
The London School of Economics and Political Science

On the completability of mutually orthogonal Latin rectangles

by

Anastasia Kouvela

A thesis submitted to the Management Science Group of
the London School of Economics and Political Science

for the degree of
Doctor of Philosophy

London, August 2013

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by LSE Theses Online

https://core.ac.uk/display/19441069?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Declaration

I certify that the thesis I have presented for examination for the MPhil/PhD degree of the London School of
Economics and Political Science is solely my own work other than where I have clearly indicated that it is
the work of others (in which case the extent of any work carried out jointly by me and any other person is
clearly identified in it).

The copyright of this thesis rests with the author. Quotation from it is permitted, provided that full acknowl-
edgement is made. This thesis may not be reproduced without my prior written consent.

I warrant that this authorisation does not, to the best of my belief, infringe the rights of any third party.

I declare that my thesis consists of 138 pages (including bibliography).

Declaration

I confirm that Chapter 7 was jointly co-authored with Professor Frits C.R. Spieksma and Dr Trivikram
Dokka and I contributed 50% of this work.

i

Abstract

This thesis examines the completability of an incomplete set of m-row orthogonal Latin rectangles (MOLRm)
from a set theoretical viewpoint. We focus on the case of two rows, i.e. MOLR2, and define its independence
system (IS) and the associated clutter of bases, which is the collection of all MOLR2. Any such clutter gives
rise to a unique clutter of circuits which is the collection of all minimal dependent sets. To decide whether
an incomplete set of MOLR2 is completable, it suffices to show that it does not contain a circuit therefore
full knowledge of the clutter of circuits is needed. For the IS associated with 2-row orthogonal Latin rectan-
gles (OLR2) we establish a methodology based on the notion of an availability matrix to fully characterise
the corresponding clutter of circuits. We prove that the clutter consists of twenty-one non-equivalent circuits
and illustrate each one. This work adds to the few IS in the literature for which the clutter of circuits is fully
characterised as it is known that unless P=NP there is no polynomial time algorithm generating the clutter
of either bases or circuits of an arbitrary IS. We also present seven non-equivalent circuits for the set of 3
MOLR2 thus providing a partial description of the associated clutter.

After establishing a particular relationship between sets of MOLR2 and Latin rectangles, we prove that
completing an incomplete set of n− 1 MOLR2 is NP-complete. We also show that every set of t MOLR2
can be completed to a set of t′ MOLR2 where t < t′ ≤ n − 1, and conclude that the clutter of circuits for
any set of t MOLR2 is a subset of the clutter of circuits for t′ MOLR2.

To address the OLR2 completability problem from an integer programming (IP) perspective, we present a
new IP 3-index formulation. After analysing its structure we formulate all twenty-one circuits of OLR2 as
constraints and follow a sequential lifting procedure to derive maximally lifted inequalities, valid not only
for the OLR2 polytope but also for the much larger mutually orthogonal Latin squares (MOLS) polytope.
Next we present two IP formulations for the general MOLRm case and compare their structure. Three
constraint programming (CP) formulations are also provided for which a series of redundant models are
linked together with use of channelling or inverse constraints, aiming to improve constraint propagation and
reduce computational time.

The most recent applications of MOLRm are also discussed, namely in telecommunications and wireless
networks for the transmission of data. Latin rectangles are also known to have applications in scheduling
and for this we present a variation known as the multi-index bottleneck assignment problem (MBA). For this
problem we settle the complexity status and present IP and CP formulations. For fast computational results,
we present three heuristic algorithms for particular instances and prove their approximation guarantee.

ii

Acknowledgements

I would like to express my appreciation and gratitude to Professor Gautam Appa for his guidance and sup-
port, both as an academic supervisor and as a mentor in life.

I feel privileged to have worked with Dr Dimitris Magos and Dr Yiannis Mourtos during my studies. They
have greatly influenced the formation of my scientific thought and perception of academic ethos. I also feel
fortunate to have worked closely with Professor Reinhardt Euler and I would like to thank him for being an
inspirational and supportive teacher.

Dr Trivikram Dokka and Professor Frits C.R. Spieksma are valuable colleagues and I would like to express
my deep gratitude for the stimulating discussions we’ve had over the past years.

I thank Dr Katerina Papadaki, Dr Giacomo Zambelli and Professor Gregory Sorkin for their constructive
feedback and guidance.

The Management Science Department of the London School of Economics and Political Science has been
a place full of intelligent and welcoming people. I would like to give special thanks to Brenda Mowlam for
her comforting words of reason throughout all these years. I feel fortunate to have spent the endless hours
of study next to my fellow PhD students and friends Dr Nayat Horozoglu, Özlem Karsu, Ioannis Fragos and
Dr Dimitrios Karamanis and I thank them for their positivity and sense of humour.

None of this would have been possible without Pavlina, Litsa and Konstantinos Kouvelas; my family. Each
in their unique way, has been there for every step of the way.

iii

Preface

This thesis considers the problem of completing m-row mutually orthogonal Latin rectangles (MOLRm) of
order n and some variations of this problem.

The main inspiration for this topic has been the stimulating combinatorial problem of mutually orthogonal
Latin squares (MOLS). Due to their particular symmetrical structure and variety of applications in cryp-
tography, statistical design, scheduling and timetabling, tournament design and other (see [20], [23], [48]),
MOLS are extensively studied by mathematicians and computer scientists over the past two centuries. It is
well known that certain orders of MOLS, such as a pair of orthogonal Latin squares (OLS) of order 2 and 6

do not exist and there is a wide range of work dating back to L. Euler in 1849 (in [22]) providing proofs for
the infeasible 6×6 case ([60], [62], [32], [68], [27], [3]). The next unresolved existence question in this field
is the set of 3 MOLS of order 10. It is thought that this does not exist but despite numerous efforts ([53],
[43], [50], [40], [21]) its existence remains an open question. Existing approaches for proving non-existence
of certain orders of MOLS, rely primarily on exhaustive enumeration of cases and these proofs may deliver
better results as computer power improves. However, to our knowledge limited work has been done to un-
derstand what is hidden in the structure of orders of MOLS that explain their existence or non-existence.

Our investigation of reasons for non-existence takes a different approach. We address a similar but smaller
problem: determining whether an incomplete set of MOLRm of order n (m < n) is completable or, in other
words, if there exists a completed set of MOLRm of order n that contains the incomplete one. It is smaller
than the general problem of finding a set of MOLS, in the sense that a) there are fewer rows and b) some
cells already have values. To solve the MOLRm problem, it suffices to characterise all sets of MOLRm
of a particular order that are not completable. Minimal such sets define circuits of the associated indepen-
dence system (formal definitions appear in Chapter 2) and the collection of circuits is known as the clutter
of circuits. Therefore an incomplete set of MOLRm is completable if and only if it contains no circuit and
complete knowledge of the clutter of circuits answers the completability question.

There are antecedents to our approach. Mann in [49] provides a necessary but not sufficient condition for
the completability of the general OLS case. R. Euler et al. in [30] initiated the study of circuits for the prob-
lem of completing Latin squares and this work was continued in [29] and [31] where the completability of
2-row and 3-row Latin rectangles is studied. In this thesis, we extend R. Euler’s work to pairs of orthogonal
rectangles for the first time. We fully characterise the clutter of circuits for 2-row orthogonal Latin rectan-

iv

gles (OLR2) and also provide a partial description of the clutter of circuits for the set of 3 2-row mutually
orthogonal Latin rectangles (MOLR2).

Since there can be no polynomial time algorithm (unless P= NP) generating the clutter of either bases or
circuits of an arbitrary independence system [61], our work adds to the few independence systems in the
literature, for which the clutter of circuits is fully characterised (see [47] and [61]). Moreover, deriving the
family of circuits associated with an independence system is a special case of the hypergraph transversal
problem as studied in [44], which has many applications in computer science. In addition, the results on
circuits presented in this thesis have some further polyhedral implications that are also discussed, i.e., they
easily give rise to lifted circuit inequalities for the polytope associated with OLS and MOLS. Last, our ap-
proach becomes evidently valuable for further work on the complete characterisation of both circuits and
associated inequalities for MOLS and possibly for proving infeasibility of certain MOLS or other highly
symmetric combinatorial problems.

This thesis is organised as follows. Chapter 1 outlines basic definitions and concepts needed for this work
and provides a short dictionary of most commonly used acronyms, notation and terms. In Chapter 2, a for-
mal definition for sets of MOLR is given in two ways which are in 1 − 1 correspondence: as arrays and as
sets. This serves to provide respectively a visual representation and a means for developing a set theoretical
framework. In this chapter, generic definitions for independence systems associated with sets of MOLR2
and their related clutter of bases and circuits are established for the first time in the literature, setting the the-
oretical infrastructure for further work on this topic. We also define the availability matrix, a configuration
conceived in [29] that enables structured and exhaustive proofs for characterising clutter of circuits for sets
of MOLR. A list of the most recent applications of sets of MOLR in telecommunications wireless networks,
the transmission of visual data and more are also discussed.

Chapter 3 starts by establishing a connection between a Latin square and a set of n − 1 MOLR2, both of
order n which is used to next prove that:
a) it is always possible to complete a 2-row Latin rectangle to a set of n− 1 MOLR2 and
b) completing an incomplete set of n− 1 MOLR2 is NP-complete.

The rest of the chapter focuses on proving that any knowledge of the clutter of circuits for a set of t
MOLR2 directly contributes to the characterisation of the clutter of circuits for a set of t′ MOLR2 where
t < t′ ≤ n− 1. This links to the last section of Chapter 4 where it is shown that some of the derived circuits
in fact contribute to the characterisation of the clutter of circuits related to the general MOLS problem. Fi-
nally, to get a better understanding of the size of this problem we count the members in the clutter of bases
associated to 2-row Latin rectangles, OLR2, and MOLR2.

Characterising the clutter of circuits for OLR2 has been an important goal of this thesis. Though the nature
of the problem required a highly enumerative approach to derive up to equivalence the complete list of cir-

v

cuits in this clutter, the results apply not just to a specific value of n but for any n ≥ 7 (and for n < 7 a
subset of circuits listed suffices). We start in Chapter 4 first by presenting the 5 non equivalent circuits de-
rived in [29] for the case of 2-row Latin rectangles and then continue to describe and apply the methodology
for deriving all circuits for OLR2. This involves the use of the availability matrix and an examination of all
possible cells that can be emptied to derive minimal incomplete OLR2. In addition to R. Euler’s circuits for
Latin rectangles, we conclude that the OLR2 case consists of five non-equivalent classes of circuits contain-
ing in total twentyone non-equivalent circuits. This work is also extended in the first section of Chapter 6
where we present an initial list of seven new non-equivalent circuits with an interesting structure for the set
of 3 MOLR2.

The MOLS problem is a special case of an assignment and this is the main focus of Chapter 5. The aim
here is to derive a solution to the problem of finding or completing a set of MOLR, with use of optimisation
techniques. Here we present a 3-index formulation for the OLR case which is attributed to R. Euler and
continue to formulate all circuits derived in the previous chapter, as circuit inequalities. To strengthen the
LP relaxation of the model we then maximally lift these circuit constraints that represent valid inequalities
not only for the OLR case but also for the general MOLS problem. An extension of this formulation for the
general MOLS case is presented in Chapter 6 for the fist time, followed by an extension of Gale’s formu-
lation (for the OLS case in [19]) to the general MOLS problem. The focus of this chapter is to present and
analyse formulations for MOLR (MOLS) in general; we therefore also discuss new Constraint Programming
(CP) formulations and introduce what are known as redundant models, for the case of MOLS, to improve
constraint propagation and computational times.

Finally, Latin rectangles (squares) are known for their numerous applications in scheduling and timetabling.
Chapter 7 starts by describing an application of Latin rectangles for a truck scheduling problem and then
continues to describe a variation of this problem known as the multi-index bottleneck assignment problem
(MBA). This is divided into three types, complete, mixed and arbitrary (detailed definitions are given in the
chapter). Inspiration for addressing this problem was a statement by Burkard et al. in [13], that the com-
plexity status of the complete-MBA problem is open. We prove that it is NP-hard. After presenting IP and
CP formulations for this problem we then describe three new heuristics, one for each type, and prove their
approximation guarantee. This chapter consists of joint work with F. C. R. Spieksma and T. Dokka from the
University of Leuven and the complexity results as well as the two approximation algorithms given for the
arbitrary and mixed case are published in [26].

A concluding note both for the MOLR study and the MBA problem is included at the end of each chapter.

vi

Contents

1 Preliminaries 1
1.1 Sets . 1
1.2 Independence systems, bases and circuits . 2
1.3 Complexity . 4
1.4 Graph Theory . 5
1.5 Integer Programming . 6
1.6 Constraint Programming . 8
1.7 Notation dictionary . 9

2 The independence system of 2-row Latin rectangles, OLR2 and sets of |T |MOLR2 11
2.1 Latin rectangles, OLR2 and sets of |T |MOLR2 . 12

2.1.1 Basic definitions . 12
2.1.2 The independence systems . 15
2.1.3 Incomplete rectangles . 16
2.1.4 The availability matrix A(R1−, i) . 18

2.2 Motivation . 20
2.3 Applications . 22
2.4 Concluding remarks . 23

3 Theoretical results 24
3.1 From Latin squares to sets of n− 1 MOLR2 and vice versa 24
3.2 Complexity results . 26
3.3 The size of clutters B1 , B2 and B3 . 29
3.4 Concluding remarks . 32

4 On the clutter of circuits C2 33
4.1 The clutter of circuits C1 . 34
4.2 The clutter of circuits C2 \C1 . 36

4.2.1 Class C2,4 . 37
4.2.2 Class C2,0 . 38
4.2.3 Class C2,1 . 57

vii

4.2.4 Class C2,2 . 60
4.2.5 Class C2,3 . 63

4.3 Global circuits . 64
4.4 Concluding remarks . 65

5 Formulations and lifted circuit inequalities for MOLR2 66
5.1 A 3-index Integer Programming formulation for MORL2 66
5.2 Theoretical results for circuit inequalities . 68
5.3 Lifted circuit inequalities . 70

5.3.1 Lifted circuit inequalities for C2,4 . 70
5.3.2 Lifted circuit inequalities for C2,3 . 71
5.3.3 Lifted circuit inequalities for C2,2 . 73
5.3.4 Lifted circuit inequalities for C2,1 . 74
5.3.5 Lifted circuit inequalities for C2,0 . 75

5.4 Concluding remarks . 76

6 On the clutter of circuits C3 and formulations for sets for 3 MOLRm 77
6.1 An introduction to C3 . 78
6.2 A 3-index Integer Programming formulation for a set of 3 MOLRm 82
6.3 A 5-index Integer Programming formulation for a set of 3 MOLRm 84
6.4 A Constraint Programming formulation for a set of 3 MOLRm 85
6.5 Concluding remarks . 89

7 The multi-level bottleneck assignment problem (MBA) 91
7.1 Problem description . 92
7.2 Complexity results . 93
7.3 Formulations for the MBA problem . 95

7.3.1 An Integer Programming formulation . 95
7.3.2 A Constraint Programming formulation . 96

7.4 Approximation algorithms for the MBA3 problem . 97
7.4.1 Sequential Bottleneck heuristic . 98
7.4.2 Assign and Bottleneck heuristic . 104
7.4.3 Heavy Weight heuristic . 106

7.5 Concluding remarks . 108

Appendix A: Completion of pink rectangles 107

Appendix B: Lifted circuit inequalities 110

Appendix C: Circuits in C3 \C2 122

viii

List of Tables

2.1.1 2-row Latin rectangle of order 4 . 12
2.1.2 OLR2 of order 4 . 12
2.1.3 A set of 3 MOLR2 of order 4 . 13
2.1.4 The Latin rectangle of Table 2.1.1 . 13
2.1.5 The OLR2 of Table 2.1.2 . 13
2.1.6 The set of 3 MOLR2 of Table 2.1.3 . 13
2.1.7 Performing permutation i1 ↔ i2 on Table 2.1.5 . 14
2.1.8 Performing permutation j3 ↔ j4 on Table 2.1.7 . 15
2.1.9 Performing permutation k1

1 ↔ k1
3 on Table 2.1.8 . 15

2.1.10 An incomplete rectangle of order 4 that is incompletable 16
2.1.11 An incomplete rectangle of order 4 that is completable 17
2.1.12 A pair of incomplete rectangles of order 4 . 17
2.1.13 An incomplete rectangle of order 4 . 18
2.1.14 Completed rectangles of Table 2.1.13 . 19

3.1.1 An OLR2 of order 4 . 25
3.1.2 A 3-row Latin rectangle of order 4 . 25
3.2.1 A set of n− 1 incomplete 2-row rectangles . 27
3.2.2 A set of 3 incomplete 2-row rectangles of order 4 . 27
3.2.3 An incomplete square of order 4 . 27
3.2.4 An incomplete 3-row rectangle . 28
3.2.5 Availability matrix for row i3 of R1− in Table 3.2.4 . 28
3.3.1 The number of members in B1 for various orders n . 30
3.3.2 The number of members in B2 for various orders n . 31
3.3.3 r4(n) for various orders n . 31
3.3.4 The number of members in B3 for various orders n . 31

4.1.1 Representative of C1,1 . 34
4.1.2 Representative of C1,2 , C1,3 , C1,4 and C1,5 . 35
4.1.3 Number of C1 members for various orders of n . 36
4.2.1 Set E . 37

ix

4.2.2 An OLR2 . 38
4.2.3 A pair of Latin rectangles in Q . 39
4.2.4 Removing E from Table 4.2.3 . 39
4.2.5 R− of type I and corresponding availability matrix . 40
4.2.6 All possible ways of completing R− of Table 4.2.5 . 41
4.2.7 R− of type II and corresponding availability matrix . 41
4.2.8 All possible ways of completing R− of Table 4.2.7 . 41
4.2.9 R− of type III and corresponding availability matrix . 42
4.2.10 All possible ways of selecting values in A of Table 4.2.9 42
4.2.11 Pink rectangles that share no element with E (continued in Table 4.2.11) 44
4.2.12 Pink rectangles that share no element with E . 45
4.2.13 Non-pink rectangles that share no element with E . 46
4.2.14 All pink rectangles that share no element with E . 54
4.2.15 Non-dominated pink rectangles of Table 4.2.14 . 55
4.2.16 Representative of C12,0 . 55
4.2.17 Representative of C22,0 . 55
4.2.18 Representative of C32,0 . 56
4.2.19 Representative of C42,0 . 56
4.2.20 Representative of C52,0 . 56
4.2.21 Permitted combinations of R and R′− . 56
4.2.22 Pink rectangles that share one element with E . 57
4.2.23 Non-dominated pink rectangles that share one element with E 59
4.2.24 Representative of C12,1 . 59
4.2.25 Representative of C22,1 . 59
4.2.26 Representative of C32,1 . 59
4.2.27 Representative of C42,1 . 59
4.2.28 Representative of C52,1 . 60
4.2.29 Representative of C62,1 . 60
4.2.30 Pink rectangles that share two elements with E . 61
4.2.31 Non-dominated pink rectangles that share two elements with E 61
4.2.32 Representative of C12,2 . 62
4.2.33 Representative of C22,2 . 62
4.2.34 Representative of C32,2 . 62
4.2.35 Representative of C42,2 . 62
4.2.36 Representative of C52,2 . 62
4.2.37 Representative of C62,2 . 62
4.2.38 Representative of C72,2 . 63
4.2.39 Representative of C12,3 . 63
4.2.40 Representative of C22,3 . 64

x

5.1.1 Number of variables and constraints . 68
5.3.1 A pair of incomplete rectangles containing no circuit . 71
5.3.2 Representative of C12,3 . 72
5.3.3 Representative of C12,3 . 72

6.1.1 Circuit in C3 \C2 . 79
6.1.2 An OLR2 . 79
6.1.3 An OLR2 . 80
6.1.4 Completing rectangles of Table 6.1.1 . 80
6.1.5 Completing rectangles of Table 6.1.1 . 80
6.1.6 Completing rectangles of Table 6.1.1 . 80
6.1.7 A set of 3 MOLR2 . 81
6.1.8 Circuit in C3 \C2 . 81
6.1.9 Circuit in C3 \C2 . 81
6.1.10 Circuit in C3 \C2 . 81
6.1.11 Circuit in C3 \C2 . 81
6.1.12 Circuit in C3 \C2 . 81
6.1.13 Circuit in C3 \C2 . 82
6.2.1 A violation of orthogonality . 83

