z†i ∈ [−1, 1]

with respect to the L∞-norm with rate εn = M(κ)n−κ for any κ such that

κ <

(
α

α + 2 + d
2
− r ∧ 1

)(
1− ν
2− ν ∧

α− r + 2

2α + d− 2r + 4

)
.

4.2. Posterior Consistency in the Large Data Limit

In the following we show that the results for the BRP can be transferred to posterior

consistency results in the large data limit for the EIP. We consider only the case

d = 1 with D = [0, 1] as the general case is similar. Furthermore, assuming that

the observations are of the form

yi = p(xi; a) + ξ i = 1 . . . n,

the sequence of posteriors is given by

dµyn

dµ0

(a) ∝ exp

(
−

n∑

i=1

(p(a)(xi)− yi)2

2σ2

)
.

Posterior consistency of the EIP in L∞ can then be derived on the basis of Theorem

3.7.
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Theorem 4.5. Suppose that the sequence {xi} satisfies Assumption 6, ‖a‖Cγ ≤ L µ0-

a.s. with γ > 1 and a ≥ amin µ0-a.s.. If a† ∈ suppCγµ0, then the EIP is posterior

consistent in the large data limit with respect to C γ̃ for any γ̃ < γ.

Proof. An application of Theorem 6.13 in [24] yields the existence of M(D, γ) so that

for all a satisfying

‖a‖Cγ ≤ S and a ≥ amin

there is a unique solution p such that ‖p‖C2+γ ≤ M . Thus, µ̃0 = p?µ0 satisfies the

assumptions of Theorem 3.7 implying that µ̃y1:n is posterior consistent in L∞. Using the

interpolation inequality between L∞ and C2+γ, we also obtain consistency in C2. As

in Theorem 4.1, Proposition 1 can be used in order to conclude posterior consistency

of µy1:n in L∞. We can bootstrap from L∞(D) to C γ̃ by interpolating between L∞ and

Cγ.

5. Concluding Remarks

In this article, we have established a novel link between stability results for an inverse

problem and posterior consistency for the Bayesian approach to it. We have explicitly

shown this link for an elliptic inverse problem (c.f. EIP) but the same method is also

applicable for the general case. An instance is electrical impedance tomography (Caldern

problem) for which stability results are available [3]. This example would lead to a very

slow posterior consistency rate since its stability results are weak. Essentially, we would

have to redo all the calculations on a log-scale instead of an algebraic scale.

So far, we need exponential moments of the prior for the Bayesian regression of

functional response and for pointwise observations (see also Section 4.2.2 in [6]). For

this reason it is harder to prove posterior consistency for example for log-Gaussian priors.

Log-Gaussian measures have moments of arbitrary order but no exponential moments.

This is a problem that we would like to pursue further in the future.

Appendix A. Notation and Review of Technical Tools

Appendix A.1. Asymptotic Inequalities

We use the following notation for asymptotic inequalities:

Let an and bn be sequences in R. We denote by R an . bn that there are N ∈ N and

M ∈ R such that an ≤Mbn for n ≥ N. Moreover, if an . bn . an, we write an � bn.

Appendix A.1.1. Hilbert Scales In order to measure the smoothness of the noise and

samples of the prior, we introduce Hilbert scales following [17]. Let Γ be a self-adjoint,

positive-definite, trace-class linear operator with eigensystem (λ2
k, φk). We know that

Γ−1 is a densely defined, unbounded, symmetric and positive-definite operator because

H = R(Γ)⊕Ker(Γ)⊥ = R(Γ).
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We define the Hilbert scale by ((Ht, 〈·, ·〉t)) t∈R with Ht :=M‖·‖t for

M :=
∞⋂

n=0

D(Γ−n)

〈u, v〉t :=
〈

Γ−
t
2u,Γ−

t
2v
〉

‖u‖t :=
∥∥∥Γ−

t
2u
∥∥∥ .

We will denote balls with respect to the ‖·‖t-norm by

Bt
R(u) = {x| ‖u− x‖t ≤ R} .

Moreover, these collection of norms satisfies an interpolation inequality

Proposition Appendix A.1. (Proposition 8.19 in [17]) Let q < r < s then the

following interpolation inequality holds

‖x‖r ≤ ‖x‖
s−r
s−q
q ‖x‖

r−q
s−q
s .

Remark. Our definition here is slightly different from the literature in order to match

it to the Sobolev spaces for Γ = (−∆Dirichlet)
−1

Appendix A.2. Gaussian Measures

In this section, we set out our notation for some standard results about infinite

dimensional Gaussian measures which can be found in the following textbooks and

lecture notes [4, 9, 25]. Let γ be a Gaussian measure on a Hilbert space (H, 〈·, ·〉). It is

characterised by its mean given by the Bochner integral

m =

∫

H

x dγ(x)

and the covariance operator Γ : H → H characterised by the relation

〈Cu, v〉 =

∫
〈u−m,x〉 〈v −m,x〉 dγ(x).

From this it is clear that the covariance operator is positive-definite and self-adjoint.

Moreover, we note that Γ is necessarily trace-class and the Gaussian can be expressed

through eigenvalues λ2
k and the corresponding eigenbasis φk

γ = L
(
m+

∞∑

i=1

λkφkξk

)
with ξk

i.i.d∼ N (0, 1).

The Cameron-Martin space associated with γ is

Hγ =

{
x|x =

∑
xiφi s.t.

∑ 1

λ2
i

x2
i <∞

}
⊂ H

equipped with the inner product

〈x, y〉γ =
∑ 1

λ2
i

xiyi
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where x =
∑
xiφi and y =

∑
yiφi.This space characterises the support as well as the

direction such that

Th?γ � γ

where Th is the translation operator Th(x) = x+ h.

We also consider the Hilbert scale (Hs, ‖ · ‖s) generated by γ and the regularity of

a draw ζ ∼ γ can be expressed as follows.

Lemma Appendix A.2. ([1]) Imposing Assumption 3 the following statements hold:

(i) Let ζ be a white noise, then E‖Γσ
2 ζ‖ <∞ for all σ > σ0.

(ii) Let u ∼ µ0, then u ∈ H1−σ µ0-a.s. for every σ > σ0.

Appendix B. Change of Variables for the Posterior

The state of a model can be described in several ways. In this section, we present the

resulting relationship between two different descriptions of the same model.

Theorem Appendix B.1. Suppose Gn = On ◦ G with G : (X, ‖ · ‖X) → (Y, ‖ · ‖Y )

and O : (Y, ‖ · ‖Y ) → (Z, ‖ · ‖Z). Furthermore, assume that the posterior µyn(µ̃y) is

well-defined for the forward operator Gn(On), the prior µ0(da) (µ̃0(dp)) and the noise

ξ ∼ N (0,Γ). It is given by

dµyn

dµ0

(a) ∝ exp

(
−1

2
‖G(a)‖2

Γ + 〈y,G(a)〉Γ
)

dµ̃y

dµ̃0

(p) ∝ exp

(
−1

2
‖O(p)‖2

Γ + 〈y,O(p)〉Γ
)
.

In this case G?µ
yn = µ̃y.

Proof. It is sufficient to show that both measures agree on all sets A ∈ B(Y )

(G∗µ
yn)(A) =

∫

A

1dG∗µ
yn(da).

By the transformation rule

(G∗µ
yn)(A) =

∫

G−1(A)

1dµyn(a)=

∫

G−1(A)

c· exp

(
−1

2
‖O(G(va))− y‖2

Γ

)
dµ0(a)

=

∫

A

c · exp

(
−1

2
‖O(v)− y‖2

Γ

)
dG∗µ0(v).
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Appendix C. Proof of Theorem 3.4

Proof of Theorem 3.4. We follow the same steps as in the proof of Theorem 3.3 up to

Equation (17) reading

∣∣〈a− a†, ξ
〉

1

∣∣ ≤ Kn

∥∥a− a†
∥∥λ

1

∥∥a− a†
∥∥1−λ
s

17

with λ = s−1−σ0−γ
s−1

. We now separate the product using Young’s inequality with 1
p
+ 1
q

= 1

∣∣〈a− a†, ξ
〉

1

∣∣ ≤
(
Kn

(
2(λ−1)qqn−η

) − 1
q

∥∥a− a†
∥∥λ

1

)((
2(λ−1)qqn−η

) 1
q

∥∥a− a†
∥∥1−λ
s

)

≤ K̃n

∥∥a− a†
∥∥λp

1
+ n−η

(
1

2

∥∥a− a†
∥∥
s

)
(1−λ)q (C.1)

where, for simplicity of notation, we used K̃n := Kp
n(2−(1−λ)qqn−η)

− pq

p
.

