
Eur. Phys. J. C (2016) 76:301
DOI 10.1140/epjc/s10052-016-4147-0

Regular Article - Theoretical Physics

Cylindrical solutions in mimetic gravity

Davood Momeni1,a, Kairat Myrzakulov1, Ratbay Myrzakulov1, Muhammad Raza2

1 Eurasian International Center for Theoretical Physics and Department of General and Theoretical Physics, Eurasian National University,
Astana 010008, Kazakhstan

2 Department of Mathematics, COMSATS Institute of Information Technology, Sahiwal 57000, Pakistan

Received: 12 May 2015 / Accepted: 17 May 2016 / Published online: 27 May 2016
© The Author(s) 2016. This article is published with open access at Springerlink.com

Abstract This paper is devoted to investigate cylindrical
solutions in mimetic gravity. The explicit forms of the met-
ric of this theory, namely mimetic-Kasner (say) have been
obtained. In this study we have noticed that the Kasner’s
family of exact solutions needs to be reconsidered under this
type of modified gravity. A no-go theorem is proposed for the
exact solutions in the presence of a cosmological constant.

1 Introduction

Exact solutions play a crucial role in general relativity (GR)
and modified gravity. The thermodynamic and dynamics of
the gravitational model are often attributed to the presence of
an exact solution, which solves the equations of motion. An
introduction of a new technique to find the solutions is also
an important and natural way to build modify gravity models
[1].

In cosmology of early Universe, we investigate the gener-
ally accepted doctrine that the universe is affecting to what
we termed as “topological defects” through exhaustion of
all sources of matter, and suggest that by virtue of a cos-
mic string mechanism which maintains its available energy is
self-gravitating. Energy is being “degraded” in objects which
are in the cosmos, but “elevated” or raised to a higher level
in strings [2,3]. One main motivation for us to study exact
cylindrical solutions in gravitational theories is to describe
such topological defects by Riemannian geometry. A sim-
ple description of the above topological defects is to find the
cylindrical solution by solving highly non linear field equa-
tions. In GR, the simplest cylindrical model described by the
class of exact cylindrical solutions were found by Kasner and
later on studied by several authors [4–8].

This type of cylindrical solution has remained popular in
the literature for some time with the name of cosmic string as

a e-mail: davoodmomeni78@gmail.com

a model to describe topological defects of early cosmology
and closed time like curves.

By definition, the time independent cosmic string metric
has the following properties:

gμν(t, r, ϕ, z) =

⎧
⎪⎪⎨

⎪⎪⎩

gta = 0 , a = {r, ϕ, z}
∂t gμν = 0 , μ, ν = {t, r, ϕ, z}
∂z, ∂ϕ , symmetries
R3 × S1 , Topology

. (1)

A cosmic string with cylindrical symmetry describes an
exact solution in GR in which a line source can be represented
by an interior solution in the limit where its radius tends to
zero.

Modified gravity has received much attention in recent
years due to its interesting properties, which offer important
solutions to cosmological queries about the origin of the Uni-
verse [9–11]. Modified gravity is an alternative theory for
gravity obtained from action principle and is produced by
the replacement of the Einstein–Hilbert action with general
function of the curvature and higher derivative terms of it (see
[12–15] for reviews). It has many possible uses in the gravi-
tational physics and has also been investigated as a potential
candidate for the formation of cosmic strings. For example
cosmic strings investigated in f (R) gravity [16,17], telepar-
allel theories [18–20], brane worlds [21], Kaluza–Klein mod-
els [22], Lovelock Lagrangians[23], Gauss–Bonnet [24–26],
Born–Infeld [27,28], bimetric theories [29], non-relativistic
models of gravity [30], in scalar-tensor theories [31–36],
Brans–Dicke theory [37–42], dilation gravity [43,44], non-
minimally coupled models of gravity [45] and recently the
Bose–Einstein condensate strings [46].