A.1 Completion of type I pink rectangles . 110
A.2 Completion of type II pink rectangles (Continued in Table 7.5) 111
A.3 Completion of type II pink rectangles . 112
A.4 Completion of type III pink rectangles . 112
C.1 Circuit in C3 \C2 . 125
C.2 An OLR2 . 125
C.3 An OLR2 . 125
C.4 Completing rectangles of Table C.1 . 126
C.5 Completing rectangles of Table C.1 . 126
C.6 Completing rectangles of Table C.1 . 126
C.7 Completing rectangles of Table C.1 . 126
C.8 A set of 3 MOLR2 . 126
C.9 Circuit in C3 \C2 . 127
C.10 An OLR2 . 127
C.11 An OLR2 . 127
C.12 An OLR2 . 127
C.13 Completing rectangles of Table C.9 . 127
C.14 Completing rectangles of Table C.9 . 128
C.15 Completing rectangles of Table C.9 . 128
C.16 Completing rectangles of Table C.9 . 128

xi

C.17 A set of 3 MOLR2 . 128
C.18 Circuit in C3 \C2 . 128
C.19 An OLR2 . 129
C.20 An OLR2 . 129
C.21 Completing rectangles of Table C.18 . 129
C.22 Completing rectangles of Table C.18 . 129
C.23 Completing rectangles of Table C.18 . 129
C.24 Completing rectangles of Table C.18 . 130
C.25 A set of 3 MOLR2 . 130
C.26 Circuit in C3 \C2 . 130
C.27 An OLR2 . 130
C.28 An OLR2 . 131
C.29 An OLR2 . 131
C.30 Completing rectangles of Table C.26 . 131
C.31 Completing rectangles of Table C.26 . 131
C.32 Completing rectangles of Table C.26 . 131
C.33 A set of 3 MOLR2 . 132
C.34 Circuit in C3 \C2 . 132
C.35 Circuit in C3 \C2 . 132
C.36 An OLR2 . 132
C.37 An OLR2 . 133
C.38 An OLR2 . 133

xii

List of Figures

3.2.1 Venn diagram illustrating Corollary 3.2.3 . 29

4.0.1 The clutter of circuits C|T | . 34
4.2.1 Venn diagram illustrating Scenario 1 (left), Scenario 2 (centre) and Scenario 3 (right) 37
4.2.2 Availability matrices for Case 1 . 45
4.2.3 Completion of non-pink R1− . 47
4.2.4 Completion of pink R∗1−, R2−, R∗2− . 47
4.2.5 Availability matrices for Case 2 . 47
4.2.6 Completion of non-pink rectangles R3−, R∗3−, R4− . 48
4.2.7 Completion of pink R∗4− . 48
4.2.8 Completion of non-pink R∗5− . 49
4.2.9 Availability matrices for Case 4 . 50
4.2.10 Completion of non-pink R7−, R9− . 50
4.2.11 Completion of pink R∗6−, R∗7−, R8−, R10−, R11− . 50
4.2.12 Availability matrices for Case 5 . 51
4.2.13 Completion of non-pink R∗12, R13−, R∗13−, R14−, R∗14− 52
4.2.14 Completion of pink R15−, R∗15− . 52
4.2.15 Availability matrices for Case 6 . 53
4.2.16 Completion of non-pink R∗16−, R∗17−, R18−, R∗19−, R20, R∗20−, R21−, R22− 53
4.2.17 Completion of pink R23−, R24− . 54
4.2.18 Availability matrices corresponding to pink R∗25−, R∗26−, R∗27− 58
4.2.19 Availability matrices corresponding to R28−, R29− . 61

6.1.1 Venn diagram illustrating Scenario 1 (left), Scenario 2 (right) 78
6.1.2 Venn diagram illustrating Scenario 3 (left), Scenario 4 (right) 79

7.1.1 MBA example for m = 3, n = 4 . 93
7.2.1 N3DM example for m = 3, n = 4 . 94
7.4.1 Example for worst-case performance of SB . 100
7.4.2 Solution with duty cost 1, corresponding to “Yes” instance of 3DM 103
7.4.3 Solution with duty cost 2, corresponding to “No” instance of 3DM 103
7.4.4 Example for worst-case performance of AB . 106

xiii

7.4.5 Example for worst-case performance of HW . 108
7.5.1 Optimal solution to MBA is not optimal solution to FMBA. 109

xiv

Chapter 1

Preliminaries

This chapter provides a preliminary note on the fundamentals used throughout this study, assuming that
the reader is familiar with linear algebra. All concepts presented here are commonly used in the relevant
literature and definitions borrowed are presented as in the most popular texts. More specifically, Section 1.1
introduces the basics on sets, Section 1.2 introduces independence systems, bases and circuits as described
in [42]. Next, Section 1.3 describes the fundamentals of complexity theory classes as stated in [1] and [66]
and Section 1.4 presents some basics on graph theory as described in [12], [24], and [37]. Sections 1.5 and
1.6 provide a brief introduction to Integer Programming and Constraint Programming as in [67] and [8],
[39], [56], [65], [38]. Finally, Section 1.7 provides a dictionary for ready reference, of acronyms, terms and
notation frequently used in this study.

1.1 Sets

A set, is a collection of elements where no two are identical. For example E = {e1, e2, e3, e4} is a set,
where e1, e2, e3, e4 are its elements or members. A multiset is a generalised concept of a set that relaxes
this criterion. The order in which the elements of a set or a multiset appear is of no importance. If ei is a
member E this is denoted by ei ∈ E while if ei is not a member of E it is denoted by ei /∈ E. A set with n
elements is called an n-set and a set with no elements is denoted by ∅ and is known as an empty set. Finally,
the number of elements in set E is denoted by |E| and is known as the cardinality of E. For this study all
sets are assumed to be finite.

We denote by N and Z the set of natural and integer numbers respectively, including zero and by B ⊂ Z the
set {0, 1}. The subscript ‘+’ restricts the sets to numbers > 0, for example Z+ = {x ∈ Z : x > 0} is
the set of all positive integer numbers. For a set of numbers E, we denote by max(E) the maximum (i.e.
greatest) element of E and by min(E) the minimum (i.e. smallest) element of E. For e a real number, we
denote by dee the least integer ≥ e and by bec the greatest integer ≤ e.

Let E and F to be two sets, then E ∪ F is the union of E and F , {x : x ∈ E or x ∈ F}; E ∩ F is

1

the intersection of E and F , {x : x ∈ E and x ∈ F}. Furthermore, E\F is the difference of E and F ,
{x : x ∈ E and x /∈ F}. Finally, if e1 is an element of E then E\{e1} is set E without element e1.

Let F be a set that contains all elements of E, then this is denoted by E ⊆ F and E is known as a subset
of F and we often say that E is contained in F . Now if E is not a subset of F it is written as E * F . The
notation E ⊂ F indicates that E is a subset of F and E 6= F with E 6= ∅. In this case we call E a proper
subset of F . Two sets E and F for which E ∩ F = ∅ are called disjoint.

A partition of a set E is a set of subsets S such that:
- all sets in S are pairwise disjoint
- the union of all sets of S forms the whole set E
- none of the sets in S are empty

Given a set E, the collection I of subsets of E is called a family of sets over E. A member of I is maximal
if it is not a proper subset of any member of I and minimal if none of its proper subsets is a member of I.

An ordered list of objects G = (g1, g2, ... , gm) is called a sequence and just as for sets, g1, g2, ... , gm are
called its elements or members. However, unlike sets, the order in which the elements appear in a sequence
is important and the same element can appear multiple times in different positions of the sequence. A k-
tuple is a sequence of k elements. Let E1, E2, ... , Ek be k sets that do not necessarily contain the same
number of elements. The set of all possible ordered k-tuples whose first element is a member of E1, second
element is a member of E2 and so on, is called the Cartesian product of the k sets and is denoted by
E1 × E2 × ...× Ek = {(e1, e2, ... , ek) : ei ∈ Ei}.

1.2 Independence systems, bases and circuits

An independence system S is an ordered pair (E, I) of a finite set E and a family I over E satisfying the
following condition: Let I be a member of I and let J be a subset of I , then J also belongs to I. Formally,

J ⊂ I ∈ I ⇒ J ∈ I (1.2.1)

Given an independence system S = (E, I), the set E is called the ground set of S and a member of I is
known as an independent set of S. Furthermore, any subset of E not contained in I is called a dependent
set of S.

Example 1.2.1
Let E = {e1, e2, e3, e4} and I = {{e1}, {e2}, {e3}, {e1, e2}, {e2, e3}}. Thus, I contains all independent
sets of the system S = (E, I) and the dependent sets of S are:

{{e4}, {e1, e3}, {e1, e4}, {e2, e4}, {e3, e4}} ∪ {X ⊆ E : |X| ≥ 3}

2

Definition 1.2.1. Every maximal independent set I ∈ I is called a basis. Therefore I is such if,

@ I ′ ∈ I such that I ⊂ I ′ (1.2.2)

The collection B of all such sets is called the clutter of bases. It follows from the definition above that, every
independence system S = (E, I) induces a unique clutter of bases B.

Definition 1.2.2. Every minimal dependent set C ∈ E is called a circuit. Therefore C is a circuit if it
satisfies the properties,

C /∈ I (1.2.3)

and

∀ c ∈ C, C\{c} ∈ I (1.2.4)

The collection C of all such sets is called the clutter of circuits and it follows from the definition above that,

Proposition 1.2.3. Every independence system S = (E, I) induces a unique clutter of circuits C.

Example 1.2.2
Continuing from Example 1.2.1, the clutter of bases is B = {{e1, e2}, {e2, e3}} and the clutter of circuits
is C = {{e4}, {e1, e3}}. Notice that every independent set is contained in some member of B and every
dependent set contains some member of C.

Since B contains all maximal subsets of I, then every subset of I that is not maximal is contained in some
member of B. Therefore, by having complete knowledge of B we can derive the independence system
(E, I) as follows:

I = {X ⊆ E : ∃B ∈ B such that X ⊆ B} (1.2.5)

It is apparent from the statement above that,

Lemma 1.2.4. Every clutter of bases B induces a unique clutter of circuits C.

therefore we can now rewrite the Definition 1.2.2 as follows:

Definition 1.2.5. C ∈ E is a circuit if

@B ∈ B such that C ⊆ B (1.2.6)

3

and

∀ c ∈ C, ∃B ∈ B such that C\{c} ⊆ B (1.2.7)

Notice that (1.2.6) states that a circuit is excluded from any member of the clutter of bases; to simplify
discussions in the following chapter we will refer to it as the exclusion property. We will also refer to (1.2.7)
as the minimality property since every circuit C follows the definition of a minimal set i.e. if any element of
C is removed, then the remaining set is a proper subset of some member of the clutter of bases.

Proposition 1.2.6. A subset F of a set E is also a subset of some member of the clutter of bases B if and
only if no member of the clutter of circuits C is a subset of F .

1.3 Complexity

Let x (or y) denote an input (or output) of a given problem and let its size be |x| (or |y|) equal to the number
of bits in the encoding (or decoding) of x (or y) over an alphabet {0, 1}. Furthermore, we say that V is a
polynomial-time algorithm if there exists a polynomial p(n) such that the running time of V is O(p(|x|)).
In this study we come across the following three types of computational problems,

Decision problems: We are required to verify whether an input satisfies a given property. Formally, given
an input x ∈ {0, 1} we are required to give a “Yes” or “No” answer.

Search problems: We are required not only to verify but also produce an answer. Formally, given an input
x ∈ {0, 1} we need to compute an answer y ∈ {0, 1} which if it exists, is in some relation to x.

Optimisation problems: We are required to produce the best possible answer given some properties or prove
that no such exists. Formally, given an input x ∈ {0, 1} we are required to find maxy{|y| : (x, y) ∈ R},
where R is a polynomial time computational set such that for some polynomial p, (x, y) ∈ R only if
|y| ≤ p(|x|).

Problem B reduces to problem A, denoted by B ≤p A, if there is a polynomial time computable function f
such that x ∈ B if f(x) ∈ A. Also, Problem B is equivalent to problem A, denoted by A =p B, if B ≤p A
and A ≤p B.

Search and optimisation problems can be reduced to a corresponding decision version, we therefore define
the two classes of problems: P (polynomial time) orNP (non-deterministic polynomial time), with respect
to decision problems. Class P contains all decision problems that have polynomial-time algorithms; class
NPcontains all decision problems such that for any “Yes” (or “No”) instance of the problem, there is a
short, polynomial proof, that the answer is “Yes” (or “ No”).

Clearly P⊆NP; however whether P=NP is a huge open problem in complexity theory. If the statement

4

were true, it would mean that any problem for which a solution can be easily verified can also be found
easily.

Definition 1.3.1. A decision problem A is NP-hard, if for every problem B ∈ NP , B ≤p A.

Definition 1.3.2. A decision problem A is NP-complete if it is NP-hard and it belongs to NP .

Our approach for deriving complexity results in Sections 3.1 and 7.2, emerges from the fact that polynomial-time
reductions are transitive. Analytically, for three problems A,B and C it is known that,

Theorem 1.3.3. If A ≤p B and B ≤p C then also A ≤p C.

Corollary 1.3.4. If problem A is in NP , problem B is NP-complete and B ≤p A, then A is also
NP-complete.

Therefore, in order to prove that a problemA isNP-complete we must first prove that it is inNP and then
reduce a known NP-complete problem to A. Moreover, the most commonly used method to show that a
problem A is NP-hard, is to chose a known NP-complete problem and prove that it reduces to A.

Many combinatorial optimisation problems are proven to be NP-hard and it is unlikely that an algorithm
can be found for any of them, that runs in polynomial time and finds an optimal solution (or shows that no
such exists) for all instances. In order to tackle this issue, one can focus only on finding exact solutions
for particular instances or alternatively, relax the optimality condition and construct algorithms that run
in polynomial time and find close to optimal solutions. These are known as approximation algorithms.
Formally,

Definition 1.3.5. A p-approximation algorithm for a minimisation (maximisation) problem is an algorithm
that finds a solution with an objective function value at most p times the optimum (at least 1/p for maximi-
sation) for any instance of the problem.

The ratio p ≥ 1 is called the performance ratio of the algorithm. In some cases, it can be proven that for
small p it is not even possible to have a p-approximation algorithm unless P= NP . These are known as
inapproximability results.

1.4 Graph Theory

A graph G(V,E) is defined by a set V of elements called nodes and a set E of elements called edges which
are unordered 2-element subsets of V . The two nodes of an edge are joined and said to be adjacent. We will
only be concerned with finite graphs, those in which sets V and E are both finite.

The degree of a node is the total number of adjacent edges.

5

A graph G(V,E) is bipartite if V is the union of two disjoint sets V1, V2 such that each edge member of E
consists of one node in A and the other in B. Such a graph can be written as G(V1, V2, E).

Let I = {1, . . . ,m} ⊂ N, with i ∈ I . A graph G(V,E) is m-partite if V =
⋃
i∈I Vi and V1, ..., Vm are m

disjoint sets such that each edge member ofE consists of one node in Vi and the other in Vi′ , with i 6= i′ ∈ I .

A matching of graph G(V,E) is a subset of edges which contains each member of V at most once. The size
of a matching M is equal to the number of edges it contains.

A matching is
- maximum if it has the largest possible size
- perfect if it contains all members of V

Theorem 1.4.1 ([37]). Given a bipartite graph G(V1, V2, E) with node-sets V1, V2 and an edge-set E, G
has a perfect matching if and only if for every subset S of V1 the number of distinct nodes adjacent to some
member of S is at least |S|.

1.5 Integer Programming

In general, an Integer Linear Programming problem, simply refered to as Integer Programming and written
as IP, is one that finds the minimum of a linear function, over a set of integer vectors that satisfy a collection
of linear constraints. More specifically an IP is of the form,

Max {cTx subject to Ax ≤ b, x ∈ Zn}

where A is an m× n matrix of real numbers, b ∈ Rm, c ∈ Rn and x ∈ Zn. The special case where x takes
values in Bn is known as a 0-1 IP. Problems that require a “yes” or “no” answer are often formulated as a
0-1 IP and these are often graph theoretical or combinatorial problems that are considered difficult to solve.

A common approach for tackling 0-1 IPs, is to drop the integrality constraints, turning the problem into a
Linear Programming problem (LP) for which efficient algorithms are known. In this case, x takes values in
{0, ..., 1}. In general, the feasible region of the relaxation produced by dropping the integrality constraints
is considerably larger than the convex hull (the smallest convex set that includes the original feasible set).
However, there exist a number of algorithms by which valid inequalities are added to the problem in a sys-
tematic way, in order to reduce the feasible region and better approximate the convex hull. These valid
inequalities can be “strengthened” with a procedure called lifting and is described below.

6

Let N = {1, ..., n} and consider a set

X = {x ∈ Bn :
n∑
j

ajxj ≤ b}

With no loss of generality we assume aj ≥ 0 and b > 0.

Definition 1.5.1. A set C ⊆ N is a cover for X , if
∑

j∈C aj > b.

Definition 1.5.2. A cover is minimal if C\{j} is not a cover for any j ∈ C.

Thus minimal covers are covers that have no proper subset that is a cover. To conclude,

Proposition 1.5.3. If C ⊆ N is a cover for X , then the following inequality is valid for X∑
j∈C

xj ≤ |C| − 1

Proposition 1.5.4. If C is a cover for X , the extended cover inequality∑
j∈E(C)

xj ≤ |C| − 1

is valid for X , where E(C) = C ∪ {j : aj ≥ ai for all i ∈ C}

Extended cover inequalities are stronger inequalities because they dominate their corresponding cover in-
equalities. This is because more variables are added without changing the right hand side of the inequality.

Given a cover C for X the goal is to find the best possible values for the coefficient λj where j ∈ N\C
such that the inequality

∑
j∈C

xj +
∑

j∈N\C

λjxj ≤ |C| − 1

is valid for X .
Suppose that the set L ⊆ N\C contains the indices of the variables that have already been lifted. Thus,∑

j∈C
xj +

∑
j∈L

λjxj ≤ |C| − 1

is valid for set {x ∈ B|C|+|L| :
∑

j∈C∪L ajxj ≤ b}. Suppose further that the next variable to be lifted is
k ∈ N\C ∪ L. The aim is to find coefficient λk for variable xk. For this we solve the following problem,

zk = max
∑
j∈C

xj +
∑
j∈L

λjxj + λkxk

7

∑
j∈C∪L

ajxj ≤ b− ak

xj ∈ {0, 1} for all j ∈ C ∪ L ∪ {k}

Set λk = |C| − 1− zk which gives the lifted inequality:∑
j∈C

xj +
∑
j∈L

λjxj + λkxk ≤ |C| − 1

We can now proceed to the next variable until all variables are lifted.

1.6 Constraint Programming

Constraint programming (CP) is a powerful tool for solving a wide range of combinatorial problems. It was
developed in the 80s by the artificial intelligence community and has since found application in areas such
as scheduling, vehicle routing, assembling, networks, bio-informatics and more (see [56]). Additionally, CP
was adapted to solve IP problems by J. Hooker [39] and P. Williams [65].

More specifically, CP is an expressive modelling language with efficient solver implementations. A CP
problem consists of a set of variables, each with a specific domain of values and a set of relations between
subsets of these variables that can be expressed as constraints. Essentially, constraints restrict the values
each variable can take, hence restrict the variables’ domain. To make this more clear, take variables x1
and x2 both having domain {1, 2, 3} and their relation is described by constraint x1 − x2 ≥ 0; then the
instances (x1, x2) = (1, 2), (1, 3), (2, 3) are forbidden. A not-equal constraint x1 6= x2 forbids instances
(x1, x2) = (1, 1), (2, 2), (3, 3).

Moreover, an objective function is not required in order to derive a solution and this explains the focus of CP
literature on feasibility problems rather that optimality ones. The following definitions have been borrowed
from [39].

Domain consistency, means that for each element v in the domain of any variable xj , there is at least one
feasible solution in which xj = v.

Filtering, are algorithms that remove inconsistent values from domains.

Constraint propagation, is the process of obtaining smaller variable domains by filtering a constraint to
become the starting point for filtering another constraint. It should be noted that constraint propagation
does not necessarily achieve domain consistency for the problem as a whole, even if the filtering algorithms
achieve it for every individual constraint.