Lower bound on µyn(B1
εn−κ(a†)): The following lower bound on µyn(B1

εn−κ(a†)) is based

on Equation (C.1)

µyn
(
B1
εn−κ(a†)

)
≥ µyn

(
B1

ε
2
n−κ(a†) ∩Bs

R(0)
)
≥ Z(n, ξ)µ0

(
B1

εn−κ
2

(
a†
)
∩Bs

R(0)
)

· exp

[
−n

1−2κ

2

ε2

4
− n 1

2
−λpκK̃n

( ε
2

)λp
− n 1

2
−η
[
R(1−λ)q + ‖a†‖(1−λ)q

s

]]
.(C.2)

The term n1−2κ has to be dominant in Equation (C.2) because the same exponent is

appearing in Equation (C.10) except for a larger coefficient. Choosing R = nθ and

substituting the expression for K̃n, this is the case if

1− 2κ >
1

2
+ η

p

q
− κλp (C.3)

1− 2κ >
1

2
− η + (1− λ)qθ (C.4)

log µ0

(
B1

εn−κ
2

(
a†
)
∩Bs

R(0)
)

& n1−2κ. (C.5)

We need small ball probabilities and the exponential moments of µ0 in order to obtain

explicit sufficient conditions on κ. We first note that

µ0

(
B1

εn−κ
2

(
a†
)
∩Bs

R(0)
)
≥ µ0

(
B1

εn−κ
2

(
a†
))
− µ0 (Bs

R(0)c) .

Equation (C.5) holds if

ρκ < eθ (C.6)

ρκ < 1− 2κ. (C.7)

Article III: Posterior Consistency for Bayesian Inverse Problems through Stability and
Regression Results

210



Posterior Consistency for Bayesian Inverse Problems 34

Upper bound on µyn
(
B1
εn−κ(a†)c

)
: We bound µyn

(
B1
εn−κ

(
a†
)
c
)

by

µyn
(
B1
εn−κ(a†)c

)
≤ µyn

(
B1
εn−κ(a†)c ∩Bs

R(0)
)

+ µyn
(
B1
εn−κ(a†)c ∩Bs

R(0)c
)
.

Upper bound on µyn
(
B1
εn−κ(a†)c ∩Bs

R(0)
)
: We denote by MB1

εn−κ (a†)c∩BsR(0) the

following supremum

sup
B1
εn−κ (a†)c∩BsR(0)

− n

2

∥∥a− a†
∥∥2

1
+
√
nK̃n

∥∥a− a†
∥∥λp

1
+ n

1
2
−η
(

1

2

∥∥a− a†
∥∥
s

)
(1−λ)q

which is finite if

λp < 2. (C.8)

The first two summands above can be rewritten as a function f of
∥∥a− a†

∥∥
1

where

f(d) = −n
2
d2 +

√
nK̃nd

λp.

By considering f ′, we see that f is decreasing for d ≥ (K̃nλpn
− 1

2 )λp. Thus, for

εn−κ ≥ (K̃nλpn
− 1

2 )λp (C.9)

the following inequality holds

µyn
(
B1
εn−κ(a†)c ∩Bs

R(0)
)

≤ Z(n, ξ) exp

[
−n

1−2κ

2
ε2 + n

1
2
−λpκK̃nε

λp+ n
1
2
−η
(
R(1−λ)q + ‖a†‖(1−λ)q

s

)]
. (C.10)

Then for large n, Equation (C.9) is implied by
(
η
p

q
− 1

2

)
λp < −κ. (C.11)

Upper bound on µyn
(
B1
εn−κ(a†)c ∩Bs

R(0)c
)
: In this section, we bound µyn(B1

ε (a
†)c ∩

Bs
R(0)c) using Markov’s inequality in combination with the exponential moments of the

prior

µyn
(

exp(f ‖·‖es)χB1
εn−κ (a†)c

)
≤

∫

B1
εn−κ (a†)c

C(n, ξ) exp
(
n

1
2
−η ‖a‖s (1−λ)q

)

exp
(
−n

2

∥∥a− a†
∥∥2

1
+
√
nK̃n

∥∥a− a†
∥∥λp

1
+ n

1
2
−η ∥∥a†

∥∥(1−λ)q

s

)
dµ0(a). (C.12)

We denote the term appearing in the exponential in the second line by T0. It can be

bounded similar to the upper bound on µyn
(
B1
εn−κ(a†)c ∩Bs

R(0)
)

T0 ≤ UT0 := −n
1−2κ

2
ε2 + n

1
2
−λpκK̃nε

λp + n
1
2
−η ∥∥a†

∥∥(1−λ)q

s
.
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We denote by . an inequality with a multiplicative constant not involving n or κ. In

order to get an upper bound for Equation (C.12), we bound the exponential moment by

µyn
(

exp(f ‖·‖es)χB1
εn−κ (a†)c

)
. C(n, ξ)

∫
exp

(
n

1
2
−η ‖a‖(1−λ)q

s + f ‖a‖es + UT0

)
dµ0(d).

Introducing

g(r) = n
1
2
−ηr(1−λ)q + fre,

g′(r) = n
1
2
−η(1− λ)qr(1−λ)q−1 + efre−1

and performing an integration by parts, it follows that

µyn(exp(f ‖·‖es)χB1(a†)c)

C(n, ξ)
.
∫

exp (g(‖a‖s) + UT0) dµ0(a)

. exp(UT0)

∫ [∫ ‖a‖s
0

g′(r) exp(g(r))dr

]
+ 1dµ0(a)

.
∫ ∞

0

g′(r) exp (g(r) + UT0) dµ0 (‖a‖s > r) dr

.
∫ ∞

0

g′(R) exp
(
n

1
2
−ηr(1−λ)q − 2fre

)
dr.

The above can only be expected to be finite if

(1− λ)q < e. (C.13)

Moreover, we assume that η < 1
2

since otherwise
∫

exp
(
n

1
2
−η ‖a‖(1−λ)q

s + f ‖a‖es
)
dµ0(a) .

∫
exp (2f ‖a‖es) dµ0(a).

In order to achieve an upper bound, we split the term in the exponential into T1 :=

n
1
2
−ηr(1−λ)q − fre and T2 := −fre. The first term is negative whenever

r ≥ rz :=
(
n

1
2
−ηf−1

) 1
e−(1−λ)q

.

For n large enough rz ≥ 1 holds. On the interval [0, sz] an upper bound UT1 on the

maximum value of T1 can be derived as follows

T ′1 = 0⇒ r =
(

(1− λ)qn
1
2
−ηe−1f−1

) 1
e−(1−λ)q

UT1 :=

(
(1− λ)q

ef

) 1
e−(1−λ)q (

n
1
2
−η
)1+ 1

e−(1−λ)q
. (C.14)

Putting everything together gives rise to

µyn
(

exp(f ‖·‖es)χB1
n−κ (a†)c

)

C(n, ξ)
.
∫ (

n
1
2
−η(1− λ)qr(1−λ)q−1 + efre−1

)
exp (UT1 + UT0) dr

+

∫ ∞

rz

(
n

1
2
−η(1− λ)qr(1−λ)q−1 + efre−1

)
exp (UT0 − fre) dr
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. na exp (UT1 + UT0)

for some a. Using Markov’s inequality, this yields

µyn
(
B1(a†)c ∩Bs

R(0)c
)
. C(n, ξ)n

1
2
−η exp (UT0 + UT1 − fRe) . (C.15)

Again substituting R = nθ, this is asymptotically smaller than exp
(
−n1−2κ

2

2

4

)
if

(
1

2
− η
)(

1 +
1

e− (1− λ)q

)
< max (1− 2κ, θe) . (C.16)

Collecting the inequalities from above, we see that the results follow by letting γ → 0.

Appendix D. Normalising Constant of the BRP

Proof of Lemma 3.2. In order to bound Z(n, ξ) in Equation (12), we rewrite it as

µyn = Z(n, ξ) exp (−Φ)µ0,

where Z(n, ξ) = µ0(exp (−Φ)). We bound −Φ using the Cauchy-Schwarz inequality

−Φ ≤ − 1

2
n ‖a‖2

1 + n
∥∥a†
∥∥

1
‖a‖1 + n

1
2 〈a, ξ〉1 .

The following steps are quite similar to the steps in the proof of the Theorems 3.3 and

3.4. We treat 〈a, ξ〉1 by smoothing ξ at the expense of a

|〈a, ξ〉1| ≤
∣∣∣
〈

Γ−1+
1−σ0−γ

2 a,Γ
σ0−1+γ

2 ξ
〉∣∣∣

≤ ‖a‖1+σ0+γ ‖ξ‖1−σ0−γ .

We use the interpolation inequality for Hilbert scales with λ = s−1−σ0−γ
s−1

(see Lemma

Appendix A.1) and Hölder’s inequality with 1
p

+ 1
q

= 1 to obtain

‖a‖1+σ0+γ ≤ ‖a‖
λ
1 ‖a‖

1−λ
s ≤ ‖a‖

pλ
1

p
+
‖a‖q(1−λ)

1

q
.