Recent research has allowed a prescribed number of mod-
els to propose, by what is called the “Mimetic Gravity”
(MG) [47], which are devoted to resolve the dark matter
problem using a class of restricted disformal transformations
gμν → ĝμν = �(φ)gμν (φ is an auxiliary field which can
be a complex function) of the physical metric gμν . In the
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multiple remarks people proposed to follow this main idea
from different points of view [48–55]. The general structure
of the cosmic strings in MG has not been investigated to ren-
der any comparison of this structure of strings with that of
other classical possible. The subject naturally divides itself
into two sections, which we here propose to treat separately;
cylindrical solutions in empty space, and passing on to the
presence of the non zero cosmological constant.

Our plan in this work is as the following: In Sect. (2) we
briefly review the basis of mimetic gravity, action and equa-
tions of motion. In Sect. (3) we prove a possible equivalency
between constant Ricci scalar solutions of this theory and
Einstein-massless scalar field theory. In Sect. (4) we study
static spacetimes in cylindrical form. In Sect. (5) we study
the possibility to have Kasner solutions as the known solu-
tions in GR in this type of modified gravity. In Sect. (6) we
study solutions with time dependent scalar field. In Sect. (7)
we investigate extensions of static solutions in the presence
of a cosmological constant term. We’ll conclude in Sect. (8).

2 Brief review of mimetic gravity

In this section we give a brief sketch of the formalism of
the MG theory [47]. Let us consider a specific class of dis-
formal transformations and call it reparametrization of the
metric gμν = (g̃αβ∂αφ∂βφ)g̃μν . A further generalization of
the Einstein–Hilbert Lagrangian along the disformal trans-
formation leads to so-called mimetic gravity models, whose
Lagrangian is the function of the Ricci scalar and the scalar
field φ itself:

S = −1

2

∫

d4x
√

−g(g̃μν,φ){R[gμν(g̃μν, φ)] + Lm}. (2)

We had supposed that g̃μν is an auxiliary metric andφ denotes
an auxiliary (non ghost) field. Eq. (2) is invariant under the
transformation

gμν = (g̃αβ∂αφ∂βφ)g̃μν,

hence the name disformal-symmetry. The simplest example
of the above MG action is the standard Einstein-Hilbert with
g̃αβ∂αφ∂βφ = 1. In addition, through the main part of the
paper we assume that the metric is static and non-dynamical,
therefore the only dynamical variable in the theory is the
internal scalar field φ. In this case the equations of motion
for the scalar field φ is nonlinear. The action given in (2) is
an alternative reformulation for GR, isolating the conformal
degree of freedom of scalar field φ in a covariant way. This
was done by introducing a physical metric gμν defined in
terms of an auxiliary metric g̃αβ and a scalar field φ appearing
through its first derivatives ∂φ.

Variation of (2) with respect to gμν, φ gives equations of
motion (EOM) (see e.g. Ref. [47]),

(Gμν − Tμν) − (G − T )gμαgνβ∂αφ∂βφ = 0, (3)

1√−g
∂κ [√−g(G − T )gκλ∂λφ] = ∇κ [(G − T )∂κφ] = 0.

(4)

The resulting EOMs given in Eqs. (3,4) are split into a
traceless equation obtained through variation with respect to
the auxiliary metric gμν in Eq. (3) and an additional sec-
ond order generalized Klein–Gordon equation Eq. (4) for
the trace part. Consequently the conformal degree of free-
dom became dynamical even in the absence of matter when
Lm = 0. One could show that this extra degree of freedom
for φ in the flat cosmological background can mimic cold
dark matter.

It is interesting to note that the fanciful integration of the
second field Eq. (4) over the manifold M leads to the van-
ishing normal derivative of the scalar field nμ∂μφ|∂M = 0,
since it occurs in the non GR regime (G − T ) �= 0:
∫

∂M
d3x

√
h(G − T )nμ∂μφ = 0. (5)

Regarding the trace of the EOM (3), there is a main difference
with GR (G − T ) = 0: the scalar field φ has a definite form,
and is being expressed in the following:

gαβ∂αφ∂βφ = 1. (6)

It suggests a solution from φ ∈ C for metric with appropri-
ate signature of the metric sign(g) = −2 (In cosmological
backgrounds we obtain φ ∈ R, due to the isotropicity and
homogeneity).