Constructive search, explores the search tree by tightening the domain of one variable at a time. It is usu-
ally used when constraint propagation is unable to further reduce the domains and in practice, it performs a

8

search in the space of partial solutions.

There are several constraint types in CP; we present the most commonly used in the literature and in this
study, as introduced in [38]. The alldifferent constraint, written as alldiff(X), is a combination
of not-equal constraints that forbid variables of a set, to take pairwise equal values.

Definition 1.6.1. Let xi, i ∈ N = {1, ..., n} be a variable with finite domain D(xi) then,

alldiff(xi : i ∈ N) = {(di : i ∈ N) : di ∈ D(xi), di 6= di′ for i, i′ ∈ N} (1.6.1)

Example 1.6.1
Given sets N = {1, 2, 3} and L = {a, b, c}, we want to assign a letter from L to each cell of a 3× 3 matrix
such that no same letter appears in the same row. We introduce variable xij as the value in cell (i, j) with
domain D(xij) = L and i, j ∈ N . The constraints can be expressed as,

xij 6= xij′ , for all i, j, j′ ∈ N, with j′ > j (1.6.2)

The constraint states that all pairs of cells in the same row must contain different values and one of the
possible solutions to this problem is,

a b c

a b c

a b c

Constraint (1.6.1) can be transformed to an alldiff constraint as,

alldiff(xij : j ∈ N), for all i ∈ N (1.6.3)

1.7 Notation dictionary

This section is only presented as a dictionary for the acronyms notation and terms frequently used through-
out this study. Further detail and definitions for specific terminology will be presented when needed in the
chapters that follow.

Dictionary for Chapters 1-6

T = {1, ..., |T |}, with t ∈ T and |T | ≤ n− 1 is a set of mutually orthogonal latin rectangles of order n

- for |T | = 1 we have a Latin rectangle of order n

- for |T | = 2 we have an m-row orthogonal Latin rectangle of order n written as: OLRm; if m = n

then we have an orthogonal Latin square of order n written as: OLS

9

- for |T | ≥ 3 we have a set of |T |m-row orthogonal Latin rectangles of order n written as: a set of |T |
MOLRm; if m = n then we have a set of |T | orthogonal Latin squares of order n written as: a set of
|T |MOLS

Rt where t ∈ T , is a Latin rectangle
Rt− where t ∈ T , is an incomplete rectangle

For a rectangle Rt, I = {i1, ..., in} is the set of rows, J = {j1, ..., jn}, is the set of columns and
Kt = {kt

1, ..., k
t
n}, is the set of values, where t ∈ T

For the majority of this study we focus on the case of two rows where I = {i1, i2} and we use the following
notation:

Gt = I × J ×Kt is the superset containing all combinations of rows, columns and values for each Rt and
its elements are written as (i, j, kt), where t ∈ T
G|T | =

⋃
t∈T Gt is the ground set

SB|T | is the independence system
IB|T | is the family of independent sets
B|T | is the clutter of basis
C|T | is the clutter of circuits

A(Rt−, i1) is the availability matrix for row i1 of Rt−
A[Rt−, i2] is the availability matrix for row i2 of Rt−

Dictionary for Chapter 7

MBA is the m-dimensional bottleneck assignment problem
MBA3 is MBA for m = 3

OPT is the optimal solution to the MBA problem

I = {1, ...,m} is the set of days, with i ∈ I
J = {1, ..., n} is the set of shifts, with j ∈ J

Vi is the set of shifts that need to be carried out in day i
V =

⋃
i∈I Vi is the set of shifts across all days

w(v) is a measure of cost for shift v ∈ V
Dj is the duty; a set of shifts to be carried out by a driver
cDj is the cost of duty j

10

Chapter 2

The independence system of 2-row Latin
rectangles, OLR2 and sets of |T |MOLR2

This chapter is about m × n rectangles (with m ≤ n) that follow the Latin rectangle and orthogonality
definitions as described in [48]. The main focus is case of m = 2, i.e. 2-row Latin rectangles, 2-row orthog-
onal Latin rectangles (OLR2) and sets of |T | mutually orthogonal 2-row Latin rectangles (MOLR2). These
structures are defined in two ways: as arrays and as sets, which are in 1 − 1 correspondence. The purpose
of this dual interpretation is to provide respectively a visual representation of these structures and a means
to develop a theoretical framework based on independence systems.

Section 2.1 sets the theoretical framework by presenting first basic definitions and then continuing to in-
troduce the independence systems, clutter of bases and clutter of circuits for Latin rectangles, OLR2 and
MOLR2. The collection of all Latin rectangles of an order n (OLR2 or MOLR2) constitute the Latin rect-
angle (OLR2 or MOLR2) clutter of bases. Circuits are minimal dependent sets that do not appear in any
member of the clutter of bases. If at least one cell of a rectangle is empty, then it is called incomplete and if
it contains no circuit it is completable otherwise incompletable. For purposes of establishing a methodology
to fill empty cells in a systematic way, the available values for each cell are presented with a configuration
called availability matrix.

Section 2.2 describes some basic problems this study aims to address, one of which is whether a set of |T |
incomplete rectangles can be completed to a set of |T | MOLR2 and if not then identify the circuits that
forbid completion. This can only be accomplished if the corresponding clutter of circuits is described fully.
However, it is well known that there exists no polynomial time algorithm to describe the clutter of circuits
for an arbitrary independence system, unless P = NP [61]. Consequently, this study adds to the few inde-
pendence systems in the literature, for which the clutter of circuits is fully characterised (see [61] and [47]).

Finally, it is worth mentioning that the general problem of Latin squares and their extensions define an entire

11

field in mathematics with applications in finite geometry, statistical design and more (see [22], [23], [48]).
Section 2.3 presents most recent applications for this work in telecommunications, wireless networks and
the transmission of visual data as well as finding efficient ways to code and decode messages.

2.1 Latin rectangles, OLR2 and sets of |T |MOLR2

2.1.1 Basic definitions

Definitions in this section are borrowed from [48].

Definition 2.1.1. An m-row Latin rectangle R of order n, is an m × n array where m < n, in which each
value 1, ..., n appears exactly once in every row and at most once in every column.

For m = n we have the case of Latin squares, where each value 1, ..., n appears exactly once in every row
and column. An example of 2-row Latin rectangle of order 4 is shown in Table 2.1.1.

1 2 3 4

2 3 4 1

R1

Table 2.1.1: 2-row Latin rectangle of order 4

Definition 2.1.2. A Latin rectangle is said to be normalised, if values 1, ..., n occur in the first row in natural
order.

To avoid confusion with similar definitions for Latin rectangles, such as “reduced”, “standardised”, “in
standard form” and other, we clarify that our definition of “normalised” refers to Latin rectangles for which
values only of the first row are in natural order, in contrast to other definitions that also consider the first
column to be in natural order.

Definition 2.1.3. Two m-row Latin rectangles R1 and R2 of order n, form an orthogonal pair (OLR or
OLRm) if and only if when superimposed each of the n2 ordered pairs of values (1, 1), (1, 2), ..., (n, n)

appears at most once.

An example of a 2-row orthogonal Latin rectangles (OLR2) of order 4 is shown in Table 2.1.2. Also note
that for m = n we have the case of orthogonal Latin squares (OLS) where each of the n2 ordered pairs of
values (1, 1), (1, 2), ..., (n, n) appears exactly once, when the two squares are superimposed.

1 2 3 4

2 3 4 1

R1

1 2 3 4

3 4 1 2

R2

Table 2.1.2: OLR2 of order 4

12

The definition for OLR naturally extends to a set of |T | m-row Latin rectangles of order n, known as
mutually orthogonal Latin rectangles (MOLR or MOLRm), if and only if all Latin rectangles are pairwise
orthogonal. An example of a set of 3 2-row mutually orthogonal Latin rectangles (MOLR2) of order 4
is presented in Table 2.1.3. In this study, we are mainly interested in 2 rows and unless otherwise stated,
whenever we refer to rectangles it is implied that they have two rows. It is also assumed from now on that
all Latin rectangles are of order n.

1 2 3 4

2 3 4 1

R1

1 2 3 4

3 4 1 2

R2

1 2 3 4

4 1 2 3

R3

Table 2.1.3: A set of 3 MOLR2 of order 4

Before continuing to introduce clutters of bases and circuits we first formalise notation. For a given order
n, let T = {1, ..., |T |}, where |T | ≤ (n − 1) is the number of MOLR2. For |T | = 1 we have a 2-row
Latin rectangle and for |T | = 2 we have an OLR2 and so on. The two sets I = {i1, i2}, J = {j1, ..., jn},
correspond to the rows and columns of each Latin rectangle, while the |T | disjoint sets Kt = {kt

1, ..., k
t
n}

with t ∈ T define the n values appearing in the tth Latin rectangle comprising the MOLR2. Define G|T | =⋃
t∈T G

t to be the ground set, where Gt = I × J × Kt and t ∈ T . Notice that each Gt contains 2n2

triples (i, j, kt) thus G|T | contains a total of 2|T |n2 triples. Therefore, based on this notation, Tables 2.1.1,
2.1.2 and 2.1.3 are revised in Tables 2.1.4, 2.1.5 and 2.1.6.

i1
i2

j1 j2 j3 j4
k1
1 k1

2 k1
3 k1

4

k1
2 k1

3 k1
4 k1

1

R1

Table 2.1.4: The Latin rectangle of Table 2.1.1

i1
i2

j1 j2 j3 j4
k1
1 k1

2 k1
3 k1

4

k1
2 k1

3 k1
4 k1

1

R1

j1 j2 j3 j4
k2
1 k2

2 k2
3 k2

4

k2
3 k2

4 k2
1 k2

2

R2

Table 2.1.5: The OLR2 of Table 2.1.2

i1
i2

j1 j2 j3 j4
k1
1 k1

2 k1
3 k1

4

k1
2 k1

3 k1
4 k1

1

R1

j1 j2 j3 j4
k2
1 k2

2 k2
3 k2

4

k2
3 k2

4 k2
1 k2

2

R2

j1 j2 j3 j4
k3
1 k3

2 k3
3 k3

4

k3
4 k3

1 k3
2 k3

3

R3

Table 2.1.6: The set of 3 MOLR2 of Table 2.1.3

We give some examples in order to establish a coherent connection between the representation of a rectangle
both as an array and as a set. We can denote with i the rows, with j the columns and with kt the value in cell

13

(i, j) of the array. Thus for t ∈ T , each Latin rectangle can be represented as a set R1, which is a subset of
Gt thus every triple (i, j, kt) of R1 represents a row, column and value of the corresponding array. For Latin
rectangles, consider the illustrated array in Table 2.1.4, where |T | = 1; cell (i1, j1) containing value k1

1 can
be written as triple (i1, j1, k

1
1). Hence,

R1 = {(i1, j1, k1
1), (i1, j2, k

1
2), (i1, j3, k

1
3, (i1, j4, k

1
4), (i2, j1, k

1
2), (i2, j2, k

1
3), (i2, j3, k

1
4), (i2, j4, k

1
1)}

For OLR2 where n = 4 and |T | = 2, we represent the illustrated pair of arrays in Table 2.1.5 as a union
of two sets, R1 ∪ R2 where R1 ∈ G1 , R2 ∈ G2 . To clarify, sets I and J denote the rows and columns
respectively of the two arrays comprising the pair; set K1 denotes the values of the first rectangle and set
K2 the values of the second hence,

R1 ∪R2 ={(i1, j1, k1
1), (i1, j2, k

1
2), (i1, j3, k

1
3), (i1, j4, k

1
4), (i2, j1, k

1
2), (i2, j2, k

1
3), (i2, j3, k

1
4, (i2, j4, k

1
1),

(i1, j1, k
2
1), (i1, j2, k

2
2), (i1, j3, k

2
3), (i1, j4, k

2
4), (i2, j1, k

2
3), (i2, j2, k

2
4), (i2, j3, k

2
1), (i2, j4, k

2
2)}

Lastly, for MOLR2 where n = 4 and |T | = 3, we represent the illustrated set of arrays in Table 2.1.6 as a
union of sets R1 ∪R2 ∪R3 where R1 ∈ G1 , R2 ∈ G2 and R3 ∈ G3 , hence,

R1 ∪R2 ∪R3 =

{(i1, j1, k1
1), (i1, j2, k

1
2), (i1, j3, k

1
3), (i1, j4, k

1
4), (i2, j1, k

1
2), (i2, j2, k

1
3), (i2, j3, k

1
4, (i2, j4, k

1
1),

(i1, j1, k
2
1), (i1, j2, k

2
2), (i1, j3, k

2
3), (i1, j4, k

2
4), (i2, j1, k

2
3), (i2, j2, k

2
4), (i2, j3, k

2
1), (i2, j4, k

2
2),

(i1, j1, k
3
1), (i1, j2, k

3
2), (i1, j3, k

3
3), (i1, j4, k

3
4), (i2, j1, k

3
4), (i2, j2, k

3
1), (i2, j3, k

3
2), (i2, j4, k

3
3)}

We call two MOLR2 (or two Latin rectangles) equivalent, if one can be obtained from the other by per-
muting elements of one or more of the sets T, I, J, K1, ..., K |T |. For example, OLR2 of Table 2.1.5 is
equivalent to the one presented in Table 2.1.9. In the first table, we can perform the permutations i1 ↔ i2,
j3 ↔ j4, k1

1 ↔ k1
3 on elements of sets I, J,K1 in the sequence presented, to obtain the second table.

These permutations are shown in Tables 2.1.7 to 2.1.9. Note that directly interchanging the roles of sets I
and J is not allowed since we stipulate the existence of only 2 rows but n columns; the same applies to the
interchange of I or J with a set Gt , t ∈ T . In contrast, interchanging two elements t1, t2 ∈ T is an indirect
role interchange of sets Kt1 and Kt2 .

i1
i2

j1 j2 j3 j4
k1
2 k1

3 k1
4 k1

1

k1
1 k1

2 k1
3 k1

4

R1

j1 j2 j3 j4
k2
3 k2

4 k2
1 k2

2

k2
1 k2

2 k2
3 k2

4

R2

Table 2.1.7: Performing permutation i1 ↔ i2 on Table 2.1.5

14

i1
i2

j1 j2 j3 j4
k1
2 k1

3 k1
1 k1

4

k1
1 k1

2 k1
4 k1

3

R1

j1 j2 j3 j4
k2
3 k2

4 k2
2 k2

1

k2
1 k2

2 k2
4 k2

3

R2

Table 2.1.8: Performing permutation j3 ↔ j4 on Table 2.1.7

i1
i2

j1 j2 j3 j4
k1
2 k1

1 k1
3 k1

4

k1
3 k1

2 k1
4 k1

1

R1

j1 j2 j3 j4
k2
3 k2

4 k2
2 k2

1

k2
1 k2

2 k2
4 k2

3

R2

Table 2.1.9: Performing permutation k1
1 ↔ k1

3 on Table 2.1.8

2.1.2 The independence systems

For the case of two rows, we present the independence system of Latin rectangles and for the general case
of sets of |T |MOLR2. For these we also define, the clutter of bases and clutter of circuits.

Definition 2.1.4. Every subset R of the ground set G1 that forms a 2-row Latin rectangle is called a 2-row
Latin rectangle basis. The collection of all such subsets, constitutes the clutter of 2-row Latin rectangle
bases,

B1 = {R ⊂ G1 : R forms a 2-row Latin rectangle} (2.1.1)

Notice that |R| = 2n. Table 2.1.4 illustrates a basis, i.e. a member of B1 .

From B1 we can derive the 2-row Latin rectangle independence system, denoted by SB1 = (G1 , IB1),
where IB1 contains all independent sets,

IB1 = {X ⊂ G1 : ∃R ∈ B1 such that X ⊆ R} (2.1.2)

It is known, from Proposition 1.2.3, that SB1 induces a unique Clutter of 2-row Latin rectangle circuits
denoted by C1 which contains all subsets of G1 following the definition,

Definition 2.1.5. Every minimal dependent set of SB1 is called a 2-row Latin rectangle circuit, hence,

C1 = {C ⊂ G1 : C /∈ IB1 , C\{c} ∈ IB1 for all c ∈ C} (2.1.3)

Similarly, for the MOLR2 case we have,

Definition 2.1.6. Every subsetB of the ground setG|T | that forms a set of |T |MOLR2, is called an MOLR2
basis and the collection of all such subsets, forms the clutter of MOLR2 bases which is

B|T | = {B ⊂ G|T | : B forms a MOLR2} (2.1.4)

15

From B|T | we can derive the MOLR2 independence system, denoted by SB|T | = (G|T | , IB|T |) where,

IB|T | = {X ⊂ G|T | : ∃B ∈ G|T | such that X ⊆ B} (2.1.5)

Every minimal dependent set of SB|T | is called a circuit hence, C ⊂ G|T | is a circuit if it satisfies the
properties,

C|T | = {C ⊂ G|T | : C /∈ IB|T | , C\{c} ∈ IB|T | for all c ∈ C} (2.1.6)

The definition can be rewritten as follows:

Definition 2.1.7. C|T | is the collection of all C ⊂ G|T | that satisfy the following two properties:

- Exclusion property: C is not contained in any member of B|T | thus,

C * B, for all B ∈ B|T | (2.1.7)

- Minimality property: removing any element of C will make the remainder a subset of some member
of B|T | thus,

for all c ∈ C, ∃B ∈ B|T | such that C\{c} ⊆ B (2.1.8)

2.1.3 Incomplete rectangles

i1
i2

j1 j2 j3 j4
k1
1 k1

3 k1
4

k1
2 k1

4 k1
1 k1

3

R1−

Table 2.1.10: An incomplete rectangle of order 4 that is incompletable

An incomplete rectangle, denoted by R1− is an m × n array (with m < n) whose cells receive values 1

to n but may also be empty. We use the ‘−’ minus sign in this notation to indicate that there are empty
cells in the rectangle. Note, that incomplete rectangles can violate the definition of Latin rectangles in the
sense that, a cell (i, j) may contain more than one values and same values may appear in a row and/or col-
umn. Such an example is shown in Table 4.1.2. An incomplete rectangle R1− is completable if there exists
R′1− ∈ G1 such thatR1−∪R′1− forms a Latin rectangle, i.e. R1−∪R′1− ∈ B1 and incompletable otherwise.

An example of an incomplete rectangle R1− is presented in Table 2.1.10. Notice that cell (i1, j1) is empty
and only value k1

2 can be placed in the cell. An attempt to complete this structure will violate the definition
of a Latin rectangle, as value k1

2 will be repeated in column j1; it is therefore incompletable. Conversely the
rectangle of Table 2.1.11 is incomplete but completable; here R1− = {(i1, j2, k1

1), (i1, j3, k
1
3), (i1, j4, k

1
2),

(i2, j1, k
1
1), (i2, j2, k

1
3), (i2, j4, k

1
4)} and there exists R′1− = {(i1, j1, k1

4), (i2, j3, k
1
2)} ∈ G1 such that

R1− ∪R′1− ∈ B1 .

16

i1
i2

j1 j2 j3 j4
k1
1 k1

3 k1
2

k1
1 k1

3 k1
4

R1−

Table 2.1.11: An incomplete rectangle of order 4 that is completable

In a similar fashion, a set of |T | rectangles {Rt−, t ∈ T} is called incomplete if any such rectangle is in-
complete and completable if and only if there are {R′t−, t ∈ T} such that

⋃
t∈T (Rt− ∪R

′
t−) ∈ B|T | , i.e. if

rectangles can be completed to a set of |T |MOLR2 and incompletable otherwise.

Notice in Table 2.1.12 that R1− can be completed to a Latin rectangle by placing k1
4 and k1

2 in cells (i1, j1)
and (i2, j3) respectively. In fact, the resulting pair R1 ∪ R2 is a member of B2 since it follows the Latin
rectangle definition. Therefore, R1− ∪R2 as shown in Table 2.1.12 is completable to an OLR2.

i1
i2

j1 j2 j3 j4
k1
1 k1

3 k1
2

k1
1 k1

3 k1
4

R1−

j1 j2 j3 j4
k2
1 k2

2 k2
3 k2

4

k2
3 k2

4 k2
1 k2

2

R2−

Table 2.1.12: A pair of incomplete rectangles of order 4

Equivalence also applies to (a set of) incomplete rectangles exactly as for (a set of) Latin rectangles, hence
incomplete rectangles are called equivalent if one can be obtained form the other by permuting elements in
T, I, J, K1, ..., K |T |.