Combining these bounds yields

−Φ ≤ − 1

2
n ‖a‖2

1 + n
∥∥a†
∥∥

1
‖a‖1 +

‖a‖pλ1
p
‖ξ‖1−σ0−γ +

‖a‖q(1−λ)
1

q
‖ξ‖1−σ0−γ .

The first three terms are bounded in a because they are dominated by the first if λp < 2.

This is implied by choosing q = 2+γ
2−λ . Note that ‖ξ‖1−σ0−γ is µξn-a.s. bounded due to

Lemma Appendix A.2. Thus Z(n, q) is bounded below if e > q. Letting γ ↓ 0 in q we

see that this is the case for

e >
2σ0

s− 1 + σ0

.

An upper bound on Z(n, q) follows from a simple lower bound on −Φ on B1+σ+γ
M (0) and

the prior measure of this set.
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Notes on a Bayesian Elliptic Multiscale Inverse Problem

A. M. Stuart and S. J. Vollmer

6th September 2013

Abstract

We consider the inverse problem of reconstructing the diffusion coefficient of a linear second order
elliptic PDE from measurements of its solution. The diffusion coefficient is supposed to vary across
two scales as a sum of a function depending on coarse variables and a periodic function depending on
the fine variables. As the fine scale becomes finer, homogenisation occurs and the forward problem
is well-approximated by a single scale homogenised model. However, different choices of the fine and
coarse functions can lead to the same homogenised problem. We make this phenomenon precise by
proving the existence of a function space manifold relating the fine and coarse scales of the diffusion
coefficient leading to the same homogenised problem. If the observational noise is large compared to
the homogenisation error, then the inverse problem of recovering fine and coarse scales is thus highly
ill-posed due to the resulting lack of identifiability.

We consider this problem from a Bayesian perspective by specifying a prior on the fine and coarse
scales by means of an expansion with random coefficients. The size of the fine scale as well as
the forcing are assumed to be known. In this case, we demonstrate that the posterior distribution
concentrates close to this manifold and that the concentration along this manifold is dominated by
the prior. This is made apparent by an appropriate disintegration. We confirm this numerically in
an identical twin experiment by generating the data using a fixed set of parameters and considering
the distance of MCMC samples of the posterior to the corresponding manifold.

1 Introduction
Fitting mathematical models to data is a fundamental problem for many industries and sciences. It is
used in order to explain and predict certain scenarios. In particular, these problems can be tackled using
the theory of inverse problems. With the Bayesian approach, it is possible to use a priori information
and to quantify the uncertainty arising from the noise in the data which is described by a probability
distribution of the unknown input parameter.

For some forward problems, such as simulations of biological cells, dynamics occur on many different
temporal and spatial scales. Resolving all these scales is computationally very expensive. However,
another approach to some of these problems is to use the technique of homogenisation. This results in a
homogenised problem which is more tractable and has nearly the same output as the multiscale problem
on coarse scales. We consider the inverse problem of recovering a multiscale diffusion coefficient from
observations of the solution to a linear second order multiscale elliptic PDE. Since efficient evaluations of
the forward problem are beneficial for the inverse problem, we are motivated to investigate the exploitation
of homogenisation. A related problem is to study how uncertainty propagates through the homogenised
forward model. This has been studied with standard Monte Carlo techniques in [2] and more efficiently
using generalised polynomial chaos (gPC) in [13]. Recently, the gPC approach has also been extended to
multiscale diffusion coefficients in [9].

The Bayesian approach to inverse problems for the homogenised diffusion coefficient has been invest-
igated for a log-Gaussian prior in [7], for log-Besov priors in [6] and for a prior based on series expansions
with uniformly distributed coefficients in [8] and [14].

1
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In [11], the single-scale inverse problem was fed with the data from the multiscale problem instead
of solving the complete multiscale inverse problem. The authors have considered the question how the
homogenisation error can be treated as noise leading to an enhanced estimation procedure. In that case,
the noise and homogenisation error are of the same order.

In contrast to the ideas exploited in [11], we are interested in the case when the homogenisation error
is small compared to the noise. Moreover, we treat the multiscale inverse problem motivated by the
aim to identify fine scales. These can actually matter because they have physical meaning and may be
required for certain predictions in problems such as subsurface geophysics.

1.1 An Elliptic PDE and its Homogenisation
The relation between a diffusion coefficient aε and the pressure pε is modelled as a second order linear
elliptic PDE in divergence form

{
−∇ · (aε(x)∇pε) = f(x) in D
pε = 0 on ∂D

(1)

where the domain D is assumed to be D = (0, 1) and f ∈ C(D) denotes the forcing throughout this
article. The same equation is also used to describe heat conductivity in a composite material [12]. The
multiscale structure of aε in Equation (1) is supposed to be periodic and of the form

aε(x) = a
(
x,
x

ε

)

with a ∈ C2([0, 1] × R) being 1-periodic in the second argument. We impose the following ellipticity
assumption

ainf = inf
x,y

a(x, y) > 0

in order to guarantee the existence of a solution to Equation (1). We call the arguments x and y of
a(x, y) the coarse and the fine variable, respectively. In this setting, the problem stated in Equation (1)
is called the multiscale problem.

The aim of homogenisation is to obtain an approximation p̄ to the pressure pε for small ε. This
approximation satisfies an effective equation of the form

{
−∇ · (ā(x)∇p̄) = f(x) in D
p̄ = 0 on ∂D

, (2)

where ā is the homogenised diffusion coefficient. In general, the homogenised diffusion coefficient ā is
given in terms of the corrector which is a solution to the cell problem, another second-order linear elliptic
PDE [3]. The periodic homogenisation of elliptic PDEs is a well established mathematical theory. For a
classical work, we refer the reader to [3] and we recommend [5] and [12] for introductory material. For
the technical details and an account of the theory, we refer the reader to these references.

For the one dimensional problem with D = (0, 1), there exists an explicit formula for the homogenised
diffusion coefficient ā given by

ā(x) :=

(
ˆ 1

0

1

a(x, y)
dy

)−1

. (3)

The relation between the Equations (1) and (2) can be justified through the following convergence result.

Proposition 1. Let pε be the solution of the multiscale problem in Equation (1) and let p̄ denote the
solution of the homogenised problem in Equation (2). Then the following bound holds

‖p̄− pε‖L∞([0,1]) ≤ Cε.

2
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This bound is a well-known result in the literature on homogenisation, see for example [3, p. 19]. The
constant C can be derived by an application of the maximum principle [16] and depends in an exponential
way on a−1

inf . For our approximation results in Section 4, we need sharper bounds which are explicitely
established in Theorem 6 in the Appendix of this article.

This convergence phenomenon affects the corresponding inverse problem introduced in the next sec-
tion.

1.2 The Inverse Problem of Reconstructing the Multiscale Diffusion Coeffi-
cient

The main focus of this article is to study the heavily under-determined inverse problem of reconstructing
the multiscale diffusion coefficient a(x, y) from measurements of the pressure for a known fine scale ε and
the forcing f . Throughout this article, we assume that a(x, y) exhibits an additive form which reduces
the under-determinedness of the inverse problem.

Assumption 2. The multiscale diffusion coefficient can be written as the sum of the coarse diffusion
coefficient, a function b in terms of the coarse variable x, and the fine diffusion coefficient, a function c
depending on the fine variable y, as follows

a(b, c)(x, y) := a(x, y) = a0(x) + b(x) + c(y) (4)

where a0 and b are elements of C2([0, 1]) and c ∈ C2
per(R) denoting the 1-periodic two times continuously

differentiable functions on R.
In the following, we consider both the forward model based on the multiscale Equation (1) and the

corresponding version based on the homogenised Equation (2). The inverse problems are then concerned
with the reconstruction of the multiscale structure (b, c) from measurments y and ȳ of the multiscale
pressure pε and the homogenised pressure p̄, respectively. In both cases, the data is modelled as

y = Gε(b, c) + ξ := O(Gε(a(b, c))) + ξ = O(pε) + ξ (5)

and

ȳ = Ḡ(b, c) + ξ := O(Ḡ(ā(b, c))) + ξ = O(p̄) + ξ (6)

where Ḡ and Gε are solution operators to the multiscale and the homogenised problem, respectively.
Moreover, we write ξ for the observational noise and we denote by O the observation operator. In this
article, we restrict our attention to observation operators of the form

O(p) = {p(i∆y)}b
1

∆y c
i=0 , (7)

which corresponds to observing p on a grid with grid size ∆y.
Our main attention concerns the multiscale inverse problem which is influenced by The homogenisation

effect quantified through Proposition 1. As ε→ 0, it becomes increasingly difficult to distinguish between
(b1, c1) and (b2, c2) from the data y giving rise to the same homogenised diffusion coefficient, that is

ā(b1, c1) = ā(b2, c2).