3 Notes on constant curvature MG

In this section we prove a general theorem about the exact
solutions in MG with the case in which Ricci scalar R = Rμ

μ

remains constant. Such type of solutions could be used to
explain late time behavior of cosmos in de Sitter epoch as well
as solutions with cosmological constant which lead to the
Schwarzschild-(Anti) de Sitter spacetime with a wide class
of different applications from cosmology to string theory.
Calculations show that the conformal degree of freedom can
be eliminated by adjusting the constant curvature condition,
providing conditions to compare with the exact solutions of
MG and GR.

We have discussed here about constant curvature cases and
definitely consider “Buchdahl’s model” which is a solvable
model, and whose action is Einstein-Hibert with a massless
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scalar field:

S = −1

2

∫

d4x
√−g

(
R + μ∂αφ∂αφ

)
. (7)

This action has static (time independent), exact solutions with
different symmetries [56]. We propose the following theo-
rem:

Theorem It is universally found that the MG with constant
curvature geometries describes the same theory of one pro-
posed by Buchdahl, These two models are equivalent in their
actions and dynamical features.

Proof When the equation of motion (3) is rewritten in the
case R = contant , a full equivalence of MG with the
equations of the motion given in (7) may be observed with

μ = −Gμ
μ

2 ; this applies especially the exact solutions. If the
equations of motion of the system can be solved with a spe-
cific symmetry, the solutions will also be recovered by those
given in [56]:

S = −1

2

∫

d4x
√−g

(
R − G

2
∂μφ∂μφ

)
, (8)

whose axially symmetric solutions are given by the follow-
ing:

ds2 = e2(γ−βψ)(−dr2 − dz2) − r2e−2βψdϕ2 + e2βψdt2.

(9)

In which the metric functions {ψ, γ } satisfy the following
equations:

r−1(rψ,r ),r + ψ,zz = 0, (10)

γ (r, z) =
∫ [

(rψ2
,r − ψ2

,z)dr + 2rψ,rψ,zdz
]
, (11)

φ = 2λψ, β = ±(1 − 2λ2)1/2, (12)

where ψ,r , ψ,z denote derivatives with respect to r, z. If β =
1 or λ = 0 and γ,z = ψ,z = 0 , Buchdahl solution reduced
to the vacuum Levi–Civita cylindrical solution [57]:

ds2 = r2mdt2 − r2m(m−1)(dr2 + dz2) − r2(1−m)dϕ2. (13)

For the dynamical point of view (for example in MG sce-
nario for inflation) it makes no difference between the action
of GR with a massless scalar field and the one in MG. This
equivalency between constant Ricci scalar R solutions of MG
and Einstein-massless scalar field theory is an essential fea-
ture of any purely kinetic (only function of ∂αφ∂αφ ) form
of this type of disformal deformation of GR.

4 Field equations for a static cylindrical spacetime

To find the solution of field equations in GR or MG than
in vacuum (exterior) or interior (non vacuum) regions, we

may have to adopt the more appropriate representation of
coordinates for metric. An appropriate standard frame for
cylindrical polar coordinates is (t, r, ϕ, z). The most general
form of a cylindrically symmetric spacetime is given by the
following metric:

ds2 = A(r)dt2 − dr2 − B(r)dϕ2 − C(r)dz2 (14)

Because to keep generality we write down EOMs in the
presence of a non zero cosmological constant  in following
forms:

A′

A

C ′

C
+ A′

A

B ′

B
+ B ′

B

C ′

C
− 4

(
A′′

A
+ B ′′

B
+ C ′′

C

)

+2

((
A′

A

)2

+
(
B ′

B

)2

+
(
C ′

C

)2
)

+ 12 = 0. (15)

A′

A

C ′

C
−

(
A′

A

)2

−
(
C ′

C

)2

+ 2

(
A′′

A
+ C ′′

C

)

= 4. (16)

B ′

B

C ′

C
−

(
B ′

B

)2

−
(
C ′

C

)2

+ 2

(
B ′′

B
+ C ′′

C

)

= 4. (17)

A′

A

B ′

B
−

(
B ′

B

)2

−
(
A′

A

)2

+ 2

(
A′′

A
+ B ′′

B

)

= 4.