Clearly {Rt−, t ∈ T} being completable implies that it is a subset of some B ∈ B|T | thus containing no
circuit. However, if incompletable and therefore not contained in any B ∈ B|T | , it contains some C ∈ C|T | .
Hence the following,

Proposition 2.1.8. An incomplete set {Rt−, t ∈ T} is completable to an MOLR2 if and only if it does not
contain a circuit member of C|T | .

Notice that any C ∈ C|T | is itself an incomplete set of rectangles that is also incompletable; in that respect
incomplete sets of rectangles that are incompletable are exactly the dependent subsets of G|T | . We denote
the rectangles comprising the circuits with R1−, ..., R|T |−.

17

2.1.4 The availability matrix A(R1−, i)

i1
i2

j1 j2 j3 j4
k1
2 k1

4

k1
4 k1

1 k1
2

R1−

Table 2.1.13: An incomplete rectangle of order 4

Consider the incomplete rectangle R1− of Table 2.1.13. To fill the empty cell (i1, j1) of the array, a value
must be chosen that does not violate the definition of a Latin rectangle. Notice that the available triples are
k1
1, k

1
3 and for this cell we can select any of the two. In general, the collection of all available values for a

particular row i constitute set,

Ai = {(i, j, k1) ∈ G1 : a ∪R1− does not violate the Latin rectangle definition} (2.1.9)

For the purpose of establishing a simple and comprehensive methodology for filling empty cells, we visually
represent Ai with a configuration first described in [29] known as the availability matrix of row i.

Definition 2.1.9. Let R1− denote an incomplete rectangle with n columns, S(i) denote the set of symbols
appearing in row i and J(i) the set of column indices of the v empty cells in that row, where v < n. The
availability matrix A(R1−, i) is the v × v matrix obtained from the n× n matrix

j1 ... jn
k1
1 ... k1

1

k1
2 ... k1

2

...

k1
n ... k1

n

after deleting from the matrix all rows corresponding to elements of S(i) and all columns that are not
members of J(i). We mark an element of A(R1−, i) in column j with the symbol ‘ ∗’ to indicate that the
value is not available, if and only if that element appears in column j of R1−.

The dimension of an availability matrix is simply the number of its rows or columns. Notice that for any
availability matrix the number of rows is equal to the number of columns.

We employ an availability matrix for a particular incomplete rectangle only if non-empty cells in that rect-
angle do not violate the Latin rectangle definition. In particular, if in an incomplete rectangle there appears
a repetition of values in the same row or column, or a cell contains more than one entry, then clearly this
structure is incompletable. In such cases, the violation of the definition is explicit and therefore using the
availability matrix to demonstrate incompletability is unnecessary.

18

Also, we use the curved brackets () to denote the availability matrix of the first row, A(R1−, i1) and the
square brackets [] to denote the availability matrix of the second row, A[R1−, i2]. Notice that there is a
one-to-one correspondence between Ai and A(R1−, i), therefore in terms of set notation, for a particular
row i, every combination of column j and value k1 of the availability matrix represents a member (i, j, k1)

of Ai. Therefore together A(R1−, i1) and A[R1−, i2] denoted simply by A can be expressed as a subset of
G1 . This is demonstrated in the example below.

Example 2.1.1
For the first row of Table 2.1.13, S(i1) = {k1

2, k
1
4} and J(i1) = {j1, j3} thus,

A(R1−, i1) =

j1 j3(
k1
1 k1∗

1

k1
3 k1

3

)
and shows that values k1

1 and k1
3 are available in columns j1 and j3.

For the second row of R1− sets S(i2) = {k1
1, k

1
2, k

1
4} and J(i2) = {j1}, therefore since there is only one

value available for the empty cell,

A[R1−, i2] =
j1[
k1
3

]
Finally notice that A = {(i1, j1, k1

1), (i1, j1, k
1
3), (i1, j3, k

1
3), (i2, j1, k

1
3)}. Element (i1, j3, k1

1) is not in-
cluded in the set as it has an ‘ ∗’ indicating it is not available.

Remark 2.1.10. If there exists R′1− ∈ A such that R1− ∪ R′1− forms a Latin rectangle, then R1− is
completable, otherwise incompletable.

It is easy to complete the incomplete rectangle R1− of Table 2.1.13, as shown in Table 2.1.14. Notice from
A[R1−, i2], that k1

3 is the only available value for cell (i2, j1) and consequently k1
1 becomes the only avail-

able value for cell (i1, j1). In general, to complete any R1−, a single value must be selected from every row
and column in A(R1−, i1) and A[R1−, i2] such that the definition of a Latin rectangle is not violated. More
specifically, the value selected in column j of A(R1−, i1) must be different from the one selected in column
j of A[R1−, i2].

i1
i2

j1 j2 j3 j4
k1
1 k1

2 k1
3 k1

4

k1
3 k1

4 k1
1 k1

2

R1

Table 2.1.14: Completed rectangles of Table 2.1.13

19

To highlight the selected entry ofA(R1−, i1) we use a circle and similarly for the selected entry ofA[R1−, i2]

we use a square. For illustration reasons, we merge the two availability matrices into one figure denoted by
A

j1 j3 k1∗
1 k1∗

1

[k1
3] k1

3

A

In summary, an incomplete rectangle R1− is completable if,

1) A single entry can be selected from each row and column of A(R1−, i1) and A[R1−, i2] (entries with
an ‘∗’ cannot be selected)

2) For same columns of A(R1−, i1) and A[R1−, i2] the selected entry is different

2.2 Motivation

It is shown in [47] that,

Theorem 2.2.1. Unless P = NP , there exists no polynomial total time algorithm that generates the clutter
of bases of any independence system.

In [47] one can find a list of particular independence systems for which it is possible to characterise their
clutter of bases. This list includes knapsack problems, set packing problems, complete k -partite sub-graphs
and other.

It is also proven in [61] that,

Corollary 2.2.2. UnlessP = NP , there exists no polynomial total time algorithm that generates the clutter
of circuits of any independence system.

The clutter of circuits C1 has been fully described by R. Euler in [29]. Our goal in this study is to obtain a
characterisation of the complete list of circuit members of C2 . The difficulty of this task is evident from The-
orem 2.2.1 and there exist few examples in the literature, some of which are in [61], [47], that characterise
the clutter of circuits for a particular independence system. Our work therefore adds to the few independence
systems in the literature for which the clutter of circuits is fully characterised. The constructive proof we
present in Chapter 4 to list all circuits as well as the methodology presented in this study sets the grounds for
further research in this direction. Some potential research problems that have also motivated this work are
presented below as well as some interesting applications of Latin rectangles, OLR and MOLR in the next
section.

20

Problem 1: We are interested in determining whether an incomplete pair of rectangles R1−, R2− is com-
pletable to an orthogonal pair. Set R1− ∪ R2− can potentially form a basis member of B2 if and only if it
does not contain a member of C2 . Therefore, complete knowledge of C2 as well as the ability to recognise
all circuits of C2 in any pair of incomplete rectangles, will allow us to determine whether they are com-
pletable. In other words, for |T | = 2 we are interested in knowing if there exist R′1− ∪R′2− ∈ G2 such that⋃
t∈T (Rt− ∪R

′
t−) ∈ B2 and if not, then recognise the circuit(s) that cause incompletability.

Completing pairs of rectangles to form OLR2 is part of a much larger problem, that of completing pairs
of incomplete squares to form OLS. It is obvious that if an incomplete pair of rectangles is incompletable
then so is any pair of squares that contains it. The opposite however does not hold. For example, even
though there exists a pair of OLR2 of order 6, a pair of OLS of order 6 does not exist. This proves,
that Theorem 3.1.2 by Hall [36] is not generalisable for the case of orthogonal Latin rectangles, and to our
knowledge no equivalent statement exists, that determines the completability of pairs of squares based on the
completability of pair of rectangles. Nevertheless, establishing a methodology that helps generate circuits
for pairs of OLR2, may shed light on the much larger problem; that of finding the clutter of circuits for
pairs of OLS of any order n or it may help to prove that this is not possible in polynomial time. This is of
particular interest, since Proposition 2.1.8 generalises to the MOLS case and finding the clutter of circuits for
this problem would answer any completability question. However, one must consider that the circuits found
for OLR2 are not necessarily circuits of the OLS problem, as the minimality property may not preserve.

Another possible direction would be to address the problem of MOLR, to investigate why certain incom-
plete structures are incompletable. It will also be shown further on that circuits of OLR2 are also circuits
for MOLR2, therefore knowing all members of C2 adds to the knowledge of C|T | .

Problem 2: For pairs of Latin rectangles that are not orthogonal we are interested in finding the minimum
number of value swaps in order for the pair to become orthogonal. In detail, let us define a swap, as the act
of selecting two cells in the same row and swapping their values. Let us consider the case for which two
superimposed Latin rectangles R1, R2 violate the definition of orthogonality i.e. a pair of values is repeated.
We are interested to determine the minimum number of swaps that need to be made in order for the pair to
become orthogonal. Remember that R1, R2 will become orthogonal when all circuits are eliminated. With
the complete knowledge of C2 and the ability to recognise all members of C2 that exist in R1 ∪R2 we can
then make a minimum number of swaps such that all circuits are eliminated and no new ones are created,
thus leading to the creation of an orthogonal pair. Furthermore, this problem can be rephrased in various
interesting ways for example: “If R1 and R2 are not orthogonal, find a basis B ∈ B2 that has the maximum
number of common elements with R1∪R2”, or “If R1 and R2 are not orthogonal, find the maximum subset
of R1 ∪R2 that can be found in a basis B ∈ B2 ”.

21

2.3 Applications

Latin squares and orthogonal Latin squares are known to have a wide range of applications. In this section
we focus on some of the more recent ones that mainly refer to Latin rectangles and OLR.

Incomplete rectangles for minimising interference in transmission of data: With the advent of fast com-
munication via mobiles and other devices, designing fast and reliable wireless networks has become very
important. Traditional network nodes (e.g. mobile phones and mobile services suppliers’ towers) could
only forward or replicate an incoming packet (of data). In contrast, network coding can create and handle
additional packets by algebraically combining received packets. This realisation has led to a method known
as Code Division Multiple Access (CDMA) for transmitting multiple coded digital signals simultaneously
over the same frequency in a network. For mobile networks each conversation is assigned a unique code
before entering a packet which is allowed to be transmitted over the full bandwidth and decoded at the end
node. As a result, efficient methods of coding which maximise the size and number of packets handled and
minimise interference have become a hot topic of research. In 2006 [54] and [69] introduced the concept of
physical layer network coding which has developed in to a sub-field of network coding with new results in
the domains of wireless communication, wireless information theory and wireless networking. One branch
of this new field works with de-noise-and-forward-protocol in the network coding maps that satisfy a re-
quirement called the exclusive law which reduces the impact of multiple access interference. In [64] it is
established that the network coding maps that satisfy the exclusive law are obtainable by the completion
of partially filled Latin Rectangles. Isotopic and transposed Latin Squares are also used to create network
coding maps with particular desirable characteristics.

MOLR and MOLS for transmitting optical data: A big part of data transmission in the modern era has to
do with visual data (pictures, photos, videos etc). This has led to fibre-optic signal processing techniques for
Optical Code Division Multiple Access (OCDMA), first studies in [58], which deliver multi-access optical
networks for fibre-optic communications. One important type of OCDMA system is known as an Optical
Orthogonal Code (OOC). An OOC is a family of (0, 1) sequences with good auto and cross-correlation
properties, i.e., fast and low interference transmission properties. One major branch of OCDs is Spectral
Amplitude Coding (SAC). In [25] the authors propose two new coding schemes capable of cancelling the
multi-user interference for certain SAC systems. Three major advantages of the proposed OOC families
are claimed to be: 1) large flexibility in choosing number of users, 2) simplicity of construction and 3)

suitability to all important transmission technologies including SAC. One of these novel schemes is based
on MOLR and MOLS.

MOLR and MOLS for Low Density Parity Codes (LDPC): In fast communication of vast data sets, a big
problem is noise or corruption of data. LDPC codes were invented to deal with this problem by changing
the process of coding and decoding messages; they have revolutionised the accuracy of data transmission.
LDPC codes are now the lead technology used in hard disk drive read channels, wireless 10-GB, DVB-
S2 digital TV receivers, computers with third generation wireless and more recently in flash SSD as well

22

as in communicating with space probes sent out by NASA. Pseudo-random approaches and combinatorial
approaches are the two main techniques for the construction of a specific LDPC code based on finite ge-
ometries was fist studied in [45]. In [63] and [46] a different construction is devised, based on balanced
incomplete block designs constructed from MOLR and MOLS.

2.4 Concluding remarks

This chapter established a set theoretical framework for Latin rectangles and OLR2. The independence
systems, clutters of bases and circuits were defined. Next the concept of completable and incompletable
rectangles and pairs of rectangles was discussed and how this can be illustrated with the availability matrix.
The chapter concluded with a number of motivational reasons for this study such as answering the com-
pletability question for any given incomplete pair of rectangles and finding the minimum number of cells
that need to be emptied in order to allow for non-orthogonal pair of Latin rectangles to become orthogonal.
Some of the most recent applications of Latin rectangles and MOLRm were also discussed, for example in
telecommunications and wireless networks.

It would be interesting to extend this work to establish a similar theoretical framework for the OLRm case
and even for the more general case MOLRm where m > 2.

The next chapter continues to present theoretical and complexity results.

23

Chapter 3

Theoretical results

This Chapter presents some initial theoretical findings that are essential for the proofs carried out in Chapter
4 that deals with the characterisation of the clutter of circuits C2 .

Section 3.1 starts by essentially establishing a connection between a Latin square and a set of n− 1 MOLR
over two rows, both of order n. In fact, it proves that a Latin square can be written as a set of n− 1 MOLR2
and vice versa. This realisation sets the grounds for proving a simple but fundamental finding of this work,
that any set |T | of MOLR2 (where |T | < n− 1) can be completed to a set of n− 1 MOLR2.

Based on these findings Section 3.2 utilises Coulbroun’s theorem in [18] for Latin squares, to establish that
completing a set of |T | MOLR2 is NP-complete. The section concludes that the clutter of circuits Ct is a
subset of Ct+1, where t ∈ T and t < |T |; and this reveals how by characterising a clutter of circuits for a set
of MOLR2 directly improves knowledge for all greater number of sets of MOLR2.

Finally, in order to establish an understanding of size with respect to Latin rectangles, OLR2 and sets of
3 MOLR2, Section 3.3 establishes a methodology to count the members of their corresponding clutters of
bases and provides tables with exact calculations for various orders of n.

3.1 From Latin squares to sets of n− 1 MOLR2 and vice versa

Proposition 3.1.1. Any set of |T | normalised MOLR2 of order n can be represented as a normalised (|T |+
1)-row Latin rectangle of order n and vice versa.

Before proving the proposition we illustrate for n = 4 and |T | = 2 in the example below:

Example 3.1.1
Let us consider the case of |T | = 2. Table 3.1.1 illustrates a normalised OLR2 of order n = 4. In
the second row of R2, n distinct values appear and each in a different column than in the row above.
Since the normalised first row in both R1 and R2 establishes the occurrence of the n pairs of values

24

(k1
1, k

2
1), (k

1
2, k

2
2), (k

1
3, k

2
3), (k

1
4, k

2
4), values of the second row of R2 must each be in different columns than

in the second row of R1; this is to avoid repetition of pairs of values. Since the first row of R1 and the first
row of R2 are the same, the second row of R2 can be placed as a third row in R1 and we will now obtain a
3-row Latin rectangle as shown in Table 3.1.2. For m = n we can say that every normalised Latin square
can be represented as a set of |T | = (n− 1) MOLR2 of order n.

i1
i2

j1 j2 j3 j4
k1
1 k1

2 k1
3 k1

4

k1
2 k1

3 k1
4 k1

1

R1

j1 j2 j3 j4
k2
1 k2

2 k2
3 k2

4

k2
3 k2

4 k2
1 k2

2

R2

Table 3.1.1: An OLR2 of order 4

i1
i2
i3

j1 j2 j3 j4
k1 k2 k3 k4
k2 k3 k4 k1
k3 k4 k1 k2

R

Table 3.1.2: A 3-row Latin rectangle of order 4

Proof. The (|T |+1)-row latin rectangle of order n, denoted asR, is obtained from the set of |T | normalised
MOLR2 by placing the entries of the second row of Rt (t ∈ T) at the (t + 1)th row of R; that is, if the
value of cell (i2, j) ofRt is kt

l then cell (t+1, j) recieves value kt
l (see Example 3.1.1). It follows that every

value appears once in each row of R, since it appears once in every row of Rt (t ∈ T). It remains to show
that every value occurs at most once in each column of R.

Since all |T | rectangles in MOLR2 are normalised, for any two of them, say Rt and Rt′ , the n pairs of
values (kt

1, k
t′
1), ..., (kt

n, k
t′
n) appear in the first row. Then, to avoid repeating a pair, value k1

l (l = 1, ..., n)

occurring in the second row of Rt (t ∈ T) is bound to be at a different column of Rt′ (t′ ∈ T). But then,
value k1

l (l = 1, ..., n) appears at most once per column of R.

It becomes easy to see that the construction is applicable in the inverse direction, i.e. given a normalised
(|T | + 1)-row Latin rectangle of order n, one can obtain a set of |T | normalised MOLR2 of the same
order.

Hall in [36] presents the following,

Theorem 3.1.2. [36] Every m-row Latin rectangle of order n can be completed to a Latin square of order
n.

We adapt this theorem to MOLR2 as follows,

25

Corollary 3.1.3. Any set of |T | MOLR2 (1 ≤ |T | ≤ n − 1) of order n can be completed to a set of n − 1

MOLR2 of order n.

Clearly for |T | = 1 we have the case of a 2-row Latin rectangle that can be completed to a set of n − 1

MOLR2, since according to Theorem 3.1.2, any 2-row Latin rectangle can be completed to a Latin square
and from Proposition 3.1.1 we know that this Latin square can be represented as set of n− 1 MOLR2. For
|T | = 2 we have the case of an OLR2 that can be completed to a set of n− 1 MOLR2. Similarly it follows
for |T | > 2.

Moreover, a Latin rectangle of order n can have at most n rows, in which case it would be a Latin square.
Hence, Proposition 3.1.1 implies that there exists a set of n−1 MOLR2 of order n; the latter directly yields
that there can be at most a set of n− 1 MOLS; an alternative proof for Theorem 2.1 in [48].

3.2 Complexity results

We continue with an examination of the complexity class of the problem of completing a given incomplete
set of |T | 2-row rectangles of order n to a set of n− 1 MOLR2. It is trivial to construct a set of |T |MOLR2
of order n with no prior restrictions. One can easily place values in natural order in the first row of all |T |
rectangles and then in a cyclic manner shift elements by one value to the right in the second row of every
rectangle. However, for the case where some cells already have values, deciding whether |T | incomplete
2-row rectangles are completable to a set of |T |MOLR2, is not that straight forward. We are faced with the
following decision problem, which we will prove to be NP-complete.

Input: |T | incomplete 2-row rectangles of order n

Question: Are they completable to a set of |T |MOLR2?

Clearly this problem is in NP , since given a solution we can easily verify its correctness by simply listing
all pairs of values obtained from the pairwise superimposed rectangles, and checking whether there appears
a repetition of a pair. To complete the proof, we will show that our problem is equivalent to the problem of
completing an incomplete square of order n to a Latin square; this has been proven to be NP-complete by
Colbourn in [18].

Notice, that while an arbitrary incomplete square can be represented as a set of n − 1 incomplete 2-row
rectangles, the opposite is not always true. Such an example for n = 4, of a set of n − 1 incomplete 2-row
rectangles that cannot be written as an incomplete square due to the position of empty/filled cells, is shown
in Table 3.2.1.