This is the case because Gε(b1, c1) and Gε(b2, c2) are ε close to each other due to Proposition 1. We fix b†
and c† and study the level set ā−1(ā(b†, c†)) containing (b, c) giving rise to the same diffusion coefficient
as (b†, c†) does, that is

ā(b, c) = ā(b†, c†). (8)
In this case (b, c) and (b†, c†) correspond also to the same homogenised problem. We use a function space
version of the implicit function theorem to show that the level sets form a manifold given by a graph. The
details of this fact are contained in Section 2. We introduce a toy problem which allows us to illustrate
our ideas in Section 1.4.

3
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Figure 1: Level sets of ā

A Toy Problem
We consider the following toy model

a0(x) = 0, b(x) = b0, c(y) = c1 sin(2πy).

In this setting, the homogenised diffusion coefficient is just a constant function given by

ā(b0, c1) =

(
ˆ

(b0 + c1 sin(2πy))−1dy

)−1

.

In Figure 1, we have depicted different level sets of ā. These level sets form graphs over the c1 coordinate
because ∂cs1 ā > 0. We consider an identical twin experiment and assume that the data is generated
according to Equation (5) for the parameters b†0 and c†1. Because of homogenisation effects, we expect
that the data contains much information about the question on which branch the pair of parameters(
b†0, c

†
1

)
lies but only little about its exact position. It is worth pointing out that this phenomenon has

an impact on any approach to the inverse problem.

1.3 The Bayesian Approach
The Bayesian approach is based on the idea that the uncertainty of the unknown parameters of a math-
ematical model can be modelled as a probability distribution. For an inverse problem, the a priori
uncertainty has to be specified as a probability distribution, called the prior µ0, on the input of the
mathematical model, here the functions b and c. For a given distribution of the observational noise ξ and
the forward operator G, this gives rise to a joint probability distribution on (a, y). Given the data y, this
results in a unique conditional distribution µy on a called the posterior given via its unnormalised density
with respect to the prior. We suppose that the observational noise is Gaussian ξ ∼ N (0,Γ). Under mild
additional assumptions on the prior and the forward operator G, the posterior takes the following form

dµy

dµ0
((b, c)) ∝ exp

(
−1

2
‖y − G((b, c))‖2Γ

)
. (9)

In Section 4, we study the inverse problems associated with the forward operators G and Ḡ corres-
ponding to the multiscale and the homogenised problem stated in Equations (5) and (6), respectively.

4
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1.4 Main Results and Outline
We generalise the toy model introduced in Section 1.2 by considering (truncated) Fourier series expansions
of the additive components b and c of the multiscale diffusion coefficient a. The main difference to the
toy model is that the resulting homogenised diffusion coefficient ā is no longer a constant function. In
particular, we consider the following aspects:

1. We show that the level sets of the homogenised diffusion coefficient mapping ā, mapping the para-
meters b and c to the homogenised diffusion coefficient ā(b, c), form manifolds that are given as
graphs over c as in the toy problem. This result is proved using a functional version of the implicit
function theorem in Section 2. For the toy model, we have illustrated the level set in Figure 1.

2. We investigate both the structure of the homogenised diffusion coefficient and its level sets using
simulations in Section 3.

(a) We study the influence of b and c on the homogenised diffusion coefficient ā. We calculate the
derivative of the Fourier coefficients of ā in terms of those of b and c. Whereas the derivative
with respect to the Fourier coefficients of b is close to the identity, the Fourier coefficients of c
have little impact on those of ā except for the constant mode.

(b) The consequences of (2a) on the level sets of ā is that they are well-represented in the Fourier
space. This allows us to consider an extended toy model based on three Fourier coefficients.

3. We consider the Bayesian approach to the multiscale inverse problem in Section 4 and introduce
uniform series priors. This is a natural form of the prior because of the parametrisation in Equation
(10). If the observational error is small and the homogenisation error is in comparison even smaller,
it is conceivable to expect that the posterior concentrates around the level set of the homogenised
diffusion coefficient corresponding to the parameters used to generate the data. In particular, we
establish the following facts:

(a) We confirm by MCMC simulations that the posterior concentrates around the level set cor-
responding to the truth in Section 5. We first present simulations for the extended toy model
before considering the general case.

(b) We show that the posterior based on the multiscale problem can be well represented using the
homogenised model and disintegration in Section 4. By bounding their difference in the total
variation or the Hellinger distance, the resulting bound holds for appropriate uniform series
priors as well as for log-Gaussian priors.

In the following section, we set up the notation in order to establish the corresponding results in detail.

1.5 Parametrisation of the Diffusion Coefficient
In the following, we introduce a Fourier series parametrisation of the fine and coarse diffusion coefficient
that are used throughout this article. We impose the following assumption.

Assumption 3. (Fine scales in the inverse problem) For c as in Equation (4),
ˆ

D

c(y, z)dy = 0.

Imposing this assumption, we reduce the under-determinedness of the inverse problem because the
constants cannot be exchanged between b and c in Equation (4) anymore. Throughout the article, we
consider the following Fourier series representation of both b and c

5
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a(x, y; z) := a(x, y; z) := a0(x) + b(x, z) + c(y, z)

b(x, z) = z0b0 +

∞∑

k=1

z1,kb
c
k cos(2πkx) + z2,kb

s
k sin(2πkx)

c(y, z) =

∞∑

k=1

z3,kc
c
k cos(2πky) + z4,kc

s
k sin(2πky). (10)

This parametrisation is particularly natural for the uniform series prior considered in Section 4 corres-
ponding to zi,j

i.i.d.∼ U(−1, 1).

Notation

For a suitable function f : [0, 1]→ R, we denote its Fourier coefficients by

Fkc (f) = 2

ˆ 1

0

cos(2πkx)f(x)dx

Fks (f) = 2

ˆ 1

0

sin(2πkx)f(x)dx

F0(f) =

ˆ 1

0

f(x)dx.

We denote by finf and fsup the infimum and supremum over the relevant arguments, respectively.

2 Homogenisation of Additive Multiscale Diffusion Coefficients
Subsequently, we study the effect of homogenisation through the homogenised diffusion coefficient map-
ping. In particular, we restrict our attention to

Adm :=
{

(b, c) ∈ C2([0, 1])× C2
per(R)

∣∣∣a(b, c) > 0
}

and view ā(b, c) as a mapping ā : Adm→ C2([0, 1]) and call it homogenised diffusion coefficient mapping.
We study the level set of ā−1(ā(b†, c†)) for fixed (b†, c†) in Adm given by the solution to the following
equation (

ˆ 1

0

1

a†(·, y)
dy

)−1

= ā(b†, c†)(·) = ā(b, c)(·) =

(
ˆ 1

0

1

a(·, y)
dy

)−1

(11)

using the formula for the homogenised diffusion coefficient in Equation (3). We prove that these level
sets have the structure of a manifold. This can be seen as generalisation of the level sets corresponding
to the toy problem in Section 1.2 which are depicted in Figure 1.

Subsequently, we use the following version of the implicit function theorem.

Theorem. (Implicit Function Theorem [1]) Let F ∈ Cl(Λ×U, Y ), k ≥ 1 where Y is a Banach space and
Λ (respectively U) is an open subset of the Banach space T (respectively X). Suppose that F (λ?, u?) = 0
and Fu(λ?, u?) ∈ Inv(X,Y ). Then there exist neighbourhoods Θ of λ? and U?of u? in X and a map
g ∈ Cl(Θ, X) such that

1. F (λ, g(λ)) = 0 for all λ ∈ Θ,

2. F (λ, g(λ)) = 0, (λ, u) ∈ Θ× U? implies u = g(λ) and

3. g′(λ) = −Fu(p)−1 ◦ Fλ(p) where p = (λ, g(λ)) and λ ∈ Θ.

6
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It is easy to see that ā : Adm→ C2([0, 1]) is infinitely often Fréchet-differentiable. We summarise the
application of the implicit function theorem with an additional uniqueness result as follows.

Theorem 4. If (b†, c†) ∈ Adm, then there exists an open subset S ⊆ Π2Adm, where Π2 denotes the
projection onto the second component, such that ā−1

(
ā(b†, c†)

)
can be written as

{(c, b(c)) |c ∈ S} (12)

with b : C2
per(R) → C2([0, 1]) being a Cl- function for every l ∈ N. Moreover, defining b?(c) =

inf
{
b
∣∣∣ā(b, c) ≥ 0 ∀y

}
, we may characterise the set S as follows. If

ā(b?, c) < ā(b†, c†), (13)

then
c ∈ S.