(18)

respectively. The aim here is to find extended solutions for
the system of equations given in (15–18) for  = 0, �=
0. We suppose that the scalar field is cylindrical (could be
time dependent) φ = φ(r, t). In empty space,  = 0, the
gravitational field equations Eqs. (15–18) gives the following
exact solution for scalar field Eq. (6),

φ(r) = i(r − r0) ∈ C. (19)

We find that, except for the factor r0, this solution for scalar
field is transformed to a complex function in C.

The particular problem is to solve a system of non linear
differential equations (15–18) and to find the metric functions
A, B,C .

5 Realization of Kasner’s solution

Exact solutions for the Einstein equations with cylindrical
symmetry can lead to the following two parametric metric,
named Kasner solution: [1,4,5],

ds2 = (kr)2adt2 − dr2 − β2(kr)2(b−1)r2dϕ2 − (kr)2cdz2,

where k sets the length scale and β is a constant (is related
to the deficit angle of the conical space-time) [1,4,5]. Thus,
to solve the Einstein equation, we consider, not merely the
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value of metric functions for which Rμν = 0, but the value
of {a, b, c} for every possible value of the parameters:

a + b + c = a2 + b2 + c2 = 1. (20)

For Kasner metric, R = 0 and for quasi Kasner R �= 0, since
we supposed that in MG, (G−T ) = −R �= 0, so the Kasner
metric is also a trivial solution in MG . Does the quasi Kasner
solution with R �= 0 solves our MG system of the equations
given by Eqs. (15–18) or not?. We investigate this problem
in the following cases:

– Quasi–Kasner solutions in MG: A = (kr)2a, B =
β2r2(kr)2(b−1),C = (kr)2c:

The condition (G − T ) �= 0 wouldn’t stop us from find-
ing the quasi Kasner’s solutions if we wanted to, and it might
just make us surprise enough to find something similar to
GR. Substituting this value of solutions in Eqs. (15–18),
we observe that there are certain values of the parameters(
a, b, c

)
for which the quasi Kasner is a solution in MG:

ds2 = dt2 − dr2 − β2k2dϕ2 − (kr)2dz2, (0, 0, 1), (21)

ds2 = dt2 − dr2 − β2r2dϕ2 − dz2, (0, 1, 0), (22)

ds2 = (kr)2dt2 − dr2 − β2k2dϕ2 − dz2, (1, 0, 0). (23)

Substituting any solution of this group into the metric (20),
we obtain metrics of the type Kasner with R = 0. We con-
clude that quasi Kasner solutions don’t exist in MG.

– Non Kasner type of the exact solutions:

If we want to perform an elimination of A, C and B respec-
tively in Eqs. (15–18), we can specify this through use of a
lex ranking for the algebraic problem. We obtain:

B′′′ = −B′2B′′ − 2B′′2B
B′ B

(24)

C′′ = −2B′′ BB′C − B′3C + B′′ B2C′

B′ B2 (25)

A′ = −B′ C′ AB − 2B′2AC + 4B′′B AC

−BC′2 + B ′BC
. (26)

with a constraint:

−B ′2BC ′C − B ′3C2 + B ′B2C ′2 + 2B ′′B2BC ′

+ 2B ′′B ′BC2 = 0. (27)

Then by solving these differential equations, regarding the
three elements {A, B,C} as unknown functions, the values
of the latter may be computed as follows:

B(r) = C̃3(r − r0)
C1 , (28)

C(r) = C4(r − r0)
− 1

2C1+1+ 1
2 n

+C5 (r − r0)
− 1

2C1+1− 1
2 n, (29)

A(r) = C3e
−C1

∫
dr

C4(C1+ n
3 −2)(r−r0)

n
2 +3C5(C1− n

3 −2)(r−r0)
− n

2

C4(C1− n
3 − 2

3 )(r−r0)
1+ n

2 +C5(C1+ n
3 − 2

3 )(r−r0)
1− n

2
.