26

i1
i2

j1 j2 j3 j4
k1
1

k1
2

R1

j1 j2 j3 j4
k2
1 k2

2

k2
3

R2

j1 j2 j3 j4
k3
1 k3

2 k3
3

k3
4

R3

Table 3.2.1: A set of n− 1 incomplete 2-row rectangles

Let us consider the case of |T | = n− 1. We construct n− 1 incomplete rectangles, where all filled cells in
the first row of all arrays contain the same values and there is no requirement for the second row. Such an
example is shown in Table 3.2.2. The incomplete rectangles can be completed if and only if the correspond-
ing Latin square, as shown in Table 3.2.3, is completable.

If the incomplete rectanglesR1−, ..., Rn−1− are completable, elements in setsK1, ...,Kn−1 can be permuted
so that the MOLR is normalised. It then follows from Proposition 3.1.1 that this represents a Latin square.
Conversely, if the incomplete square is completed then it follows again from Proposition 3.1.1 that we also
have a set of MOLR2. We have shown that,

Corollary 3.2.1. Deciding whether n − 1 incomplete 2-row rectangles of order n are completable to a set
of n− 1 MOLR2, is NP-complete.

i1
i2

j1 j2 j3 j4
k1
3 k1

4

k1
4 k1

1

R1

j1 j2 j3 j4
k2
3 k2

4

k2
3 k2

2

R2

j1 j2 j3 j4
k3
3 k3

4

k3
4 k3

1

R3

Table 3.2.2: A set of 3 incomplete 2-row rectangles of order 4

i1
i2
i3
i4

j1 j2 j3 j4
k3 k4
k4 k1

k3 k2
k4 k1

R

Table 3.2.3: An incomplete square of order 4

Now consider the following problem: complete a set of |T | MOLR2 to a set of |T | + 1 MOLR2, where
|T | ≤ n− 2. Finding that additional (|T |+ 1)th Latin rectangle can be translated to the problem of adding
a (|T | + 2)th row to a (|T | + 1)-row Latin rectangle. For |T | = 1 we present a short algorithm that solves
this problem and clearly generalises for |T | ≤ n− 2.

For |T | = 1 we have the problem of adding a third row to a 2-row Latin rectangle in order to make it a
3-row Latin rectangle. We first normalise the Latin rectangle, then add an empty row and lastly attempt to

27

complete it. Let A(R1−, i3) be the n × n availability matrix of row i3 of the incomplete 3-row rectangle
R1−. Since cells of the first two rows of R1− contain a value, then in each column of A(R1−, i3), n − 2

values will be available (i.e. will not have a ‘*’ symbol) and each value from k1
1 to k1

n will be available in
exactly n− 2 columns. The following steps demonstrate that it is possible to select a value in each column.

Step 1: Let k1
1... k

1
n−2 be the n− 2 available values in column j1. Select k1

1 in column j1.

Step 2a: If there exists a column identical to column j1 then select k1
2 in that column and the remaining

k1
3... k

1
n−2 values in any of the n− 4 remaining columns in which they are available, otherwise

Step 2b: Select the remaining k1
2... k

1
n−2 values in any of the n − 3 remaining columns in which they are

available.

Step 3: Select k1
n−1 and k1

n in the remaining two columns. With no loss of generality we can assume these
to be columns jn−1 and jn.

To prove the correctness of the algorithm, it needs to be shown that in Step 3 a selection of k1
n−1 and k1

n is
always possible. Values k1

n−1 and k1
n will each be available at least once in jn−1 or jn since none of them

are available in column j1 and also they must be available a total of n − 2 times in A(R1−, i3). Moreover,
none of them can appear in one of the last columns jn−1 or jn, because in that case one of the last two
columns would be identical to j1 and according to Step 2a it would be considered earlier. For an example
consider Table 3.2.4 in which a 3rd empty row is added and is completed in Table 3.2.5 which shows the
corresponding availability matrix (selected values are circled). The process presented in these two tables
can be used to find R2 of Table 2.1.5, given R1.

i1
i2
i3

j1 j2 j3 j4
k1
1 k1

2 k1
3 k1

4

k1
2 k1

3 k1
4 k1

1

R1

Table 3.2.4: An incomplete 3-row rectangle

A(R1−, i3) =

j1 j2 j3 j4

k1∗
1 k1

1 k1
1 k1∗

1

k1∗
2 k1∗

2 k1
2 k1

2

k1
3 k1∗

3 k1∗
3 k1

3

k1
4 k1

4 k1∗
4 k1∗

4

Table 3.2.5: Availability matrix for row i3 of R1− in Table 3.2.4

28

Since every set of |T | MOLR2 with |T | ≤ n − 1 can be completed to a set of n − 1 MOLR2 it becomes
clear that the independence system of the first is a subset of the latter and the same holds for the clutter of
circuits. Hence,

Corollary 3.2.2. IBt ⊂ IBt+1 , t = 1, ..., n− 2

Corollary 3.2.3. Ct ⊂ Ct+1, t = 1, ..., n− 2

C1

G
n-1

C2 ... Cn-1

Figure 3.2.1: Venn diagram illustrating Corollary 3.2.3

Notice from Figure 3.2, that C1 ⊂ C2 ⊂ ... ⊂ Cn−1 and therefore Cn−1 = C1 ∪ (C2\C1)∪ (C3\C2)∪ ... ∪
(Cn−1\Cn−2).

3.3 The size of clutters B1 , B2 and B3

Counting Latin rectangles is a topic broadly studied in combinatorics; some examples listed in chronological
order are [51], [35], [28], [57]. In this Section we count the members of B1 , B2 and B3 i.e. the total number
of 2-row Latin rectangles, OLR2 and sets of 3 MOLR2.

We first count members of B1 . Normalised 2-row Latin rectangles of order n are known in the literature
as derangements because they can each be interpreted as a permutation without a fixed point. Enumerating
all derangements is described by Ryser in [57] as a classical numerical problem known as “le problème
des rencontres”, for which he provides the following formula. Let rm(n) denote the number of normalised
m-row Latin rectangles of order n.

r2(n) = n!

n∑
q=0

(−1)q 1

q!
(3.3.1)

Every Latin rectangle can be normalised by permuting its columns (elements in J); one can permute the n

29

columns in n! ways hence,
|B1 | = n! r2(n) (3.3.2)

n |B1 |
3 12
4 216
5 5,280
6 190,800
7 598,066,560
8 598,672,880
9 48,443,028,480
10 4,844,306,476,800

Table 3.3.1: The number of members in B1 for various orders n

From Proposition 3.1.1 we know that instead of counting the unique number of sets of |T | normalised
MOLR2, one can count the total number of (|T | + 1)-row Latin rectangles. However, the latter count in-
cludes |T |! permutations of the last |T | rows which should not be included in the first count, therefore the
number of normalised sets of |T | MOLR2 (|T | ≤ n − 1) of order n, is equal to the total number of nor-
malised (|T |+ 1)-row Latin rectangles of order n divided by |T |!.

We now continue to count members of B2 . For |T | = 2 we know that every OLR2 can be normalised by
permuting elements in sets J and K2. These actions yield a total of (n!)2 permutations. To derive the total
number of normalised OLR2 we first calculate the number of normalised 3-row Latin rectangles. From the
existing formulae for this computation, some of which can be found in [34], [28], [11], we use (3.3.3) given
by Riordan [55].

r3(n) =
1

2

n∑
p=0

(
n

p

)
r2(n-p) r2(p) z(n-2p) (3.3.3)

where,

z(n) = 2n
n∑
q=0

(−1)q
(
2n−q
q

)
(n− 1)!

2n− q
(3.3.4)

hence,

|B2 | = (n!)2
r3(n)

2!
(3.3.5)

30

n |B2 |
3 36
4 6,912
5 39,744 ×102
6 5,515,776 ×103
7 13,637,611,008 ×103
8 571,428,411,015,168 ×102
9 381,406,944,838,917 ×106
10 386,591,669,172,110 ×1010

Table 3.3.2: The number of members in B2 for various orders n

Finally, we count members of B3 . For |T | = 3 we know that any set of 3 MOLR2 can be normalised by
permuting elements in sets J , K2 and K3. These actions yield a total of (n!)3 permutations. To derive the
total number of normalised 3MOLR2 we first calculate the number of normalised 4-row Latin rectangles.
McKay and Wanless in [51] present a table of values for rm(n) when 2 ≤ m ≤ n ≤ 11, which was obtained
by computer enumerations. Table 3.3.3 presents for various values of order n, the total number of r4(n) as
presented in [51].

n r4(n)

4 4
5 56
6 6,552
7 1,293,216
8 4,20,909,504
9 207,624,560,256
10 147,174,521,059,584

Table 3.3.3: r4(n) for various orders n

Therefore,

|B3 | = (n!)3
r4(n)

3!
(3.3.6)

n |B3 |
4 9,216
5 16,128 ×103
6 407,586,816 ×103
7 27,593,794,658,304 ×103
8 4,598,318,530,415,300 ×106
9 1,653,547,114,909,490 ×1012
10 1,172,115,689,907,780 ×1018

Table 3.3.4: The number of members in B3 for various orders n

31

3.4 Concluding remarks

In this chapter it was shown that any set of |T | normalised MOLR2 of order n can be represented as a nor-
malised (|T |+1)-row Latin rectangle of order n and vice versa. It was also established that deciding whether
n − 1 incomplete 2-row rectangles of order n are completable to a set of n − 1 MOLR2 is NP-complete.
It was also proved that any circuit found for a set of |T |MOLR2 adds to the knowledge of the clutter of
circuits associated with all sets of MOLR2 greater than |T |. Moreover, a polynomial time algorithm was
provided for completing a set of |T |MOLR2 to a set of |T |+ 1MOLR2. In the last section, the clutters B1 ,
B2 and B3 were counted up to n = 10, demonstrating how large this problem is, even for the reduced case
of rectangles over only two rows.

The natural next step, in terms of further research, would be to device complexity results for set of |T |
MOLR2 for |T | < n− 1.

The next chapter includes the main findings of this thesis, i.e. the complete description of cutter C2 \C1 .

32

Chapter 4

On the clutter of circuits C2

This chapter focuses on the complete description of the clutter of circuits C2 . To achieve this, it suffices to
characterise all incomplete pairs of 2-row Latin rectangles that are not completable to an OLR2. Minimal
such incomplete pairs define circuits of the independence system associated with OLR2 of order n and in
that system, an incomplete pair of 2-row Latin rectangles is independent if and only if it is completable to
an OLR2.

All circuits for the independence system associated with 2-row Latin rectangles and denoted by C1 are fully
described in [29]. We take this work a step further to describe all circuits in C2 \C1 . Since there can be no
polynomial time algorithm (unless P = NP) generating the clutter of either bases or circuits of an arbitrary
IS [61], our work adds to the (few) independence systems in the literature, for which the clutter of circuits
is fully characterised (see [61] and [47]). It can be seen as a first valuable step for the characterisation of
circuits for MOLR, MOLS and possibly other highly symmetric combinatorial problems.

The chapter is organised as follows. Section 4.1 presents up to equivalence all representatives of C1 as
they are described by R. Euler in [29] and also counts all members in the clutter. The main findings are
presented in Section 4.2 where C2 \C1 is fully characterised. The clutter is first separated into five distinct
classes and then an exhaustive procedure is followed that finds up to equivalence all representative circuits
for each class. The procedure utilises the availability matrix configuration, as described in Section 2.1.4,
whose symmetrical and illustrative nature helps structure the proofs. This work sets the scene for further
research in this direction and the foundation for the introduction to circuits for 3 sets of MOLR2 that follows
in Chapter 5. Finally, Section 4.3 presents a list of circuits in C2 that are also members of every clutter of
circuits C|T | where |T | ≤ n− 1.

A representation of the clutter of circuits for a set of |T | MOLR2 denoted by C|T | , where |T | ≤ n − 1 is
illustrated in Figure 4.0.1 in which notation C|T |,d is used to denote circuits of type d in C|T |. It shows what
was essentially concluded in Section 3.1; that C|T | = C1 ∪ (C2\C1) ∪ ... ∪ (C|T |\C|T |−1).

33

Figure 4.0.1: The clutter of circuits C|T |

4.1 The clutter of circuits C1

A detailed study of the clutter C1 for n ≥ 2, is given in [29], where it is shown that there are five equivalence
classes in C1 denoted as C1,d, d = 1, ..., 5. Let us give a representative from each equivalence class and
count |C1 |, assuming without loss of generality that I = {1, 2} and K1 = {1, ..., n}.

The representative of a circuit C ∈ C1,1 is shown in Table 4.1.1, where C = {(1, j1, 1), (2, j1, 1)}. To see
that C is a circuit, check first that both the exclusion and minimality properties hold. It is obvious that C
is a dependent set of SB1 , since value 1 appears twice in the column, thus ensuring that C is not contained
in any member of B1 because it violates the definition of a Latin rectangle. The removal of any element
of c ∈ C will allow for the rectangle to be completed to a Latin rectangle and therefore C is minimal. For
example, if 1 is removed from cell (2, j1) of the array, all cells can be filled in multiple ways, one of which
gives the Latin rectangle in Table 2.1.4. Similarly if element 1 is removed from cell (1, j1).

j1 ... jn
1

1

R−

Table 4.1.1: Representative of C1,1

The representative from each of the remaining equivalence families is presented in Table 4.1.2. For the last
two circuits presented, the notation K1\{1} is used to show that in columns j2 to jn all values of set K1

34

appear with the exception of 1.

j1 j2 ... jn
1 1

R−, representative of C1,2

j1 ... jn
1, 2

R−, representative of C1,3

j1 ... jn
K1\{1}
K1\{1}

R−, representative of C1,4

j1 ... jn
K1\{1}

1

R−, representative of C1,5

Table 4.1.2: Representative of C1,2 , C1,3 , C1,4 and C1,5

Lemma 4.1.1.

|C1 | = n2

1 + 4(n− 1) + (n− 1)!2
n−1∑
q=0

(−1)q 1
q!

+ 2(n− 1)!

 (4.1.1)

Proof. Family C1,1 includes n2 circuits, since there is one such circuit per column and value i.e. per each
member of J and K1. To obtain a circuit in C1,2 (notice its representative in Table 4.1.2), there are 2 options
for the row, n options for the value in K1 and

(
n
2

)
options for the two columns in which the value appears,

i.e. a total of n2(n− 1) options. For C1,3 , the reasoning is that there are n ∗ (n− 1) options for the value in
each cell, n for each column and 2 for each row i.e. the total is 2(n− 1)n2.

Regarding C1,4 , notice that there are n options for the value and n options for the column which is left
empty. Notice also that for columns in J\{j1}, the second row must be a derangement of the first in order
to comply with the Latin rectangle structure; hence there are r2(n − 1) options for filling the second row
for each of the (n− 1)! options of filling the first one. A formula for r2(n) is given in Section 3.3. Overall,
C1,4 contains n2 · r2(n − 1) · (n − 1)! circuits. Last, |C1,5 | = 2n2(n − 1)! since there are two options for
the row where a single value appears, n options for the value, n for the column and (n − 1)! options for
filling the remaining row. The result follows from the fact that the five classes C1 are disjoint and therefore
|C1 | = |C1,1 |+ |C1,2 |+ |C1,3 |+ |C1,4 |+ |C1,5 |.

Table 4.1.3 presents for various values of order n, the total number of members in the Clutter of circuits C1 .

35

n |C1 |
3 99
4 496
5 6,825
6 199,116
7 9,420,397
8 598,672,320
9 48,449,925,577
10 4,844,375,425,900

Table 4.1.3: Number of C1 members for various orders of n

4.2 The clutter of circuits C2 \C1

This section focuses on characterising the complete list of circuits in C2 . A summary of all families consti-
tuting C2 is presented in the first two branches of Figure 4.0.1 (branches C1 and C2 \C1).

Clutter C1 was discussed in the previous section, therefore in order to characterise all member of the Clutter
C2 , we only need to derive all circuits in C2 \C1 . These are minimal dependent subsets of SB2 , that are not
members of C1 . To examine how these different circuits affect completablilty, consider a pair of incomplete
rectangles R1−, R2−. The following three scenarios are possible:

Scenario 1: The two rectangles are completable to an orthogonal pair indicating that R1− ∪ R2− does not
violate the Latin rectangle structure (i.e does not contain a circuit in C1,1 , C1,2 , C1,3) and its completion
will not violate this structure (i.e does not contain a circuit in C1,4 , C1,5).

Scenario 2: Alternatively, it is possible that one or both of the rectangles comprising the pair are not indi-
vidually completable to a Latin rectangle indicating thatR1− and/orR2− contain at least one member
of C1 and obviously the two rectangles cannot be completed to form an orthogonal pair.

Scenario 3: Lastly, both rectangles are individually completable to a Latin rectangle but no matter how this
is done, there always appears a repetition of a pair of values when the rectangles are superimposed,
thus they cannot form an orthogonal pair. This indicates thatR1−∪R2− contains a member of C2\C1 .

36

C1 C2

G
2

C1 C2

G
2

C1 C2

G
2

G2 \C2 (no circuit) C1 C2 \C1

Figure 4.2.1: Venn diagram illustrating Scenario 1 (left), Scenario 2 (centre) and Scenario 3 (right)

To clearly demonstrate the differences between the two clutters C1 and C2 \C1 we note,

Remark 4.2.1. A circuit C ∈ C2 is,

- a member of C1 if for some t ∈ T, C ∩Gt is not a member of IB1

- a member of C2 \C1 if for all t ∈ T, C ∩Gt is a member of IB1

4.2.1 Class C2,4

We will now start to describe circuits in C2\C1. It is known that an OLR2 of order n = 2 (i.e. an OLS of or-
der 2) does not exist hence there do not exist corresponding clutters of bases and circuits. Therefore circuits
derived in this chapter are for orders n > 2. In fact, we derive circuits whose corresponding incomplete
rectangles have at least 7 columns, hence C2 represents the complete list of circuits for orders n ≥ 7 and for
orders 2 < n < 7 a subset of C2 suffices.

Two incomplete rectangles R1− ∪ R2− containing a member of C2\C1 implies that the completion of R1−

and R2− will force a pair of values to be repeated. Equivalence yields that we may assume without loss of
generality that this pair of values is (k11, k

2
1) and that it appears twice in columns j1 and j2. Table 4.2.1 shows

this by assuming k11 = k21 = 1; in fact, to simplify our exposition, let us hereafter assume that I = {1, 2}
and K1 = K2 = {1, . . . , n}. We conclude with no loss of generality that any completion of R1− ∪ R2−

that contains a member of C2\C1 is bound to include the set E = {(1, j1, 1), (2, j2, 1), (1, j1, 1), (2, j2, 1)}.

j1 j2
1

1

R1−

j1 j2
1

1

R2−

Table 4.2.1: Set E

Lemma 4.2.2. E belongs to C2\C1.

37

Proof. We first need to show that this is a circuit. This is true if E satisfies the exclusion and minimality
property (see Definition 2.1.7). By definition it is evident that E is not contained in any member of B2 .
On the other hand, if we remove any element c of E then there does exist B ∈ B2 such that E\{c} ⊂ B.
An example is shown in Table 4.2.2 where c = {(2, j2, 1)}. A similar example can be shown if any other
element of E is removed. We have now established that E ∈ C2 and next need to show that it is not a
member of C1 . For this, it is easy to see that each incomplete rectangle in Table 4.2.1 is completable to a
Latin rectangle.

j1 j2 ... jn
1 2 ... n

2 3 ... n 1

R1

j1 j2 j3 ... jn
1 2 ... n

n 1 2 ... n− 1

R2

Table 4.2.2: An OLR2

Since |E| = 4 then up to equivalence, any circuit member of C2\C1, may contain 0 up to 4 elements of E,
leading to five different classes of circuits in C2 \C1 . More formally,

Definition 4.2.3. Let d = 0, . . . , 4 define the class of a circuit and C2,d ⊂ C2\C1, where C2,d = {C ∈
C2\C1 : C is equivalent to some C ′ such that |C ′ ∩ E| = d}; evidently the classes {C2,d, d = 0, . . . , 4}
form a partition of C2\C1 hence,

C2 \C1 = C2,4 ∪ C2,3 ∪ C2,2 ∪ C2,1 ∪ C2,0 (4.2.1)

For class 4 the obvious result follows,

Theorem 4.2.4. The incomplete pair of rectangles of Table 4.2.1 comprises up to equivalence, the single
member of C2,4.

For all other classes we provide a list of all non-equivalent circuits (i.e., we catalogue all sub-classes that
each class splits into and list one representative per sub-class). For such cases, let Cv2,d denote the subfamily
containing the vth circuit of class d. For example C12,2 denotes the 1st circuit in class 2.