Proof. The implicit function theorem applies to this case because

Dbā(b, c)(δb) =

(
ˆ

1

a0(x) + b(x) + c(y)
dy

)−2

· δb(x)

is an invertible linear map as a0(x) + b(x) + c(y) > 0 for (b, c) ∈ Adm. Thus,

b(x) = b(c(·))(x)

in a neighbourhood around any solution. Moreover, for each c there exists at most one b. If we assume
the converse, then there is a c such that (b1, c), (b2, c) ∈ Adm and

ā(b1, c) = ā(b2, c) = ā†.

This yields a contradiction because

0 = ā−1(b1, c)(x)− ā−1(b2, c)(x) =

ˆ

1

(a0 + b1 + c) (a0 + b2 + c)
dy(b1(x)− b2(x)).

Let c be an arbitrary element of C2
per(R) satisfying Equation (13). Then the intermediate value theorem

can be used to construct an appropriate b ∈ C2([0, 1]) such that (b, c) is a solution to Equation (8).

We first present our numerical investigation of these level sets before studying the consequences for
the Bayesian inverse problem in Section 4.

3 Numerical Investigations of the Homogenised Diffusion Coeffi-
cient Mapping and its Level Sets

We present our numerical investigations of both the homogenised diffusion coefficient mapping and its
level sets in the setting of Equation (10). A crucial aspect studied in this section is the dependence of ā
on both b and c. In fact, the simulations demonstrate that c has little impact on ā.

3.1 The Multiscale Phenomenon
In the following simulation, we illustrate the homogenisation for a particular instance of the general
parametrisation in Equation (10) and the effect of the fine diffusion coefficient c on the homogenised
diffusion coefficient. We pick the following parameters in Equation (10)

bck = bsk =
1

2k2
, k = 1, . . . , 10 = cck = csk =

1

k3
, k = 1, . . . , 10

b0 = 1 and a0(x) = 5.4 (14)

7
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(a) Coarse scale b, fine scale c, diffusion coefficient a, homogenised diffusion coefficient ā

(b) Homogenisation error

Figure 2: Homogenisation Phenomenon

and zi,j
i.i.d.∼ U(−1, 1). The particular realisation has in fact little impact on the qualitative phenomenon

described in this section. In Figure 2a, the functions b, c, a and ā are illustrated. The relative difference
between pε and p̄ is small and is shown in Figure 2b. Even though we have chosen the Fourier coefficients
of c in a much larger range, the effect of c onto ā is small. We visualise the variation of ā due to random
samples of c in Figure 3a. The influence of c on ā becomes much more apparent in Figure 3b. This
figure illustrates ā(b, ci)− ā(b, c) for different realisations of ci. We see that a change in c has the greatest
impact on the constant of ā and only little on the higher modes. This effect has also an impact on the
manifold and its tangent direction. Before concentrating on the level sets of ā in Sections 3.3 to 3.4, we
study the effect of b and c on ā in a quantitative way in the next section.

3.2 The Influence of b and c on ā

In the previous section, we illustrated qualitatively that the influence of c on ā is small. In this section, we
study the dependence of ā on b and c quantitatively by calculating the derivative of the Fourier coefficient
of ā with respect to those of b and c. The corresponding Jacobian matrices can be derived using Equation

8
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(a) Variation of ā due to c

(b) Influence of c onā

Figure 3: Influence of the parameter c on the homogenised diffusion coefficient ā

9
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(a) Jacobian Jbā (b) Jacobian Jcā

Figure 4: Derivative of Fourier coefficients of ā with respect to those of b and c

(3) and we arrange the sine and cosine modes in an alternating fashion

(Jbā)2i,2j = 2

ˆ

[0,1]2

ā(x)2 cos(2πix) cos(2πjx)

(a0(x) + b(x) + c(y))
2 dxdy, i = 0, ..., k, j = 0, ..., k,

(Jbā)2i−1,2j = 2

ˆ

[0,1]2

ā(x)2 sin(2πix) cos(2πjx)

(a0(x) + b(x) + c(y))
2 dxdy, i = 1, ..., k, j = 0, ..., k,

(Jbā)2i,2j−1 = 2

ˆ

[0,1]2

ā(x)2 cos(2πix) sin(2πjx)

(a0(x) + b(x) + c(y))
2 dxdy, i = 0, ..., k, j = 1, ..., k,

(Jbā)2i−1,2j−1 = 2

ˆ

[0,1]2

ā(x)2 sin(2πix) sin(2πjx)

(a0(x) + b(x) + c(y))
2 dxdy, i = 0, ..., k, j = 0, ..., k,

and

(Jcā)2i,2j = 2

ˆ

[0,1]2

ā(x)2 cos(2πix) cos(2πjy)

(a0(x) + b(x) + c(y))
2 dxdy, i = 0, ..., k, j = 0, ..., k,

(Jcā)2i−1,2j = 2

ˆ

[0,1]2

ā(x)2 sin(2πix) cos(2πjy)

(a0(x) + b(x) + c(y))
2 dxdy, i = 1, ..., k, j = 0, ..., k,

(Jcā)2i,2j−1 = 2

ˆ

[0,1]2

ā(x)2 cos(2πix) sin(2πjy)

(a0(x) + b(x) + c(y))
2 dxdy, i = 0, ..., k, j = 1, ..., k,

(Jcā)2i−1,2j−1 = 2

ˆ

[0,1]2

ā(x)2 sin(2πix) sin(2πjy)

(a0(x) + b(x) + c(y))
2 dxdy, i = 0, ..., k, j = 0, ..., k,

These matrices are visualised in Figures 4a and 4b, respectively. It is clear from the figures that the
Fourier coefficients of c have little influence on those of ā except for the constant mode. The structure of
the Jbā does not depend much on the choice of (b, c). The same is true for Jcā except for the magnitude
sign of the entries that are not too close to zero.

The fact that Jbā is close to the identity justifies the study of discretised versions of the level sets of ā
in the truncated Fourier space. We start with an extended toy model based on three Fourier coefficients
in the next section.

10
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3.3 Fourier Series with Three Coefficients - An Extended Toy Model
We investigate the level set ā−1(ā(b, c)) numerically by considering a simple parametrisation, a special
instance of Equation (10), only based on the following three coefficients

a(x, y) = a0 + b(x) + c(y) with
b(x) = z0 + z2,1 sin(2πx)

c(z4,1)(y) = z4,1 sin(2π
y

ε
)

(15)

where z0, z2,1 and z4,1 are real numbers. We fix a† through

a0 = 3, z†0 = 0, z†2,1 = −0.5, z†4,1 = 0.5.

For all numerical simulations in this section, we set ε = 0.005. The solution to Equation (1) and the
point-wise homogenisation error are plotted in Figures 5 and 6, respectively.

Figure 5: Pressure and homogenisation for the
true input Figure 6: Point-wise homogenisation error

From the previous section, we know that all solutions of

ā(b, c)(x) = ā†(x)

form a manifold such that b = b(c(z4,1)). We solve for b(x)

Āε†(x) =

(
ˆ

1

a0 + b(x) + c(y, ω)
dy

)−1

using Newton’s method for both x and z4,1 on a grid dividing [−1, 1]. We calculate the Fourier coefficients
for the resulting function b(z4,1).

The level sets of ā are very well-represented in Fourier space as Figure 7. Numerical simulations suggest
that only the constant and the first sine coefficients are non-negligible. Note that due to Equation (15),
this is the case for b†. All Fourier coefficients except for the constant term and the first sine-coefficients
are close to zero. Hence b is approximately of the form stated in Equation (15). The investigation of Jbā
and Jcā in the previous section can be seen as an explanation. Setting the other Fourier coefficients equal
to zero, we present the L2-differences in the pressure and the homogenised diffusion coefficient in Table
1. The level set of ā is illustrated by the red curve in Figure 8. The figure also contains the level sets
of
∥∥∥p(aε†)− p(aεc)

∥∥∥
L2

and ‖ā† − āc‖L2 . Both level sets wrap nicely around the manifold corresponding to

the level set ā−1(ā(b†, c†)).
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


z4,1 a0 + F0(b) F1
sin(b) max

i ∈ {2, . . . 64}
j ∈ {1, . . . 64}

{ ∣∣Fjc (bc)
∣∣ ,∣∣F is(bc)
∣∣
} ∥∥∥p(aε†)− p(aε)

∥∥∥
L2

∥∥∥āε† − āε
∥∥∥
L2

−0.9 3.09313 −0.48478 0.00121174 0.0010831 0.00091151
−0.8 3.06517 −0.48922 0.00086781 0.0010123 0.00064758
−0.7 3.04028 −0.49326 0.00054762 0.0009415 0.00040704
−0.6 3.01853 −0.49683 0.00025661 0.0008710 0.00019447
−0.5 3. −0.49992 0.00002446 0.0007931 0.00005090
−0.4 2.98475 −0.50250 0.00021737 0.0009917 0.00016562
−0.3 2.97282 −0.50453 0.00039124 0.0006368 0.00028683
−0.2 2.96428 −0.50599 0.00051810 0.0005578 0.00037606
−0.1 2.95914 −0.50688 0.00059529 0.0004772 0.00043032