(30)

Here C̃3 = C3(−1)C1 , n =
√

−3C2
1 + 4C1 + 4,C3 > 0

where its value is to be bounded as C1 ∈ [− 2
3 , 2] to assure

all real values of n and r ≥ C2. We mention here that this
is verified that the metric functions Eqs. (28–30) to be exact
solutions to the vacuum field equations (15–18) using the
MAPLE GRTensor package.

When n = 0, the metric is explicitly identified by:

ds2 = ρ2dt̃2 − dρ2 − μdϕ2 − dz̃2,

μ = C4 + C5, ρ = r − C2, t̃ = t
√

C̃3, z̃ = z
√
C3. (31)

This solution corresponds to the vacuum Levi-Civita metric
presented in Eq. (13) for m = 1, i.e. the cosmic string, The
range of the angle ϕ does not precisely coincide with the flat
metric (0, 2π ], but the geometry is fairly close to that one,
where a metric coincide and meet in the exterior, with a deficit
angle, for exterior the quantity 1 − 4η = μ, here η defines
the gravitational mass per unit length of the spacetime.

Replacing the solutions given by (28–30) into the met-
ric (14), we find the following exact cylindrical symmetric
solution for MG with R �= 0:

ds2 =C3e
−C1

∫
dr

C4(C1+ n
3 −2)(r−r0)

n
2 +3C5(C1− n

3 −2)(r−r0)
− n

2

C4(C1− n
3 − 2

3 )(r−r0)
1+ n

2 +C5(C1+ n
3 − 2

3 )(r−r0)
1− n

2 dt2

−dρ2 − C̃3ρ
C1 dϕ2 −

(
C4 ρ− 1

2 C1+1+ 1
2 n + C5 ρ− 1

2
C1

+1 − 1

2
n
)

dz2, (32)

here the Ricci scalar is found as follows:

R =
[
(−1)1+C1 n2C1 C4 C5

]
ρ−1+2C1 . (33)

We observe that the Ricci scalar R given by the above
expression, is clearly non zero. The Kretschmann scalar
K = Rμναβ Rμναβ can be calculated for metric given in (32)
as follows:

K =
D(ρ,C1, ..,C5)

(
C4ρ

n/2 + C5 ρ−n/2
)−1

ρ4
(
C4 (−3C1 + n + 2) ρn/2 − C5 (3C1 + n − 2) ρ−n/2

)4 .

(34)

where we observe that D(ρ,C1, ..,C5) is a non-singular
function for ρ ∈ R. The Kretschmann scalar has singularities
located at ρ = 0, ρ+, ρ∗, ρl where:
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ρ+ =
(√−C4 (−2 + 3C1 − n)√

C5 (3C1 + n − 2)

)− 2
n

,C5 > 0 (35)

ρ∗ =
(√

C4 (−2 + 3C1 − n)√−C5 (3C1 + n − 2)

)− 2
n

,C5 < 0, (36)

ρl = e
− 1

n ln
(
−C4

C5

)

,
C4

C5
< 0. (37)

Here C4
C5

are arbitrary constants. We see that, this spacetime
has singularities as in the GR case. It is well known that the
static Levi–Civita spacetime is singular at r = 0, except for
m = 0, m = ± 1

2 and m → ∞. For these values of m, the
solution is regular and flat.