We have established that class 4 contains, up to equivalence, only one member. We continue to find all
circuit members of classes 0 to 3. It turns out that as summarised in Figure 4, classes 0, 1, 2, 3 respectively
have , 5, 6, 7 and 2 sub-families of circuits. We start by investigating class 0.

4.2.2 Class C2,0

Proposition 4.2.5. Let Q denote the collection of all pairs of Latin rectangles R1, R2 that do not form an
orthogonal pair due to the repetition of at least one pair of values in the first two columns. Then for each
C ∈ C2 \C1 there exists Q ∈ Q such that C ⊂ Q.

38

Proof. We know that for all C ∈ C2 \C1 , there exist R1, R2 ∈ B1 such that C ⊂ (R1 ∪ R2) and
E ⊂ (R1 ∪ R2). Therefore, the collection of all pairs of Latin rectangles Q, in which there appears a
repetition of a pair of values, contains the complete list of C ∈ C2 \C1 .

Proposition 4.2.6. For all Q ∈ Q , Q\E contains a circuit member of class 0.

Proof. To obtain a circuit of class C2,0 we start with a member ofQ and let this beQ = R1∪R2. Notice that
the set (R1 ∪R2) \E continues to satisfy the exclusion property, since completing each of the rectangles
corresponding to R1\E and R2\E forces the repetition of pair (1, 1) in cells (1, j1) and (2, j2) (see Tables
4.2.3 and 4.2.4). Therefore (R1 ∪R2) \E contains a circuit and due to the absence of all elements of E, we
know that it contains a circuit in C2,0 (class 0).

j1 j2 ... jn
1 K1\{1}
k1 1 K\{k1, 1}

R1

j1 j2 ... jn
1 K2\{1}
k2 1 K2\{k2, 1}

R2

Table 4.2.3: A pair of Latin rectangles in Q

j1 j2 ... jn
K1\{1}

k1 K1\{k1, 1}
R1\E

j1 j2 ... jn
K2\{1}

k2 K2\{k2, 1}
R2\E

Table 4.2.4: Removing E from Table 4.2.3

It is also easy to see from Table 4.2.4 that (R1 ∪R2) \E, does not satisfy the minimality property, since if
element (2, j1, k1) is removed (or in other words cell (2, j1) is emptied from R1 in Table 4.2.4), then the
exclusion property still holds. However, if we continue to remove elements of (R1 ∪R2) \E, eventually
the minimality property will be met and we will have a circuit in C2,0 . To make our search more concise,
we first observe that in attempting completion after removing the additional elements from R1\E or R2\E,
some value must be forced to appear twice in the first two columns, i.e., in cells (1, j1), (1, j2), (2, j1) and
(2, j2). For convenience, let us introduce the following.

Definition 4.2.7. An incomplete rectangle R− is called pink if :

i) ∃R′− such that R− ⊂ R′− and R′− includes elements (1, j1, 1), (2, j2, 1) and

ii) any completion of R− forces some value to appear twice in the first two columns

Notice that by Definition 4.2.3, for a pink rectangleR− in class 0, R−∩E = ∅. Our exhaustive, yet concise,
procedure, to reveal all non-equivalent circuits in C2,0 is the following:

Step 1: Identify all pairwise non-equivalent pink (incomplete) rectangles by systematically emptying cells
form Table 4.2.4

39

Step 2: Combine them to obtain incomplete pairs of pink rectangles in all possible ways

Step 3: Finally, omit any incomplete pair that is not minimal

After completing the 3-step procedure we will obtain all circuits of class 0. Notice that Steps 1 and Step 2

will be performed on one rectangle and then as indicated in Step 3 pairs of incomplete rectangles will be
created. We introduce the following definition to describe the different types of rectangles derived from Step
1.

Definition 4.2.8. A pink incomplete rectangle R− is of type I, II or III, if its completion forces the same
value to appear respectively as follows,

type I: always and only in cells {(1, j1), (2, j2)}, irrespective of how R− is completed

type II: either in cells {(1, j1), (2, j2)} and/or in cells {(1, j2), (2, j1)}, depending on howR− is completed

type III: always in both, cells {(1, j1), (2, j2)} and in cells {(1, j2), (2, j1)}, irrespective of how R− is
completed

The difference between type II and type III is that irrespective of the way in which an incomplete rect-
angle of type III is completed, a repetition of a values will always appear in cells {(1, j1), (2, j2)} and
{(1, j2), (2, j1)}, which is not the case for an incomplete rectangle of type II. Example 4.2.1 helps to clarify
the three types of pink rectangles.

Example 4.2.1
Table 4.2.5 depicts a type I pink rectangle R−. Notice that in cell (1, j1) of the array we can place value 1

or 2. The value we choose will be forced to also appear in cell (2, j2), therefore R− is type I. We present
the corresponding availability matrix next to it.

j1 j2 j3

1 1

2 2

 1
k1

 2

A

j1 j2 j3 ... jn
K\{1, 2}

n K\{1, 2}
R−

Table 4.2.5: R− of type I and corresponding availability matrix

40

j1 j2 j3

1 1

2 2

 1
k1

 2

A

j1 j2 j3 ... jn
1 2 K\{1, 2}
n 1 2 K\{1, 2}

R

or

j1 j2 j3

1 1

2 2

 1
k1

 2

A

j1 j2 j3 ... jn
2 1 K\{1, 2}
n 2 1 K\{1, 2}

R

Table 4.2.6: All possible ways of completing R− of Table 4.2.5

Table 4.2.7 depicts a type II pink rectangle R−. Notice that value 1 can be placed either in cells (1, j1),
(2, j2) or in cells (1, j2), (2, j1); therefore R− is type II.

1 1

 2 2

j1 j2

 3 3
k1

A

j1 j2 ... jn
K\{1, 2}
K\{1, 3}

R−

Table 4.2.7: R− of type II and corresponding availability matrix

1 1

 2 2

j1 j2

 3 3
k1

A

j1 j2 ... jn
1 2 K\{1, 2}
3 1 K\{1, 3}

R

or
1 1

 2 2

j1 j2

 3 3
k1

A

j1 j2 ... jn
2 1 K\{1, 2}
1 3 K\{1, 3}

R

Table 4.2.8: All possible ways of completing R− of Table 4.2.7

Finally, Table 4.2.9 depicts a type III rectangle R−. One can easily observe that no matter how values are
placed in the empty cells, they will always form a Latin square of order 2. Since same values will always
appear in cells (1, j1), (2, j2) and cells (1, j2), (2, j1), R− is type III.

41

k1

1 1

 2 2

j1 j2

A

j1 j2 ... jn
K\{1, 2}
K\{1, 2}

R−

Table 4.2.9: R− of type III and corresponding availability matrix

k1

1 1

 2 2

j1 j2

A

j1 j2 ... jn
1 2 K\{1, 2}
2 1 K\{1, 2}

R

or

k1

1 1

 2 2

j1 j2

A

j1 j2 ... jn
2 1 K\{1, 2}
1 2 K\{1, 2}

R

Table 4.2.10: All possible ways of selecting values in A of Table 4.2.9

Lemma 4.2.9. Two pink rectangles form a pair whose completion forces a repetition of a pair of values in
the first two columns if and only if both are of type I or at least one is of type III.

Thus, two pink rectangles R− and R′− comply with Lemma 4.2.9 if:

i) both R− and R′− are of type I or

ii) R− is of type I and R′− is of type III or

iii) R− is of type II and R′− is of type III or (iv) both R− and R′− are of type III.

Based on the fact that the type of pink rectangles in any pair R− ∪R′− determines whether their completion
will result in a repetition of a pair of values in the first two columns, we can derive a necessary condition for
minimality (see Remark 4.2.11). To that end, we use the concept of a dominated pink rectangle as defined
below.

Definition 4.2.10. A pink rectangle R− is called dominated if there is some pink rectangle R′− ⊂ R− such
that R− and R′− are both of the same type (i.e., I, II, III).

Remark 4.2.11. In order for a dependent set R− ∪ R′− to be minimal, it is necessary that neither R− nor
R′− are dominated.

Let us list a few last observations, to be utilized in the proof that follows.

Remark 4.2.12. Up to equivalence, for any two R− and R′−, R− ⊂ R′− if and only if A′ ⊂ A.

42

Remark 4.2.13. If two pairs of incomplete rectangles (R− ∪ R′−), (R′′− ∪ R′′′−) ∈ G2 both satisfy the
exclusion property and (R− ∪ R′−) ⊂ (R′′− ∪ R′′′−) then R′′− ∪ R′′′− is not minimal and consequently not a
circuit. For the corresponding availability matrices it follows that if (A′′ ∪A′′′) ⊂ (A∪A′), then R′′− ∪R′′′−
is not minimal.

We proceed to find all circuits of C2,0 , by first following Step 1. To derive all pink rectangles, we will
progressively empty cells from the left rectangle of Table 4.2.4. To avoid enumerating equivalent (i.e.,
symmetric) cases, we assume that the number of cells emptied from the first row are less than or equal to
the number of cells emptied from the second row. For each case, we illustrate the availability matrix Az of
the rectangle Rz− obtained after emptying cells. An ‘∗’ besides a value in Az denotes that that value is not
available (e.g., due to its occurrence in a non-empty cell in the same column); we emphasize the occurrence
of some ‘∗’ in Az by writing, instead, A∗z and R∗z. We make the following observations for Step 1:

Observation 1: The resulting two availability matrices (one for each row) must share at least one row
containing value 1, since E has been removed from R− ∪ R′− and therefore value 1 is now available
in both rows.

Observation 2: Remember that A(R−, 1) denotes the availability matrix of the first row and A[R−, 2] of
the second and A = A(R−, 1)∪A[R−, 2] . It follows from the definition of a Latin rectangle, that an
available value in column j of A(R−, 1) cannot be selected if it already appears in cell (2, j) of the
corresponding array. The same can be said for A[R−, 2] and cell (1, j). Hence,

2.1 An ‘∗’ appears in column j of A(R−, 1) only if column j does not appear in A[R−, 2]. This is
evident, since cell (2, j) of the array is filled and therefore there is no available value. Similarly
for an ‘∗’ appearing in A[R−, 2].

2.2 An ‘∗’ appears on an element ofA(R−, 1) only if this element does not appear inA[R−, 2]. This
is clear, since an ‘∗’ in A(R−, 1) indicates that element appears in row 2 of the corresponding
array and therefore it is not available, hence it will not appear in A[R−, 2]. Similarly for an
‘∗’ appearing in A[R−, 2].

2.3 At most one ‘∗’ can appear in each column of A(R−, 1) (or A[R−, 2]). This is also clear, since
more than one ‘∗’ in column j of A(R−, 1) indicates that cell (2, j) of the corresponding array
contains more than one elements and therefore the definition of a Latin rectangle is violated.

Remark 4.2.14. Consider an incomplete rectangle R− for which A(R−, 1) has dimension p and A[R−, 2]
has dimension q, where p ≤ q. Then the two availability matrices can share 1 up to p rows and 0 up to p
columns.

Proposition 4.2.15. Tables 4.2.11 and 4.2.12 contain all pink rectangles, which share no element with E.

43

j1 j2 j3 ... jn
2 K1\{1, 2}

k1 K1\{1, 2, k1}
R∗1−

, A∗1 = {(1, j1, 1), (2, j2, 1), (2, j3, 1)(2, j3, 2)}

j1 j2 ... jn
k2 K1\{1, k2}

K1\{1, 2}
R2−

, A2 = {(1, j1, 1), (2, j1, 1), (2, j1, 2), (2, j2, 1), (2, j2, 2)}

j1 j2 ... jn
2 K1\{1, 2}

K1\{1, 2}
R∗2−

, A∗2 = {(1, j1, 1), (2, j1, 1), (2, j1, 2), (2, j2, 1)}

j1 j2 j3 jn
2 3 K1\{1, 2, 3}

K1\{1, 2, 3}
R∗4−

,
A∗4 = {(1, j1, 1), (2, j1, 1), (2, j1, 2), (2, j1, 3), (2, j2, 1),

(2, j2, 3), (2, j3, 1), (2, j3, 2)}

j1 j2 j3 j4 ... jn
3 K1\{1, 2, 3}

2 n K1\{1, 2, 3, n}
R∗6−

,
A∗6 = {(1, j1, 1), (1, j3, 1), (1, j3, 2), (2, j2, 1),

, (2, j4, 1), (2, j4, 3)}

j1 j2 j3 ... jn
K1\{1, 2}

2 K1\{1, 2, 3}
R∗7−

,
A∗7 = {(1, j1, 1), (1, j2, 1), (1, j2, 2), (2, j2, 1), (2, j2, 3),

(2, j3, 1), (2, j3, 3)}

j1 j2 ... jn
K1\{1, 2}
K1\{1, 3}

R8−

,
A8 = {(1, j1, 1), (1, j1, 2), (1, j2, 1), (1, j2, 2), (2, j1, 1)

(2, j1, 3), (2, j2, 1), (2, j2, 3)}

j1 j2 j3 ... jn
K1\{1, 2}

n K1\{1, 2, n}
R10−

,
A10 = {(1, j1, 1), (1, j1, 2), (1, j2, 1), (1, j2, 2), (2, j2, 1),

(2, j2, 2), (2, j3, 1), (2, j3, 2)}

j1 j2 ... jn
K1\{1, 2}
K1\{1, 2}

R11−

,
A11 = {(1, j1, 1), (1, j1, 2), (1, j2, 1), (1, j2, 2), (2, j1, 1)

(2, j1, 2), (2, j2, 1), (2, j2, 2)}

j1 j2 j3 ... jn
k1 K1\{1, 2, k1}

K1\{1, 2, 3}
R15−

,
A15 = {(1, j1, 1), (1, j1, 2), (1, j2, 1), (1, j2, 2), (2, j1, 1),

(2, j1, 2), (2, j1, 3), (2, j2, 1), (2, j2, 2), (2, j2, 3),
(2, j3, 1), (2, j3, 2), (2, j3, 3)}

Table 4.2.11: Pink rectangles that share no element with E (continued in Table 4.2.11)

44

j1 j2 j3 ... jn
3 K1\{1, 2, 3}

K1\{1, 2, 3}
R∗15−

,
A∗15 = {(1, j1, 1), (1, j1, 2), (1, j2, 1), (1, j2, 2), (2, j1, 1),

(2, j1, 2), (2, j1, 3), (2, j2, 1), (2, j2, 2), (2, j2, 3),
(2, j3, 1), (2, j3, 2)}

j1 j2 j3 j4 ... jn
K1\{1, 2, 3}

n K1\{1, 2, 3, n}
R23−

,

A23 = {(1, j1, 1), (1, j1, 2), (1, j1, 3), (1, j2, 1), (1, j2, 2),
(1, j2, 3), (1, j3, 1), (1, j3, 2), (1, j3, 3), (2, j1, 1),
(2, j1, 2), (2, j1, 3), (2, j2, 1), (2, j2, 2), (2, j2, 3),

(2, j4, 1), (2, j4, 2), (2, j4, 3)}
j1 j2 j3 ... jn

K1\{1, 2, 3}
K1\{1, 2, 3}

R24−

,

A24 = {(1, j1, 1), (1, j1, 2), (1, j1, 3), (1, j2, 1), (1, j2, 2),
(1, j2, 3), (1, j3, 1), (1, j3, 2), (1, j3, 3), (2, j1, 1),
(2, j1, 2), (2, j1, 3), (2, j2, 1), (2, j2, 2), (2, j2, 3),

(2, j3, 1), (2, j3, 2), (2, j3, 3)}

Table 4.2.12: Pink rectangles that share no element with E

Proof. We proceed by following Step 1 and systematically emptying cells from Table 4.2.4, giving rise to
five cases.

Case 1. Emptying 1 cell in row 2

Without loss of generality we assume that the cell emptied is either (2, j3) or (2, j1) and that the two values
missing from row 2 are {1, 2}. Emptying cell (2, j3) gives rise to R1− or R∗1− (Tables 4.2.11 and 4.2.13
respectively) depending on whether value 2 appears in cell (1, j2); emptying cell (2, j1) results, in a similar
manner, to R2− or R∗2− (Tables 4.2.11 and 4.2.13). Please notice the corresponding availability matrices in
Figure 4.2.2 and the ‘∗’ in matrix A∗1 regarding value 2 for the second row and column j2 (and similarly in
A∗2); notice also that, for each matrix, we illustrate the number of rows and columns that are common to the
availability matrix of both rows as indicated in Remark 4.2.14 (at least one row is common since value 1 is
missing from both rows). In Figure 4.2.2 the comment “A1: Row 1, Col 0 ” explains that A(R1−, 1) and
A[R1−, 2] have 1 row in common and 0 columns in common; this becomes more visible in Tables 4.2.11
and 4.2.13 where it is clear that value 1 is the only one that does not appear in both rows, and rows 1 and 2

share no columns of empty cells.

k1

A*2: Row 1, Col 1A2: Row 1, Col 1

(1) 1

 2 2

j1 j2

(1) 1

 2 2 *

j1 j2

A1: Row 1, Col 0

j1 j2 j3

1 1

2 2

(1)

A*1: Row 1, Col 0

j1 j2 j3

1 1

2 * 2

(1)

Figure 4.2.2: Availability matrices for Case 1

45

j1 j2 j3 j4 ... jn
k2 K1\{1, k2}

k1 K1\{1, 2, k1}
R1−

j1 j2 j3 j4 jn
k2 k3 k4 K1\{1, k2, k3, k4}

k1 K1\{1, 2, 3, k1}
R3−

j1 j2 j3 j4 jn
2 3 k4 K1\{1, 2, 3, k4}

k1 K1\{1, 2, 3, k1}
R∗3−

j1 j2 j3 jn
k2 k3 K1\{1, k2, k3}

K1\{1, 2, 3}
R4−

j1 j2 j3 j4 jn
2 3 4 K1\{1, 2, 3, 4}

K1\{1, 2, 3, 4}
R∗5−

j1 j2 j3 ... jn
K1\{1, 2}

n K1\{1, 3, n}
R7−

j1 j2 j3 j4 jn
k1 K1\{1, 2, k1}

k2 k3 K1\{1, 2, k2, k3}
R9−

j1 j2 j3 j4 jn
3 4 K1\{1, 2, 3, 4}

k1 K1\{1, 3, 4, k1}
R∗12−

j1 j2 j3 jn
3 K1\{1, 2, 3}

K1\{1, 3, 4}
R∗13−

j1 j2 j3 j4 jn
3 K1\{1, 2, 3}

k1 K1\{1, 2, 3, k1}
R∗14−

j1 j2 j3 j4 j5 jn
4 5 K1\{1, 2, 3, 4, 5}

2 3 K1\{1, 2, 3, 4, 5}
R∗16−

j1 j2 j3 j4 jn
5 K1\{1, 2, 3, 5}

2 K1\{1, 2, 4, 5}
R∗17−

j1 j2 j3 jn
K1\{1, 2, 3}
K1\{1, 4, 5}

R18−

j1 j2 j3 j4 j5 jn
4 K1\{1, 2, 3, 4}

3 k1 K1\{1, 2, 3, 4, k1}
R∗19−

j1 j2 j3 j4 jn
k1 K1\{1, 2, 3, k1}

k2 K1\{1, 2, k2, 4}
R20−

j1 j2 j3 j4 jn
4 K1\{1, 2, 3, 4}

3 K1\{1, 2, 3, 4}
R∗20−

j1 j2 j3 jn
K1\{1, 2, 3}
K1\{1, 2, 4}

R21−

j1 j2 j3 j4 j5 jn
K1\{1, 2, 3}

k1 k2 K1\{1, 2, 3, k1, k2}
R22−

Table 4.2.13: Non-pink rectangles that share no element with E

It is easy to see from Figure 4.2.3 that R1− is not pink and therefore is excluded from our analysis. Notice
that value 1 is selected in column j1 of the first matrix (i.e. first row of R−) and in column j3 of the second
matrix (i.e. second row of R−). This is a non-pink structure as value one is not forced to be selected in both
j1 and j2.