0 2.95742 −0.50717 0.00062121 0.0003981 0.00044852
0.1 2.95914 −0.50688 0.00059529 0.0003156 0.00043032
0.2 2.96428 −0.50599 0.00051810 0.0002365 0.00037606
0.3 2.97282 −0.50453 0.00039124 0.0001566 0.00028683
0.4 2.98475 −0.50250 0.00021737 0.0003908 0.00016562
0.5 3. −0.49992 0.00002446 0.0000124 0.00005090
0.6 3.01853 −0.49683 0.00025661 0.0000739 0.00019447
0.7 3.04028 −0.49326 0.00054762 0.0001511 0.00040704
0.8 3.06517 −0.48922 0.00086781 0.0002211 0.00064758
0.9 3.09313 −0.48478 0.00121174 0.0002914 0.00091151
1. 3.12407 −0.47995 0.00157394 0.0003655 0.00119558




Table 1: Properties of b(c)
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(a) Cosine coefficients

(b) Sine coefficients

Figure 7: Maximum of the Fourier coefficients
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(a) Level sets of
∥∥∥āε† − āεc

∥∥∥
L2

(b) Level set of
∥∥∥G(aε†)− G(aεc)

∥∥∥
L2

Figure 8: Contour plots
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3.4 Fourier Representation of the Manifold for Higher Order Expansions
We show that for higher order Fourier series expansions of b† and c† as in Equation (10), the level sets
of ā are also well represented with the same number of non-zero Fourier coefficients. We take

bck = bsk, k = 1, . . . , 5 = cck = csk =
1

k2
, k = 1, . . . , 10

in

a(x, y;ω) := a(x, y; z(ω)) := a0(x) + b(x, z) + c(y, z).

b(x, z) = z0b0 +

∞∑

k=1

z1,kb
c
k cos(2πkx) + z2,kb

s
k sin(2πkx)

c(y, z) =

∞∑

k=1

z3,kc
c
k cos(2πky) + z4,kc

s
k sin(2πky),

with all other coefficients being zero and

a(x) = a0 = 7.52676.

Moreover, we fix ε = 0.005 and
z†0 = 0, z†i,k = U i,k, k = 1, . . . , 5

with a particular realisation of Ui,k
i.i.d.∼ U(−1, 1).

We calculate the Fourier series of b(c) for c = c1, . . . , c200 corresponding to random independent
samples of z3,i and z4,i. In Figure 9, we plot the maximum over the Fourier coefficients of b(c) for
c = c1, . . . , c200.

Similar to the low dimensional example considered in Section 3, we see a sharp cut off in magnitude
of the Fourier coefficients. This means that the level set ā−1(ā(b†, c†)) is well-represented by a truncated
Fourier series. Again the form of Jbā and Jcā as considered in Section3.3 can be seen as an explanation.
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(a) Cosine coefficients

(b) Sine coefficients

Figure 9: Maximum of the Fourier coefficients
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4 The Bayesian Approach and Approximation Results
We apply the Bayesian approach to the inverse problem of reconstructing the additive multiscale diffusion
coefficient as presented in Section 1.2. We introduce the prior and state the formulae for the posterior
before deriving an approximation result based on the homogenised forward operator. Using MCMC sim-
ulations, we demonstrate that the posterior concentrates around a level set of the homogenised diffusion
coefficient mapping in Section 5.

4.1 The Multiscale Inverse Problem from the Bayesian Perspective
Following the Equations (5) and (6), we use the forward operators Gε and Ḡ and assume that the data
can be modelled as

y = Gε(b, c) + η (16)
y = Ḡ(b, c) + η. (17)

We set up the Bayesian inverse problem by assuming that the observational noise η ∼ N (0,Γ) is Gaussian
and by specifying the prior. As described in [14] and [8], we choose a prior that is based on a series expan-
sion with uniformly distributed coefficients. This prior comes naturally in our setting as it corresponds
to randomising the coefficients z in the parametrisation given in Equation (10) recalled in the following

a(x, y; z) := a(x, y; z) := a0(x) + b(x, z) + c(y, z).

b(x, z) = z0b0 +

∞∑

k=1

z1,kb
c
k cos(2πkx) + z2,kb

s
k sin(2πkx) (10)

c(y, z) =

∞∑

k=1

z3,kc
c
k cos(2πky) + z4,kc

s
k sin(2πky).

Drawing zi,j independently from the uniform distribution corresponds to

z ∼ U(−1, 1)4k+1

where k ∈ N ∪ {∞} and U(−1, 1) denotes the uniform distribution on [−1, 1]. A finite k represents a
discretised model whereas an infinite k is linked to the ideal infinite dimensional model. Moreover, we
suppose that a0, b

c
k, b

s
k, c

c
k and csk in Equation (10) are chosen such that

(b(z), c(z)) ∈ Adm for all z ∈ [−, 1]4k+1

with Adm :=
{

(b, c) ∈ C2([0, 1])× C2
per(R)

∣∣∣a(b, c) > 0
}
. In particular, this holds if there exists κ > 0

such that

b0 +

∞∑

k=1

bsk + bck + csk + cck ≤
κ

1 + κ
amin

0 (18)

where
amin

0 = inf
x
a0(x).

For this problem, the prior and posterior can either be formulated in terms of the coefficients z = {zi,k}
or on some function space for the diffusion coefficient through µ0 = L (aε). We consider the prior on the
coefficients to avoid technicalities.

For finte dimensional noise ξ with distribution given as a density ρ with respect to the Lebesgue
measue, the likelihood L((b, c)|y) of the data can be represented as

L((b, c)|y) = ρ(y − Gε(b, c)).
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Since ξ ∼ N (0,Γ), the likelihood is proportional to

L((b, c)|y) ∝ exp(−Φ(y; (b, c)))

where the potential Φ is given by

Φ(y; (b, c)) =
1

2
‖y − Gε((b, c))‖2Γ .

For the homogenised inverse problem, we denote by L̄ and Φ̄ the corresponding formulae with Gε replaced
by Ḡ, respectively. The prior and the likelihood determine the posterior as

dµy

dµ0
((b, c)) ∝ exp

(
−1

2
‖y − Gε((b, c))‖2Γ

)
(19)

which corresponds to the regular conditional probability measure of (b, c) given y. A derivation of this
fact can be found in [15]. Again, the analogue formula holds for the inverse problem for reconstruction
of the homogenised diffusion coefficient

dµ̄y

¯dµ0
((b, c)) ∝ exp

(
−Φ̄ (y; (b, c))

)
.

4.2 An Approximation to the Posterior Based on Disintegration
In this section, we derive an approximation of the full posterior using disintegration of the prior and the
posterior of the homogenised problem. Using the disintegration property of regular conditional probability
distributions (Theorem 5.3 in [10] or Theorem 10.4.14 in [4]), we know that

µ0(b, c) =

ˆ

ā?µ0(dh)µ0|ā=h(db, dc)

such that the full posterior of µy takes the form
ˆ

f(b, c)µ(b, c) =

ˆ

(ā?µ0) (dh)µ0|ā=h(db, dc)f(b, c)ρξ(Gε(b, c)−)Z−1
ε

where Zε denotes the normalisation constant. We consider the following approximation µyh such that
ˆ

f(b, c)µh(b, c) =

ˆ

(ā?µ0) (dh)µ0|ā=h(db, dc)f(b, c)ρξ(Ḡ(ā)−)Z−1
h

where Zh denotes again the normalisation constant. In this setting, we obtain a bound on dTV (µy, µyh)
and dHell(µ

y, µyh) in terms of the forward difference.

Theorem 5. Suppose that the posterior µy and the measure µyh are well-defined, ‖ρξ‖∞ is finite and
∥∥Gε(b, c)− Ḡ(h)

∥∥
Γ
≤ φ(ε)K(b, c)

with ā(b, c) = h and K which is integrable with respect to the prior. Then the total variation distance
between µh and µ can be bounded as follows

dTV (µy, µyh) ≤ Cφ(ε).

Moreover, if additionally
∥∥∥ (ρξ)

2

ρξ

∥∥∥
∞

is bounded and K2 is integrable with respect to the prior, then
also

dHell(µ
y, µyh) ≤ Cφ(ε).
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Proof. First, we bound the difference in the normalising constant using disintegration

|Zε − Zh| ≤
ˆ

(ā?µ0) (dh)

ˆ

µ0|ā=h(db, dc)
∣∣ρξ(Gε(b, c)−)− ρξ(Ḡ(h)− y)

∣∣

≤
ˆ

(ā?µ0) (dh)

ˆ

µ0|ā=h(db, dc) ‖ρξ‖∞
∥∥Gε(b, c)− Ḡ(h)

∥∥

≤ C

ˆ

(ā?µ0) (dh)

ˆ

µ0|ā=h(db, dc) ‖ρξ‖∞
∥∥Gε(b, c)− Ḡ(h)

∥∥

≤ Cφ(ε).