6 Solutions for time dependent scalar field φ = φ(r, t)

If we had a sufficiently complete cylindrical symmetry for the
scalar field φ(r), we might have to investigate cosmic strings
more directly by considering the resultant of the solutions
and the non static scalar field φ(r, t) which moves in the
same static cylindrical background. If we relax the staticity
(time independent) in φ, and we allow it to be time dependent
that is φ(r, t), thus by Eq. (6) of the scalar field, the exact
solution is expressed by:

φ(r, t) = at + b ±
∫

dr

√

a2

A(r)
− 1. (38)

The preceding investigation is based upon the assumption
that in solving the Hamilton–Jacobi equation (6) the isotropc-
ity of the field does not valid. The t −r component of Eq. (3)
gives us the following solutions:

– a = 0: This case corresponds to the static and cylindrical
solutions which we investigated in the previous section.

– A(r) = ±a �= {0, ±1
2 }: In this case, the modified forms

of the EOMs given in Eqs. (15–18) are obtained by the
following system:

(

−a ± 1

2

) [
B ′′

B
+ C ′′

C
− 1

2

(
B ′2

B2 + C ′2

C2

)]

= 0,(39)

B ′C ′ = 0, (40)

B ′′

B
+ C ′′

C
− 1

2

((
B ′

B

)2

+
(
C ′

C

)2
)

= 0. (41)

and

B ′′

B
− 1

2

(
B ′

B

)2

= 0. (42)

When B ′ = 0,C ′ �= 0 (or vice versa, without disturbing
the generality of discussion), we obtain:

C(r) = 1

2

(
c2

2
r2 + dcr + d2

2

)

. (43)

the metric is obtained as follows:

ds2 = (∓a)dt2 − dr2 − B2dϕ2

−dz2

2

(
c2

2
r2 + dcr + d2

2

)

. (44)

Where B is an arbitrary constant. Another choice is
obtained when B ′ �= 0,C ′ = 0:

ds2 = (±a)dt2 − dr2

−1

2

(
c′2

2
r2 + d ′c′r + d ′2

2

)

dϕ2 − C2dz2. (45)

here {C, d, c, d ′, c′} denote a new set of parameters and
±a > 0 (plus sign for a ∈ R+ and minus for a ∈ R−).
It is remarkable that the class (44) represents a cosmic
string when d = 0 , and the class (45) when we set d ′ = 0.

Most remarkable in this non static case is the structure of the
spacetime. There are never more than two parameters, and
the spacetime, usually so conspicuous in gϕϕ , are reduced to
cosmic strings. The reason to study cylindrical solutions with
time dependent scalar field backs to a big difference between
spherically and cylindrically symmetric metrics. In GR We
know that according to the Birkhoff theorem, there always
exist a timelike Killing vector ∂t in the spherically symmetric
vacuum solution. Consequently we can say that the spheri-
cally symmetric vacuum gravitating system is necessarily
static. However, the situation drastically changes when we
consider the cylindrically symmetric systems because there
is no analogue of Birkhoffs theorem in cylindrical symmetry.
During the gravitational collapse of a cylindrically symmetric
system, gravitational waves can be emitted and the exterior
region of a collapsing cylindrical body is not static [58]. Our
solution with time dependent scalar field with a static metric
could be a subset of the most general class of Einstein–Rosen
(ER) gravitational wave solutions in mimetic gravity in com-
parison with the GR solutions [59,60].

7 Case with cosmological constant

In the system of Eqs. (15–18), if we set  �= 0 and in the
absence of the scalar field φ = 0 , we already know a general-
ization of Kasner’s solutions to Linet–Tian (LT) family [6–8]
which is written in a slightly different coordinate system as
follows:
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ds2 = [tan(β(r + r̂))]γ1 [sin(2β(r + r̂))]2/3dt2

−dr2 − [tan(β(r + r̂))]γ2 [sin(2β(r + r̂))]2/3dϕ2

−[tan(β(r + r̂))]γ3[sin(2β(r + r̂))]2/3dz2,

r̂ ∈ R, �γi = 0, �i �= jγiγ j = −4

3
, γi ∈

[

−4

3
,

4

3

]

. (46)

In GR, the LT family was generalized to the case with a mass-
less scalar field φ �= 0 by the following exact solution[61]:

ds2 = −dr2 + e−2
√


3 r (ξ2e2

√
3r + 1)2/3

×(dt2 − dϕ2 − dz2),

φ(r) = ±2

√
6

3
tan−1(ξe

√
3r ) (47)

here R = 4. This exact solution has the following proper-
ties:

– If ξ2 > 0, the scalar field is real φ ∈ R , and the
Kretschmann scalar K = Rμναβ Rμναβ is free of any
naked singularity.