46

k1

A1: Row 1, Col 0

j1 j2 j3

1 1

2 2

(1)

Figure 4.2.3: Completion of non-pink R1−

For completion of R∗1−, R2− and R∗2− we note that value 1 will appear in the first two columns with any
selection, as shown in Figure 4.2.4; therefore all three rectangles are pink. Figure 4.2.4 illustrates all possible
selection of values and the corresponding completed rectangles are shown in Tables 7.5 to A.4 in Appendix
A.

A*1: Row 1, Col 0

j1 j2 j3

 1 1

 2 * 2

(1)

A2: Row 1, Col 1

(1) 1

 2 1

j1 j2

A*2: Row 1, Col 1

(1) 1

 2 2 *

j1 j2

Figure 4.2.4: Completion of pink R∗1−, R2−, R∗2−

Case 2. Emptying 2 cells in row 2

We assume the cells emptied are (2, j3) and either (2, j4) or (2, j1) and that the three values missing from
row 2 are {1, 2, 3}. Emptying cells (2, j3) and (2, j4) gives rise to R3− or R∗3− (in Table 4.2.13) depending
on whether values 2 and 1 appear in cells (1, j2) and (1, j3); emptying cells (2, j1) and (2, j3) results, in a
similar manner, to R4− or R∗4− (in Tables 4.2.13 and 4.2.11 respectively). The corresponding availability
matrices are presented in Figure 4.2.5.

k1

A3: Row 1, Col 0

j1 j2 j3 j4

1 1 1

2 * 2 2

3 3 * 3

(1)

A4: Row 1, Col 1

j1 j2 j3

(1) 1 1

 2 2 2

 3 3 3

A*4: Row 1, Col 1

j1 j2 j3

(1) 1 * 1 *

(2) 2 * 2**

(3) 3 * 3 **

A*3: Row 1, Col 0

j1 j2 j3 j4

1 1 1

2 * 2 2

3 3 * 3

(1)

Figure 4.2.5: Availability matrices for Case 2

It becomes easy to see that R3− is not pink since it is completable by placing 1 in cells (1, j1) and (2, j4),

2 in cell (2, j3) and 3 in cell (3, j2); in fact, R∗3− (that is more ‘restricted’ than R3− since A∗3− ⊂ A3−)
is not pink either, since completable in exactly the same manner. This fact gives us a useful rule to avoid
examining some rectangles: if R∗t− is non-pink, then so is Rt−.

47

The opposite does not hold. For example, R4− is not pink since completable by placing 1 in cells (1, j1)

and (2, j3), 3 in cell (2, j1) and 2 in cell (2, j2); to the contrary R∗4− is completable only by placing either
1 in cells (1, j1) and (2, j2) or 2 in cells (1, j2) and (2, j1) thus being pink. An illustration is presented in
Figure 4.2.7. The availability matrices of the rectangles, shown in Figure 4.2.6, illustrate the completion of
non-pink rectangles R3−, R∗3− and R4− and corresponding completed rectangles are shown in Tables 7.5 to
A.4 in Appendix A.

A*3: Row 1, Col 0

j1 j2 j3 j4

1 1 1

2 * 2 2

3 3 * 3

(1)

A4: Row 1, Col 1

j1 j2 j3

(1) 1 1

 2 2 2

 3 3 3

A3: Row 1, Col 0

j1 j2 j3 j4

1 1 1

2 2 2

3 3 3

(1)

Figure 4.2.6: Completion of non-pink rectangles R3−, R∗3−, R4−

or

A*4: Row 1, Col 1

j1 j2 j3

(1) 1 * 1 **

(2) 2 * 2 **

(3) 3 * 3 **

A*4: Row 1, Col 1

j1 j2 j3

(1) 1 * 1 **

(2) 2 * 2 **

(3) 3 * 3 **

or

Figure 4.2.7: Completion of pink R∗4−

Case 3. Emptying at least 3 cells in row 2

This case yields only non-pink rectangles. To see this, observe that the most restricted rectangle is the one
arising after emptying exactly 3 cells in row 2, namely (2, j1), (2, j3) and (2, j4), and in addition, having
values 2 and 3 appearing in cells (1, j2) and (1, j3), respectively. The availability matrix shown in Figure
4.2.8 illustrates that this rectangle, namelyR∗5− is non-pink, i.e., its selected entries show howR∗5− (in Table
4.2.13 is completable without any value appearing twice in the first two columns (in fact, the completion is
made as for R3− and R∗3− in Case 2). Once again, the corresponding completed rectangles are shown in
Tables 7.5 to A.4 in Appendix A and in fact, this will be assumed for all availability matrices from now on.

48

k1

A*5: Row 1, Col 1

j1 j2 j3 j4

(1) 1 1 1

 2 2 * 2 2

 3 3 3 * 3

4 4 4 * 4

Figure 4.2.8: Completion of non-pink R∗5−

No further cases need to be examined in which more than 1 cell is emptied form the first row and more than
3 values are emptied from the second row.

Case 4. Emptying 1 cell in row 1 and 1 cell in row 2

For all rectangles in this case, notice that row 1 has two empty cells hence two missing values {1, 2}; the
same applies to row 2, apart from the fact that the second missing value may be 2 or not, i.e., the values
missing from row 2 can be either {1, 2} or {1, 3}. Thus, there is a 2×2 availability matrix per row and these
two matrices share 1 or 2 rows (if the second value missing from row 2 is 2 or 3, respectively) and 0, 1 or 2
columns (depending on which cells are empty at each row). In total, the possible availability matrices (and
hence rectangles) to be examined as shown at Figure 4.2.9.

Notice that A6 (i.e., A∗6 without any ‘∗’) is not listed because R6− is easily completable without a value
appearing twice in the first two columns; in contrast, R∗6− is pink (see Table 4.2.11 and Figure 4.2.11).
Based on the selected entries of A7 we observe that R7− is not pink, whereas R∗7− is (see Table 4.2.13 and
Figure 4.2.11). There is no R∗t− for t = 8, 9, 10, 11 : observe that columns j1 and j2 are empty at both rows
in R8− and R11− in Table 4.2.11 (thus no value is forbidden at some row because of its occurrence in the
other row), while values 1 and 2 are missing from both rows inR9− andR10−. In Figure 4.2.10, the selected
entries of A9 show that R9− is not pink. Thus this case includes the pink rectangles R∗6−, R

∗
7−, R8−, R10−

and R11− and selection of values is depicted in Figure 4.2.11.

49

 3 * 3

 1 1 1 1

 2 * 2

A*6: Row 1, Col 0

j1 j2 j3 j4

A7: Row 1, Col 1

1 1

 2 2

j1 j2 j3

 3 3
k1

 1

A8: Row 1, Col 2

1 1

 2 2

j1 j2

 3 3
k1

A9: Row 2, Col 0 A10: Row 2, Col 1

j1 j2 j3

1 1

2 2

 1
k1

 2

A11: Row 2, Col 2

k1

1 1

 2 2

j1 j2

 1 1

 2 2

1 1

 2 2

j1 j2 j3 j4

A*7: Row 1, Col 1

1 1

 2 * 2

j1 j2 j3

 3 3
k1

 1

Figure 4.2.9: Availability matrices for Case 4

A7: Row 1, Col 1

1 1

 2 2

j1 j2 j3

 3 3
k1

 1

A9: Row 2, Col 0

 1 1

 2 2

1 1

 1 2

j1 j2 j3 j4

Figure 4.2.10: Completion of non-pink R7−, R9−

 3 * 3

 1 1 1 1

 2 * 2

A*6: Row 1, Col 0

j1 j2 j3 j4

A11: Row 2, Col 2

k1

1 1

 2 2

j1 j2

A8: Row 1, Col 2

1 1

2 2

j1 j2

 3 3
k1
 1 1

2 2

j1 j2

 3 3
k1

or

A10: Row 2, Col 1

or

j1 j2 j3

1 1

2 2

 1
k1

 2

j1 j2 j3

1 1

2 2

 1
k1

 2

or

A*7: Row 1, Col 1

1 1

 2 * 2

j1 j2 j3

 3 3
k1

 1

A*7: Row 1, Col 1

1 1

 2 * 2

j1 j2 j3

 3 3
k1

 1

Figure 4.2.11: Completion of pink R∗6−, R∗7−, R8−, R10−, R11−

50

Case 5. Emptying 1 cell in row 1 and 2 cells in row 2

Here, row 1 has 2 empty cells hence two missing values {1, 2}, whereas row 2 has 3 empty cells thus its
missing values are either {1, 3, 4} or {1, 2, 3}; hence there is a 2 × 2 availability matrix for row 1 and a
3× 3 such matrix for row 2. These two matrices share 1 or 2 rows (depending on whether value 2 is missing
from row 2) and 1 or 2 columns (depending on which cells are empty at each row); notice that should these
matrices share 0 columns, any corresponding rectangle would not be pink.

The possible availability matrices (and hence rectangles) to be examined are shown in Figure 4.2.12, demon-
strating that R∗12− (and hence R12−) is not pink, the same applying to R13−, R

∗
13− and to R14−, R

∗
14− (all

presented in Table 4.2.13). Hence this case yields the pink rectangles R15− and R∗15− in Tables 4.2.11 and
4.2.12.

A*12: Row 1, Col 1

j1 j2 j3 j4

1 1

 2 2

 4 4 * 4 *

 3 3 * 3 *

k1
 1 1

A*14: Row 2, Col 1

1 1

2 2

 3 3 * 3

 1 * 1
k1

 2 * 2

j1 j2 j3 j4

 3 3 3

 1 1 1
k1

 2 2 2

A15: Row 2, Col 2

j1 j2 j3

A13: Row 1, Col 2

j1 j2 j3

1 1

 2 2

 4 4 4

 3 3 3
k1

 1

A*13: Row 1, Col 2

j1 j2 j3

1 1

 2 2

 4 4 4 *

 3 3 3 *

k1
 1 *

A14: Row 2, Col 1

1 1

2 1

 3 3 3

 1 1
k1

 2 2

j1 j2 j3 j4

 3 3 3 *

 1 1 1 *

k1
 2 2 2 *

A*15: Row 2, Col 2

j1 j2 j3

Figure 4.2.12: Availability matrices for Case 5

51

A*12: Row 1, Col 1

j1 j2 j3 j4

1 1

 2 2

 4 4 * 4 *

 3 3 * 3 *

k1
 1 1

A*14: Row 2, Col 1

1 1

2 2

 3 3 * 3

 1 * 1
k1

 2 * 2

j1 j2 j3 j4

A13: Row 1, Col 2

j1 j2 j3

1 1

 2 2

 4 4 4

 3 3 3
k1

 1

A*13: Row 1, Col 2

j1 j2 j3

1 1

 2 2

 4 4 4 *

 3 3 3 *

k1
 1 *

A14: Row 2, Col 1

1 1

2 2

 3 3 3

 1 1
k1

 2 2

j1 j2 j3 j4

Figure 4.2.13: Completion of non-pink R∗12, R13−, R∗13−, R14−, R∗14−

 3 3 3

 1 1 1
k1

 2 2 2

A15: Row 2, Col 2

j1 j2 j3

 3 3 3

 1 1 1
k1

 2 2 2

A15: Row 2, Col 2

j1 j2 j3

 3 3 3

 1 1 1
k1

 2 2 2

A15: Row 2, Col 2

j1 j2 j3

or or

 3 3 3 *

 1 1 1 *

k1
 2 2 2 *

A*15: Row 2, Col 2

j1 j2 j3

 3 3 3 *

 1 1 1 *

k1
 2 2 2 *

A*15: Row 2, Col 2

j1 j2 j3

or

Figure 4.2.14: Completion of pink R15−, R∗15−

Case 6. Emptying 2 cells in row 1 and 2 cells in row 2

In this case, row 1 has 3 empty cells thus its missing values are {1, 2, 3}, whereas row 2 also has 3 empty
cells but its missing values can be {1, 4, 5} or {1, 3, 4} or {1, 2, 3}; hence there is a 3× 3 availability matrix
for row 1 and the two matrices share 1 up to 3 rows and 0 up to 3 columns; notice that should these matrices
share 0 columns, any corresponding rectangle would not be pink.

The possible availability matrices (and hence rectangles) to be examined are shown in Figure 4.2.15, with
the selected entries showing that all corresponding rectangles except for R23− and R24− in Table 4.2.12, are
non-pink. Notice also that non-applicability of an ‘∗’ in all matrices except for A18, since columns j1, j2, j3
are all empty in both rows regarding R18−, R21− and R24− (thus no value is forbidden in some row because
of its occurrence in the other row), while values 1, 2, 3 are all missing from both rows regarding R22− and
R23−.

52

A23: Row 3, Col 2

j1 j2 j3 j4

1 1 1

2 2 2

3 3 3

1

2

3

j1 j2 j3

1 1 1

2 2 2

3 3 3

A24: Row 3, Col 3

A*16: Row 1, Col 1

 5 5 * 5 *

 4 4** 4*

k1
 1 1 * 1*1 1

2* 2 2

3 3 3

A*17: Row 1, Col 2

 5 5 5*

 4 4 4

k1
 1 1 1 1

2* 2 2

3 3 3

j1 j2 j3 j4 j5 j1 j2 j3 j4 j1 j2 j3

A18: Row 1, Col 3

1 1 1

2 2 2

3 3 3

 5 * 5 5

 4 * 4 4
k1

A*19: Row 2, Col 1

 4 4 * 4 *

 1 1 * 1*

k1
 2 * 2*

1 1

2 2 2

3* 3 3

j1 j2 j3 j4 j5 j1 j2 j3

 4 4 4

 1 1 1
k1

 2 2 2

 3 3 3

A21: Row 2, Col 3A*20: Row 2, Col 2

j1 j2 j3 j4

 4 4 4 *

 1 1 1 1
k1

 2 2 2 2

3 3 3 3

A22: Row 3, Col 1

1 1 1

2 2 2

3 3 3

j1 j2 j3 j4 j5

1 1

2 2

3 3

A20: Row 2, Col 2

j1 j2 j3 j4

 4 4 4

 1 1 1 1
k1

 2 2 2 2

3 3 3 3

Saturday, 6 July 2013 Figure 4.2.15: Availability matrices for Case 6

A*16: Row 1, Col 1

 5 5 * 5 *

 4 4** 4*

k1
 1 1 * 1*1 1

2* 2 2

3 3 3

A*17: Row 1, Col 2

 5 5 5*

 4 4 4

k1
 1 1 1 1

2* 2 2

3 3 3

j1 j2 j3 j4 j5 j1 j2 j3 j4 j1 j2 j3

A18: Row 1, Col 3

1 1 1

2 2 2

3 3 3

 5 * 5 5

 4 * 4 4
k1

A*19: Row 2, Col 1

 4 4 * 4 *

 1 1 * 1*

k1
 2 * 2*

1 1

2 2 2

3* 3 3

j1 j2 j3 j4 j5

j1 j2 j3

 4 4 4

 1 1 1
k1

 2 2 2

 3 3 3

A21: Row 2, Col 3A*20: Row 2, Col 2

j1 j2 j3 j4

 4 4 4 *

 1 1 1 1
k1

 2 2 2 2

3 3 3 3

A22: Row 3, Col 1

1 1 1

2 2 2

3 3 3

j1 j2 j3 j4 j5

1 1

2 2

3 3

A20: Row 2, Col 2

j1 j2 j3 j4

 4 4 4

 1 1 1 1
k1

 2 2 2 2

3 3 3 3

Figure 4.2.16: Completion of non-pink R∗16−, R∗17−, R18−, R∗19−, R20, R∗20−, R21−, R22−

53

A23: Row 3, Col 2

j1 j2 j3 j4

1 1 1

2 2 2

3 3 3

1

2

3

j1 j2 j3

1 1 1

2 2 2

3 3 3

A24: Row 3, Col 3

A23: Row 3, Col 2

j1 j2 j3 j4

1 1 1

2 2 2

3 3 3

1

2

3

A23: Row 3, Col 2

j1 j2 j3 j4

1 1 1

2 2 2

3 3 3

1

2

3

or or

j1 j2 j3

1 1 1

2 2 2

3 3 3

A24: Row 3, Col 3

or

Figure 4.2.17: Completion of pink R23−, R24−

It is now clear that no further cases need to be examined for this class, hence all pink rectangles that share
no elements with E are found and presented in Tables 4.2.11 and 4.2.12.

Proposition 4.2.16. The non-dominated pink rectangles, which share no element with E, are R∗6−, R10−,

R11−, R23− and R24−.

Proof. In order to create pairs, as indicated in Step 2, we first need to categorise the availability matrices
by type and then remove the dominated cases (see Definition 4.2.10). Up to this point, all combinations
of emptied cells for a single rectangle have been found and from the completion patterns in Figures 4.2.4,
4.2.7, 4.2.11, 4.2.14 and 4.2.17 we derive the type of each availability matrix as described in Definition
4.2.8; these are presented in Table 4.2.14.

Type Incomplete rectangle
I R∗1−, R2−, R

∗
6−, R10−

II R∗4−, R
∗
7−, R8−, R15−, R

∗
15−, R23−, R24−

III R∗2−, R11−

Table 4.2.14: All pink rectangles that share no element with E

54

From set notation we can observe,

A∗1 ⊂ A10 (4.2.2)

A2 ⊂ A10 (4.2.3)

A∗6 ⊂ A23 (4.2.4)

A∗4 ⊂ A24 (4.2.5)

A∗7 ⊂ A24 (4.2.6)

A8 ⊂ A24 (4.2.7)

A10 ⊂ A24 (4.2.8)

A∗2 ⊂ A2 ⊂ A11 ⊂ A∗15 ⊂ A15 ⊂ A24 (4.2.9)

Therefore we can eliminate dominated cases and Table 4.2.14 can be revised for each type of availability
matrix to produce Table 4.2.15.

Type Incomplete rectangles
I R∗6−, R10−
II R23−, R24−
III R11−

Table 4.2.15: Non-dominated pink rectangles of Table 4.2.14

Theorem 4.2.17. The incomplete pairs of rectangles of Tables 4.2.16 to 4.2.20 comprise, up to equivalence,
the complete list of circuit members of C2,0.

j1 j2 j3 j4 ... jn
3 K1\{1, 2, 3}

2 n K1\{1, 2, 3, n}
R∗6−

j1 j2 j3 j4 ... jn
3 K2\{1, 2, 3}

2 n K2\{1, 2, 3, n}
R∗6−

Table 4.2.16: Representative of C12,0

j1 j2 j3 j4 ... jn
3 K1\{1, 2, 3}

2 n K1\{1, 2, 3, n}
R∗6−

j1 j2 j3 ... jn
K2\{1, 2}

n K2\{1, 2, n}
R10−

Table 4.2.17: Representative of C22,0

55

j1 j2 j3 ... jn
K1\{1, 2}

n K1\{1, 2, n}
R10−

j1 j2 j3 ... jn
K2\{1, 2}

n K2\{1, 2, n}
R10−

Table 4.2.18: Representative of C32,0

j1 j2 j3 j4 ... jn
K1\{1, 2, 3}

n K1\{1, 2, 3, n}
R23−

j1 j2 ... jn
K2\{1, 2}
K2\{1, 2}

R11−

Table 4.2.19: Representative of C42,0

j1 j2 j3 ... jn
K1\{1, 2, 3}
K1\{1, 2, 3}

R24−

j1 j2 j3 ... jn
K2\{1, 2}
K2\{1, 2}

R11−

Table 4.2.20: Representative of C52,0

Proof. Up to this point we focused on a single rectangle and we now continue to create combinations of
two pink rectangles. From Lemma 4.2.9 we know that rectangle R− of type I can be matched with other
rectangles R′− of type I or II whereas rectangle R− of type II, can only be matched with other R′− of type
III. Additionally, type III rectangles can also be matched with other of the same type. This is depicted in
Table 4.2.21.

R− R′−
type I type I
type I type III
type II type III
type III type III

Table 4.2.21: Permitted combinations of R and R′−

From Tables 4.2.15 and Table 4.2.21 we derive the combinations (R∗6− ∪ R∗6−), (R∗6− ∪ R10−), (R10− ∪
R10−), (R23−∪R11−), (R24−∪R11−), (R∗6−∪R11−), (R10−∪R11−) and (R11−∪R11−). We continue
to Step 3 to eliminate combinations we know are not minimal as per Remark 4.2.13. Hence, after taking
into consideration (4.2.4), (4.2.8), (4.2.9) we conclude that the remaining combinations are, (R∗6− ∪ R∗6−),
(R∗6− ∪R10−), (R10− ∪R10−), (R23− ∪R11−), (R24− ∪R11−).