This allows us to bound the total variation distance as follows

dTV(µy, µyh) =

ˆ

(ā?µ0) (dh)

ˆ

µ0|ā=h(db, dc)
∣∣Z−1
ε ρξ(Gε(b, c)− d)− Z−1

h ρξ(Ḡ(h)− y)
∣∣

≤
ˆ

(ā?µ0) (dh)

ˆ

µ0|ā=h(db, dc)Z−1
h

∣∣ρξ(Gε(b, c)− d)− ρξ(Ḡ(h)− d)
∣∣

+
∣∣Z−1
h − Z−1

ε

∣∣Z−1
h

ˆ

(ā?µ0) (dh)

ˆ

µ0|ā=h(db, dc)ρξ(Gε(b, c)− d)

≤ CCφ(ε).

Similarly, we calculate the Hellinger distance

2dHell (µy, µyh)
2 ≤
ˆ

(ā?µ0) (dh)

ˆ

µ0|ā=h(db, dc)
∣∣∣Z− 1

2 ρξ(Gε(b, c)− d)
1
2 − Z−

1
2

h ρξ(Ḡ(h)− d)
1
2

∣∣∣
2

≤ I1 + I2

with

I1 ≤
2

Z

ˆ

(ā?µ0) (dh)

ˆ

µ0|ā=h(db, dc)
∣∣∣ρξ(Gε(b, c)− d)

1
2 − ρξ(Ḡ(h)− y)

1
2

∣∣∣
2

I2 ≤ 2(Z
1
2 − Z

1
2

h )2

ˆ

(ā?µ0) (dh)

ˆ

µ0|ā=h(db, dc)ρξ(Ḡ(h)− d).

We bound the first term using the assumption that K(b, c) has a finite second moment with respect to
the prior as follows

I1 ≤
2

Z

ˆ

(ā?µ0) (dh)

ˆ

µ0|ā=h(db, dc)

∥∥∥∥
(Dρξ)

2

ρξ

∥∥∥∥
∞

∥∥Gε(b, c)− Ḡ(h)
∥∥2 ≤ Cφ(ε)2.

Moreover, we know that I2 ≤ Cφ(ε)2 because the integral inside I2 is bounded and
∣∣∣Z 1

2 − Z
1
2

h

∣∣∣
2

≤ C
(
Z−3 ∨ Z−3

h

)
|Z − Zh|2 ≤ Cφ(ε)2.

Similar results hold for dTV(µ̄y, ā?µ
y) and dHell(µ̄

d, ā?µ
y), that is the distance between the push

forward of the multiscale posterior on the homogenised diffusion coefficient and the posterior of the
homogenised problem.

Moreover, an appropriate bound on the homogenisation error is obtained in Theorem 6. Note that
this result then also holds for log-Gaussian priors because the corresponding factor K(b, c) in front of ε
in Equation (21) in Theorem 6 has moments of all order.
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5 MCMC Simulations for the Multiscale Inverse Problem
MCMC simulations for Bayesian elliptic inverse problems, as introduced in the previous section, are
presented. We perform again an identical twin experiment by generating data corresponding to fixed
parameters b† and c† in order to study the consequences of homogenisation and especially the level set
structure of ā to the posterior in the Bayesian approach. We show both visually and by a histogram that
the samples of the MCMC chain are close to the level set ā−1(ā(b, c)). As in Section 3, we study both
the three dimensional toy model and higher order expansions. For all simulations, we set ε = 0.005 and
a0 = 3.

5.1 MCMC Simulations for the Extended Toy Model
We revisit the toy model of Section 3.3, this time considering the corresponding inverse problem. The
data is generated using the multiscale equation. We follow Section 3.3 by visualising the level set of
ā−1(ā(b†, c†)) for a three term expansion of the coarse and fine diffusion coefficients. Additionally, we
plot MCMC samples from the posterior of the corresponding inverse problem in Figure 10. We choose a
prior according to Equation (10) with

b0 = 0.5, bsk = 1, csk = 1

all other coefficients are zero,

and an observation operator O corresponding to 50 equally spaced observations of the pressure taking
the form

O(p) = {p(∆yi)}i=0,...,b1/∆yc ∆y = 0.02.

We generate artificial data corresponding to

y = O(G(aε(z†))) + η

with η ∼ N (0, σ2I) and z†0 = 0, z†2,1 = −0.5, z†4,1 = 0.5 and choose the forcing f = 2 + x2 in Equation
(1). As long as

observational noise� homogenization error,

it is natural to expect that the posterior concentrates along the level set ā−1(ā(b†, c†)) as the observational
noise decreases (compare Figure 10).

5.1.1 Distance to the Level Set ā−1(ā(b†, c†))

We are interested in the distribution of the distance of (b, c) to ā−1(ā(b†, c†)) according to the posterior
µy. We approximate this by considering the MCMC chain (zn0 , z

n
2,1, z

n
4,1). Naturally, the smaller the

observational noise is, the closer are the samples to the level set. This can be seen in Figure 11 depicting
MCMC samples for different choices of the observation noise corresponding to σ = 0.05, σ = 0.01 and
σ = 0.05. We quantify the distance by bounding the distance of each sample of the MCMC chain to the
level set

inf
c∈S

∥∥b(c)−
(
zn0 + zn2,1 sin(2πx)

)∥∥2

L2 +
∥∥c−

(
zn4,1 sin(2πy)

)∥∥2

L2 .

This can be bounded from above by the vertical distance
∥∥b(zn4,1 sin(2πy))−

(
zn0 + zn2,1 sin(2πx)

)∥∥2

L2 .

We present a histogram of this quantity for σ = 0.05 and σ = 0.01 in Figure 12. As expected, the dis-
tribution of the vertical distance to the level sets of the MCMC samples from the posterior corresponding
to σ = 0.01 is much closer to zero than those corresponding to σ = 0.05.
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Figure 10: MCMC points (green), manifold (red), level sets of the L2-distance to p† for σ = 0.05 (blue)

21

Article IV: Notes on a Bayesian Multiscale Elliptic Inverse Problem

238



(a) A viewpoint

(b) Another viewpoint

Figure 11: MCMC samples of the posterior µy for different magnitudes of observational noise σ = 0.05,
σ = 0.01 and σ = 0.05
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(a) Observational noise with σ = 0.05 and σ = 0.01

(b) Observational noise σ = 0.01

Figure 12: Histogram of the distance of MCMC samples to the level set ā−1(ā(b†, c†))

5.2 Distance of MCMC Samples to the Manifold for Higher Order Expan-
sions

We consider the elliptic multiscale inverse problem with 20 Fourier coefficients for each the fast and coarse
scales similar to Section 3.4. In this case, the MCMC samples cannot be visualised alongside the level
set ā−1(ā(b†, c†)) any more. Instead, similar to the last section, we show a histogram of vertical distances
to the manifold for different magnitudes of observational noise. The parametrisation in Equation (10) is
used with

bck = bsk = cck = csk =
1

k2
, . . . , k = 1, . . . , 5

bck = bsk = cck = csk = 0, . . . , k = 6, . . . ,∞

a(x) = a0 = 7.15444.

We take the forcing f = 2 + x2 in Equation (1). Moreover, we fix z† as one sample of the prior and
create artificial data. Again, we use an MCMC chain applied to the posterior corresponding to 50 equally
spaced observations, that is ∆y = 0.02 in Equation (7), with i.i.d. one-dimensional normal noise and
standard deviations σ = 0.05 and σ = 0.01. We take 100 random samples from a chain of 1000000 and
calculate the vertical distance to the level set. The result is presented in Figure 13.

Remark. The reason that there are only a few samples in the histograms in Figure 13, which have nearly
zero distance, is that the set of these points has a very small volume.

6 Conclusion and Avenues of Further Research
We have investigated an elliptic inverse problem with an additive multiscale structure. It was shown
that there exists a manifold of coarse and fine variables that homogenise to the same effective problem,
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(a) σ = 0.05 and σ = 0.01

(b) σ = 0.01

Figure 13: Histogram of the distance of MCMC samples to the level set ā−1(ā(b†, c†))

the level sets of the homogenised diffusion coefficient ā. Starting from the simple toy problem in Section
1.2, for which the homogenised diffusion coefficient corresponds to a constant function, we investigated
generalisations of the former.

Moreover, we considered higher Fourier expansions of the functions b and c. Through simulations,
we concluded that the Fourier coefficients of c influence almost only the constant mode of ā. Moreover,
the Jacobian of the Fourier coefficients of ā with respect to those of b is close to the identity. A possible
direction for further investigation is to justify this structure analytically using the Riemann-Lebesgue
lemma. In particular, the manifold structure of the level sets of ā is not as rich as expected. However,
this result justifies the consideration of an extended toy model based on two Fourier coefficients for b and
one coefficient for c.