– When ξ ∈ C, we have a naked singularity located at
r = r0 = − 1

3a ln(|ξ |) where 0 < |ξ | < 1.
– When |ξ | > 1 the solution is free of naked singularities.

In modified gravity, every simple modified gravity the-
ory admitting constant curvature as solutions should admit
this solution as well. This is why LT solution also solves
F(R) theory for constant Ricci scalar. But in MG, because
we suppose that (G − T ) �= 0, to obtain different solutions
from the GR, consequently this condition is broken, because
G − T = −R − T , and if we take Tμν = gμν , the constant
curvature R = R0 �= 4 , as a result LT family doesnt exist
in MG. A way to realize the constant curvature solutions in
MG is to set Tμν = 0 and R = R0. But the solution won’t
be LT solution.

This argument is principally based on the following gen-
eral theorem, which is a remarkable extension of No-go the-
orems.

No-go Theorem: If we consider the MG with cosmologi-
cal constant, i.e. the system of differential equations given
by Eqs. (15–18), this theorem clearly state that the solution
given by Eq. (46) is not a solution to the MG theory.

Proof To obtain the corresponding mathematical proof con-
cerning the general form of equations of motion (15–18) ,
we eliminate A,C throughout by (15–18) and obtain (24).
If we want to perform an elimination of A, C , and then B
respectively, we can seek this through use of a lex ranking
for the algebraic problem. Paying attention merely to the
other equations [B ′C − C ′B �= 0, B ′ �= 0],we see that there
is no solution for the metric functions {A, B,C} with cos-
mological constant. Indeed, the only solution with constant

curvature is when  = 0 and this solution generally does not
coincide with the LT solution.

The general theorem is manifest, and yields a development
in any attempt to generalize LT family of corresponding MG
Lagrangian.

8 Discussions and final remarks

In this paper we investigated static cylindrical solutions for
mimetic gravity, a conformally invariant version of Einstein
gravity with a non ghost scalar degree of freedom. Accord-
ingly, if Ricci scalar R be a constant, mimetic gravity reduced
to Einstein–Hilbert action with a massless scalar field, (8).
The special limits of the functions of these metrics, namely
cosmic strings (say), may be used to investigate generally
the forming of a locally flat but globally different cylindrical
spacetime exterior to a cosmic string; the actual mass per
length could be determined by computing the metrics in a
particular case. Solutions of equations of motion in the vac-
uum case give precipitate with three singularities, when two
singular points are coincided. The summary of results might
have been written in a list as:

– Constant curvature vacuum solutions in mimetic gravity
are equivalent to the solutions in Einstein gravity with a
massless scalar field.

– Quasi Kasner solution doesn’t exist in mimetic gravity.
– A family of exact solutions with variable R is found

which are different from the Levi-Civita or Kasner family
in GR. This solution has four Kretschmann’s singulari-
ties, one is naked singularity on string’s axis ρ = 0, and
three cylindrical “horizons” as ρ+ ≤ ρ∗ ≤ ρl .

– Finding new solution, we relaxed φ(r, t) to be static
and began finding solutions in the two cases, namely
(c, d),(c′, d ′).

– When  �= 0, we proved the following theorem: No-
go Theorem: Mimetic gravity doesn’t have Linet-Tian
family of cosmic strings. The only possible solution is
when  = 0.

The theorem in absence of cosmological constant  in
cylindrical solution, with which we concluded, formed the
true no- go theorem to the existence of Linet-Tian cylindrical
cosmic strings in mimetic gravity, and would alone suffice to
establish the claim of equivalence of the mimetic gravity as
a minimal disformal deformation of Einstein gravity to the
Einstein-gravity with massless scalar field among mathemat-
ical complexities.
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