Particular attention has been paid to the extended toy model both for representing the level sets of
ā in Section 3.3 and for MCMC simulations in Section 5.1.

Nevertheless, this research addresses the fundamental phenomenon in inverse problems that uncer-
tainty in some directions disappears and persists in others as the amount of data goes to infinity. For
the Bayesian approach, this often results in the posterior concentrating around a manifold. On the one
hand, this leads to the deterioration of MCMC methods as they often propose to points off the manifold.
On the other hand, we showed for the inverse problem at hand that it is sometimes possible to identify
an effective problem all of whose parameters can be identified as the amount of data goes to infinity. For
this example, we have clearly illustrated in Section 4.2 that the distributions along the level sets of ā are
dominated by the prior.

For this approximation result, we need a bound on the difference between the homogenised solution
p̄ and the multiscale solution pε. The resulting bound must be sharp enough in order to be integrable
with respect to the prior. This does not constitute a problem for the uniform series prior. However, we
have provided a sharp enough bound that also applies to log-Gaussian priors

It might be worth developing these initial findings by considering in more detail what the effect of
the dependence of ā on c has on the posterior. In particular, the dependence has an impact on both the
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curvature in the c-directions tangential to the level set and concentration behaviour in the c-directions
that are normal to the level set.

The location of the level sets is informed by the data such that methods for solving this Bayesian
inverse problem, which do not take this into account, are expected to degenerate quickly as the fine scales
become finer and the observational noise goes to zero. An interesting direction to pursue further is to
use this information in order to construct more efficient MCMC algorithms. It is of particular interest to
generate informed proposals. A promising direction is to generate large steps along the current level set
of ā and only smaller steps for the transversal. This should lead to a large improvement over proposing
steps that are isotropically small.

In these notes, we have assumed that both the fine scale ε and the forcing are known. Especially
assuming ε to be unknown constitutes a challenging problem. It would be an interesting direction to
develop MCMC algorithms to sample the marginal posterior on ε.

A Bound of the Homogenisation Error in L∞

The theory of homogenisation of elliptic PDEs is a well established field with many excellent textbooks
[3, 5, 12]. In this appendix, we derive an error bound of the form

‖pε − p̄‖∞ ≤ Kε

for the pressure pε and and the homogenised pressure p̄ as defined in the Equations (1) and (2) for
D = (0, 1). This bound is needed in order to verify the integrability assumptions in Theorem 5 which
depends on the prior. A bound on K is derived with explicit dependence on

a−1
inf , amax, ‖f‖∞ , ‖∂xa‖∞ , ‖∂ya‖∞ .

The standard approach to prove the error bound for the Dirichlet problem uses the maximum principle
and the asymptotic expansion as described in [3, p. 19]. However, an apprioriate maximum princple can
be found in [16] leading to constant K which is exponentially large in ainf . For this reason, we use a
more direct approach by considering explicit formulae for the solution

−
(
a(x,

x

ε
)p′ε
)′

= f p(0) = p(1) = 0. (20)

Integrating Equation 20 twice, we conclude that the solution is given by

pε(x) =

ˆ x

0

−F (s) + Cε
a(s, sε )

ds with

Cε =

ˆ 1

0

− F (s)

a(s, sε )
ds

(
ˆ 1

0

1

a(s, sε )
ds

)−1

.

The solution to the homogenised equation

− (ā(x)p̄′)
′

= f p(0) = p(1) = 0

ā(x) =

(
ˆ

a(x, y)−1dy

)−1

takes the form

p̄(x) =

ˆ x

0

−F (s) + C̄

ā(s)
ds with

C̄ =

ˆ 1

0

−F (s)

ā(s)
ds

(
ˆ 1

0

1

ā(s)
ds

)−1

≤ asup

ainf
‖f‖∞ .
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Our aim is to obtain a bound of the form

‖p̄− pε‖L∞([0,1]) ≤ K(asup, ainf , ‖∂xa‖∞ , ‖∂ya‖∞ , ‖F‖∞)ε

where K is a polynomial.

Theorem 6. The homogenisation error between pε and p̄ satisfies

‖p̄− pε‖L∞([0,1]) ≤ Cuniv(‖f‖∞ ∨ 1)2(a2
max ∨ 1)(a−5

min ∨ 1)(‖∂xa‖∞ ∨ 1)ε. (21)

Proof. Using the explicit formulae, we obtain

p̄− pε =

ˆ x

0

− (F (s) + C̄)a(s, sε )− (F (s) + Cε)ā(s)

ā(s)a(s, sε )
ds

=

ˆ x

0

−F (s)
(
a(s, sε )-ā(s)

)

ā(s)a(s, sε )
ds+

ˆ x

0

− C̄
(
a(s, sε )− ā(s)

)

ā(s)a(s, sε )
ds+

ˆ x

0

− ā(s)(C̄ − Cε)
ā(s)a(s, sε )

ds.

We call the terms in the last line Term A,B and C, respectively. We bound Term A using kε ≤ x < (k+1)ε
so that

A =

ˆ x

0

F (s)
(

ā(s)
a(s, sε ) -1

)

ā(s)
ds =

k∑

i=1

ˆ iε

(i−1)ε

F (s)
(

ā(s)
a(s, sε ) -1

)

ā(s)
ds+

ˆ x

kε

F (s)
(

ā(s)
a(s, sε ) -1

)

ā(s)
ds. (22)

We introduce the function h(z1, z2, z3) =
z1

(
z2
z3
−1

)

x2
and rewrite

∣∣∣∣∣∣

ˆ (i+1)ε

iε

F (s)
(

ā(s)
a(s, sε ) -1

)

ā(s)
ds

∣∣∣∣∣∣
=

∣∣∣∣∣

ˆ (i+1)ε

iε

h(F (s), ā(s), a(s,
s

ε
))ds

∣∣∣∣∣ .

We note that ∇h(z1, z2, z3) =
(
z−1

3 − z−1
2 , z1z

−2
2 ,−z1z

−2
3

)
. Thus, we can rewrite the above for some ξ(s)

on the line between (F (iε), ā(iε), a(iε, sε )) and (F (s), ā(s), a(s, sε )) as follows
∣∣∣∣∣∣∣∣

ˆ (i+1)ε

iε

h(F (iε), ā(iε), a(iε,
s

ε
))ds+

ˆ (i+1)ε

iε

∇h(ξ(s))
(
F (s)− F (iε), ā(s)− ā(iε), a(s,

s

ε
)− a(iε,

s

ε
)
)

︸ ︷︷ ︸
∆z

ds

∣∣∣∣∣∣∣∣
.

(23)
We note that

ˆ (i+1)ε

iε

h(F (iε), ā(iε), a(iε,
s

ε
))ds = F (iε)ā(iε)−1

ˆ (i+1)ε

iε

(
ā(iε)

a(iε, sε )
-1
)
ds

︸ ︷︷ ︸
0

.

Hence, it is left to bound the second summand in Equation (23). We note that

‖∇h‖L∞ ≤ Cuniva
−1
min ∨ a−2

min ∨ a−2
max ‖f‖∞ ≤ Cuniv

(
a−2

min ∨ 1
)

(‖f‖∞ ∨ 1)

‖∆z‖L∞ ≤ ε
(
‖f‖∞ ∨ a2

maxa
−2
min ‖∂xa‖∞ ∨ ‖∂xa‖∞

)
.

In this way, we obtain that
∣∣∣∣∣∣

ˆ (i+1)ε

iε

F (s)
(

ā(s)
a(s, sε ) -1

)

ā(s)
ds

∣∣∣∣∣∣
≤ Cunivε

2(‖f‖∞ ∨ 1)2(a2
max ∨ 1)(a−2

min ∨ 1)(‖∂xa‖∞ ∨ 1).
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Summing the terms, we have an error of size ε with explicit constant. The second summand for Term A
in Equation (22) can be bounded by ε times the supremum of the integrand. Combining both bounds
gives rise to

A ≤ Cunivε(‖f‖∞ ∨ 1)2(a2
max ∨ 1)(a−4

min ∨ 1)(‖∂xa‖∞ ∨ 1).

The Term B and C can be bounded in a similar fashion giving rise to

B ≤ Cunivε(‖f‖∞ ∨ 1)3(a3
max ∨ 1)(a−5

min ∨ 1)(‖∂xa‖∞ ∨ 1)

C ≤ Cunivε(‖f‖∞ ∨ 1)2(a2
max ∨ 1)(a−5

min ∨ 1)(‖∂xa‖∞ ∨ 1).

Combining the bounds for the Terms A, B and C the result follows.
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