56

4.2.3 Class C2,1

We continue to find all members of C2,1 in a similar manner and now present proofs in a more concise
manner.

Proposition 4.2.18. Table 4.2.22 contains all non-dominated pink rectangles, which share one element with
E.

j1 j2 ... jn
K1\{1, 2}

1

R∗25−

,
A∗25 = {(1, j1, 1), (1, j1, 2), (1, j2, 2),

(2, j1, 2), (2, j1, 3), ..., (2, j1, n),
(2, j3, 2), ..., (2, j3, n), ..., (2, jn, 2), ..., (2, jn, n)}

j1 j2 ... jn
K1\{1, 2}

2 1

R∗26−

,
A∗26 = {(1, j1, 1), (1, j2, 2), (2, j3, 3), ..., (2, j3, n), ...,

(2, jn, 3), ..., (2, jn, n)}

j1 j2 j3 ... jn
K1\{1, 2, 3}

2 1

R∗27−

,
A∗27 = {(1, j1, 1), (1, j2, 2), (1, j3, 1), (1, j3, 2), (1, j3, 3)

(2, j3, 3), ..., (2, j3, n), ..., (2, jn, 3), ..., (2, jn, n)}

Table 4.2.22: Pink rectangles that share one element with E

Proof. By definition, a pair of rectangles R− ∪ R′− is a circuit of C2,1 only if
∣∣(R− ∪R′−) ∩ E∣∣ = 1, thus

assume without loss of generality that |R− ∩ E| = 0 and
∣∣R′− ∩ E∣∣ = 1. All possible availability matrices

corresponding to pink R− such that |R− ∩ E| = 0 were found in the previous section and are presented in
Table 4.2.15. For R′−, let us assume without loss of generality, that the element shared with E is (2, j2, 1).
Our goal is to enforce a repetition of a pair in the first two columns, therefore since value 1 already appears
in cell (2, j2) we can start by emptying all other cells in row 2.

Case 7. Emptying 1 cell in row 1 and n− 1 cells in row 2

By definition cell (1, j1) is emptied in the first row resulting in an incomplete rectangle of type I , presented
next in case 9. This rectangle is clearly dominated by the pink rectangle R∗26− (type I).

Case 8. Emptying 2 cells in row 1 and n− 1 cells in row 2

In the second row, all cells but (2, j2) are emptied and in the first row we can assume that the cells emptied
are (1, j1) and (1, j2) with missing values {1, 2}. This gives rise to R∗25− which is pink (type I), since value
1 is forbidden for the cell (1, j2) hence appearing with a ‘∗’ in the availability matrix of row 1, leaving value
1 as the only option for cell (1, j1). Emptying any cell other than (1, j2), e.g. (1, j3) will give rise to a
non-pink rectangle, since value 1 can then be placed in cell (1, j3) and value 2 in cell (1, j1). Emptying
additional cells in row 1 will result in a similar non-pink structure, unless an additional cell is filled in row
2 to enforce the selection of value 1 in cell (1, j1), hence Case 10.

57

Case 9. Emptying 2 cells in row 1 and n− 2 cells in row 2

In the second row, all cells but (2, j1) and (2, j2) can be emptied and in the first row we can assume that the
cells emptied are (1, j1) and (1, j2) with missing values {1, 2}. Emptying cells (1, j1) and (1, j2) gives rise
to R∗26− which is pink (type II) since values 1 and 2 are forced to appear in cells (1, j1) and (1, j2) due to
the ‘∗’ appearing in the availability matrices, indicating that cells (2, j1) and (2, j2) contain values 2 and 1

respectively.

Case 10. Emptying 3 cells in row 1 and n− 2 cells in row 2

Here, emptied cells in the second row remain as per previous case, while in row 1 cells (1, j1), (1, j2) and
(1, j3) are emptied with missing values {1, 2, 3}. This gives rise to R∗27− which is pink (type I) which is
completable either by placing value 1 in (1, j1) or value 2 in (1, j3) or both. Notice that emptying any other
cell from row 1 leads to a non-pink rectangle.

Incomplete rectanlges are shown in Table 4.2.22, while their availability matrices are shown in Figure 4.2.18.
Notice that althoughA∗25 ⊂ A∗26 andA∗27 ⊂ A∗26, hence by Remark 4.2.12R∗26− ⊂ R∗25− andR∗26− ⊂ R∗27−,
R∗26− is not dominated (recall Definition 4.2.10) since being of type III, whereas R∗25− is of type I and R∗27−
is of type II.

1 1 *

2 2 2 2 2

3 3 3 3

...

n n n n

A*25: Row 1, Col 1

j1 j2 j3 ... jn

1 1 * 1

2 * 2 2

A*27: Row 1, Col 1

j1 j2 j3 j4 ... jn

3 3 3 3 ... 3

 k2 4 4 ... 4

 k2

 k2 n n ... n

j1 j2 j3 j4 ... jn

A*26: Row 0, Col 0

1 1 * k1

2 * 2 k2

k3 k3 3 3 ... 3

 k2 4 4 ... 4

 k2

 k2 n n ... n

Figure 4.2.18: Availability matrices corresponding to pink R∗25−, R∗26−, R∗27−

Incomplete rectangles derived from the cases above are presented by type in Table 4.2.23. A detailed rep-
resentation is shown in Table 4.2.22. However, not all fifteen combinations given by the five in Table4.2.15
and three in Table 4.2.23 give rise to minimal incompletable pairs of rectangles, as explained next in the
proof of Theorem 4.2.19.

58

Type Incomplete rectangles
I R∗25−
II R∗27−
III R∗26−

Table 4.2.23: Non-dominated pink rectangles that share one element with E

Theorem 4.2.19. The incomplete pairs of rectangles of Tables 4.2.24 to 4.2.29 comprise, up to equivalence,
the complete list of circuit members of C2,1 .

j1 j2 j3 j4 ... jn
3 K1\{1, 2, 3}

2 n K1\{1, 2, 3, n}
R∗6−

j1 j2 j3 ... jn
K2\{1, 2}

1

R∗25−

Table 4.2.24: Representative of C12,1

j1 j2 j3 ... jn
K1\{1, 2}

n K1\{1, 2, n}
R10−

j1 j2 j3 ... jn
K2\{1, 2}

1

R∗25−

Table 4.2.25: Representative of C22,1

j1 j2 j3 ... jn
K1\{1, 2}
K1\{1, 2}

R11−

j1 j2 j3 ... jn
K2\{1, 2}

1

R∗25−

Table 4.2.26: Representative of C32,1

j1 j2 j3 j4 ... jn
K1\{1, 2, 3}

n K1\{1, 2, 3, n}
R23−

j1 j2 j3 ... jn
K2\{1, 2}

2 1

R∗26−

Table 4.2.27: Representative of C42,1

59

j1 j2 j3 ... jn
K1\{1, 2, 3}
K1\{1, 2, 3}

R24−

j1 j2 j3 ... jn
K2\{1, 2}

2 1

R∗26−

Table 4.2.28: Representative of C52,1

j1 j2 j3 ... jn
K1\{1, 2}
K1\{1, 2}

R11−

j1 j2 j3 ... jn
K2\{1, 2, 3}

2 1

R∗27−

Table 4.2.29: Representative of C62,1

Proof. Recall from Table 4.2.15 that R∗6− and R10− are of type I, R23− and R24− are of type II and R11−

is of type III. By Lemma 4.2.9, R∗6− or R10− can be paired with R∗25− (since all are of type I), hence the
circuit of Tables 4.2.24 and 4.2.25.

All five rectangles of Proposition 4.2.16 can be paired with R∗26− since the latter is of type III. Notice, how-
ever, that A∗26 ⊂ A∗25 hence the pairs R∗6− ∪R∗25−, R10− ∪R∗25− and R11− ∪R∗25− dominate, respectively,
the pairs R∗6− ∪ R∗26−, R10− ∪ R∗26− and R11− ∪ R∗26−, which are therefore omitted. No other rectangles
are dominated and for the remaining, we know that they are pink and all possible cells have been emptied.
Therefore it follows that the pairs containing R∗26− are R23− ∪R∗26− and R24− ∪R∗26− and satisfy both the
exclusion and minimality property. These are the circuit of Table 4.2.26 and the circuit of Table 4.2.27.

Last, R11− (being of type III) can be paired with all rectangles of Proposition 4.2.18; as above, A∗26 ⊂ A∗25−
yields that the R11− ∪R∗26− is not a circuit, hence the remaining two pairs containing R11− are depicted in
Tables 4.2.28 and 4.2.29.

In summary we have combinations (R∗6− ∪ R∗25−), (R10− ∪ R∗25−), (R11− ∪ R∗25−), (R23− ∪ R∗26−),
(R24− ∪R∗26−), (R11− ∪R∗27−) as the six sub-cases of circuits in C2,1 .

4.2.4 Class C2,2

We now continue to find all circuits of Class 2.

Proposition 4.2.20. Table 4.2.30 contains all non-dominated pink rectangles, which share two element with
E.

60

j1 j2 ... jn
1

1

R28−

,
A28 = {(1, j2, 2), ..., (1, j2, n), ..., (1, jn, 2), ..., (1, jn, n)

(2, j1, 2), ..., (2, j1, n), (2, j3, 2), ..., (2, j3, n)...,
(2, jn, 3), ..., (2, jn, n)}

j1 j2 ... jn
1 2

2 1

R29−

,
A29 = {(1, j3, 3), ..., (1, j3, n), ..., (1, jn, 3), ..., (1, jn, n),

(2, j3, 3), ..., (2, j3, n), ..., (2, jn, 3), ..., (2, jn, n)}

Table 4.2.30: Pink rectangles that share two elements with E

Proof. This proof is similar to Proposition 4.2.18. The two elements shared with E are (1, j1, 1) and
(2, j2, 1); keeping only these two elements results in the first availability matrix of Figure 4.2.19, corre-
sponding to R28− which is of type I and clearly dominates any other incomplete rectangle of the same
type that shares two elements with E but has fewer emptied cells. However, we may also include elements
(1, j2, 2)and (2, j1, 2), thus yielding the second matrix of Figure 4.2.19 that corresponds to R29−. Although
A29 ⊂ A28, R29− is not dominated since it is of type III, whereas R28− is of type I; this is presented in
Table 4.2.31.

Type Incomplete rectangles
Type I R28−

Type III R29−

Table 4.2.31: Non-dominated pink rectangles that share two elements with E

2 2 2 ... 2

3 3 3 ... 3

...

n n n ... n

A28: Row n-1, Col n-2
(Common columns are j3...jn)

j1 j2 j3 ... jn

3 ... 3

...

n ... n

A29: Row n-2, Col n-2

j3 ... jn

Figure 4.2.19: Availability matrices corresponding to R28−, R29−

Theorem 4.2.21. The incomplete pairs of rectangles of Tables 4.2.32 to 4.2.38 comprise, up to equivalence,
the complete list of circuit members of C2,2 .

61

j1 j2 j3 j4 ... jn
3 K1\{1, 2, 3}

2 n K1\{1, 2, 3, n}
R∗6−

j1 j2 ... jn
1

1

R28−

Table 4.2.32: Representative of C12,2

j1 j2 j3 ... jn
K1\{1, 2}

n K1\{1, 2, n}
R10−

j1 j2 ... jn
1

1

R28−

Table 4.2.33: Representative of C22,2

j1 j2 ... jn
K\{1, 2}
K\{1, 2}

R11−

j1 j2 ... jn
1

1

R28−

Table 4.2.34: Representative of C32,2

j1 j2 j3 j4 ... jn
K1\{1, 2, 3}

n K1\{1, 2, 3, n}
R23−

j1 j2 j3 ... jn
1 2

2 1

R29−

Table 4.2.35: Representative of C42,2

j1 j2 j3 ... jn
K1\{1, 2, 3}
K1\{1, 2, 3}

R24−

j1 j2 j3 ... jn
1 2

2 1

R29−

Table 4.2.36: Representative of C52,2

j1 j2 j3 ... jn
K1\{1, 2}

1

R∗25−

j1 j2 j3 ... jn
K2\{1, 2}

1

R∗25−

Table 4.2.37: Representative of C62,2

62

j1 j2 j3 ... jn
K1\{1, 2}

2 1

R∗26−

j1 j2 j3 ... jn
K2\{1, 2, 3}

2 1

R∗27−

Table 4.2.38: Representative of C72,2

Proof. By definition, a pair of rectangles R− ∪ R′− is a circuit of C2,2 only if
∣∣(R− ∪R′−) ∩ E∣∣ = 2, thus

we may consider that either |R− ∩ E| = 0 and
∣∣R′− ∩ E∣∣ = 2 or |R− ∩ E| =

∣∣R′− ∩ E∣∣ = 1.

For the former case (|R− ∩ E| = 0,
∣∣R′− ∩ E∣∣ = 2) we restrict ourselves to the five rectangles listed in

Table 4.2.15 (that can play the role of R−) and for R′− we illustrate availability matrices in Table 4.2.19.

By Lemma 4.2.9, R∗6− or R10− can be paired with R28− (since all are of type I), hence the first two circuits
of Tables 4.2.32 and 4.2.33. By the same Lemma, R11− can be paired with R28− since the former is of type
III, hence the circuit of Table 4.2.34. All five rectangles of Table 4.2.15 can be paired with R29− since the
latter is of type III; however, A29− ⊂ A28− hence the pairs R∗6− ∪ R29−, R10− ∪ R29− and R11− ∪ R29−

are dominated by rectangles in Tables 4.2.32, 4.2.33 and 4.2.34. The only remaining pairs containing R29−

are R23− ∪R29− and R24− ∪R29−, i.e., the circuits of Tables 4.2.35 and 4.2.36.

For the latter case (|R− ∩ E| =
∣∣R′− ∩ E∣∣ = 1), it suffices to examine the three rectangles of Proposition

4.2.18. By Lemma 4.2.9, R∗25− (of type I) can be paired with itself and with R∗26− (of type III); however,
(A∗25 ∪ A∗26) ⊂ (A∗25 ∪ A∗25) since A∗26 ⊂ A∗25; for the same reason A∗26 ∪ A∗26 (plausible by Lemma 4.2.9
since R∗26− is of type III) is omitted since it is a subset of A∗25 ∪A∗25−. Last, R∗26− can be paired with R∗27−.
Overall, the case of |R− ∩ E| =

∣∣R′− ∩ E∣∣ = 1 leads to the circuits of Tables 4.2.37 and 4.2.38.

Therefore in summary, according to Table 4.2.21 we conclude with the following combinations: (R∗6− ∪
R28−), (R10−∪R28−), (R11−∪R28−), (R23−∪R29−), (R24−∪R29−), (R∗25−∪R∗25−) and (R∗26−∪R∗27−).

4.2.5 Class C2,3

Theorem 4.2.22. The rectangles of Tables 4.2.39 and 4.2.40 comprise, up to equivalence, the complete list
of circuit members of C2,3.

j1 j2 j3 ... jn
K1\{1, 2}

1

R∗25−

j1 j2 j3 ... jn
1

1

R28−

Table 4.2.39: Representative of C12,3

63

j1 j2 j3 ... jn
K1\{1, 2, 3}

2 1

R∗27−

j1 j2 j3 ... jn
1 2

2 1

R29−

Table 4.2.40: Representative of C22,3

Proof. By definition, a pair of rectangles R− ∪ R′− is a circuit of C2,3 only if
∣∣(R− ∪R′−) ∩ E∣∣ = 3, thus

we may consider without loss of generality that |R− ∩ E| = 1 and
∣∣R′− ∩ E∣∣ = 2. That is, we may restrict

ourselves to the three rectangles of Proposition 4.2.18 and the two rectangles of Proposition 4.2.20 for the
roles of R− and R′− respectively.

By Lemma 4.2.9, R∗25− can be paired with R28− (since both are of type I), hence the first circuit of Table
4.2.39. By the same Lemma, all three rectangles of Proposition 4.2.18 can be paired with R29− since the
latter is of type III; observe, however, A29 ⊂ A28 yields (A∗25 ∪A29) ⊂ (A∗25 ∪A28) and A∗26 ⊂ A∗27 yields
(A∗26 ∪ A29) ⊂ (A∗27 ∪ A29), the only non-omitted such pair is the second circuit in Table 4.2.40. Last,
although R∗26− (since of type III) can also be paired with R28−, R

∗
26− ∪ R28− includes R∗25− ∪ R28− since

A∗26 ⊂ A∗25.

Theorem 4.2.23. Up to equivalence, the incomplete pairs of rectangles of Tables 4.2.16 to 4.2.20, Tables
4.2.24 to 4.2.29, Tables 4.2.32 to 4.2.38, Tables 4.2.39 to 4.2.40 and 4.2.1 comprise the complete list of
circuit members of C2 .

Proof. This directly follows from Theorems 4.2.4, 4.2.17, 4.2.19, 4.2.21 and 4.2.22.

4.3 Global circuits

In this section we will show that members of C1,1, C1,2, C1,3, C1,5 and C2,4 are global circuits. Remember
that the first four are circuits of the 2-row Latin rectangle independence system and they are all five circuit
of the OLR2 independence system. The term global circuits means that they are also subsets of the clutter
of circuits associated to any set of |T | MOLRm of order n, where |T | ≤ n − 1. Clearly this holds only if
that particular n, the set of |T |MOLRm exists. For example an OLS of order 6 does not exist, therefore its
clutter of bases and clutter of circuits is empty.

We first start with a note on the exclusion property. Let G be the ground set of |T | MOLRm, where
|T | < n − 1 and IS is its independence system. If a set C ⊂ G satisfies the exclusion property for IS,
then it also satisfies the exclusion property for IS′, where IS′ is the independence system of a set of |T ′|
MOLRp with p > m and |T | < |T ′| ≤ n − 1. This becomes apparent if we consider an incomplete 2-row
rectangle that is incompletable to a 2-row Latin rectangle; it clearly cannot be completed to an to an OLS.

64

Something similar does not hold for the minimality property. If C satisfies the minimality property then for
any c ∈ C, C\{c} is completable to a set of |T |MOLR. However, it is not necessarily completable to a set
of |T ′|MOLRp.

Proposition 4.3.1. Let ISMOLR be the independence system of a set of |T | MOLRm of order n, where
m, |T | > 2. Then C1,1, C1,2, C1,3, C1,5 and C2,4 are circuits for ISMOLR.

Proof. Every member of C1,1, C1,2, C1,3, C1,5 and C2,4 satisfies the exclusion property for ISMOLR. What
remains to show is that they also satisfy the minimality property. We start with some C ∈ C1,1, and with
no loss of generality this can be the representative of Table 4.1.1. Let BMOLR be the clutter of basis
associated to ISMOLR. We sill show that up to equivalence, C\{c} ⊂ B, for every B ∈ BMOLR. Let
{c} = {(2, j1, 1)}, then C\{c} = {(1, j1, 1)} and we know that we can permute elements of the first
rectangle comprising B ∈ BMOLS , such that value 1 appears in cell (1, j1). A similar argument holds for
C1,2, C1,3, C1,5 and C2,4.

4.4 Concluding remarks

The main focus of this chapter has been to fully characterise the clutter of circuits C2 \C1 . With use of the
availability matrix and a structured enumerative approach its’s been shown that C2 \C1 can be organised into
five distinct classes containing a total of twenty-one non-equivalent circuits. In the set theoretical context
that was established in Chapter 2, these circuits are presented as sets. They are also presented as arrays and
in these illustrations it is easy to see that the exclusion and minimality properties are met.

It’s been established that an incomplete pair of rectangles is completable to an OLR2 if and only if it contains
no circuit. Therefore to answer the completability question, the next step is to construct a polynomial-time
recognition algorithm in order to verify the existence or non-existence of a circuit member of C2 in any
incomplete pair. Such an algorithm is not presented in this Thesis but is suggested as a topic for further
research.

The next chapter continues to introduce a 3-index formulation for the OLR2 problem and formulates all
circuit members of C2 \C1 as lifted circuit inequalities.

65

Chapter 5

Formulations and lifted circuit inequalities
for MOLR2

The results of the previous chapter address the question of whether a given pair of (incomplete) 2-row
rectangles is completable to an OLR2 and to reach an answer it suffices to examine the existence of all non-
equivalent circuits of C2 . However, knowledge of C2 can also be interesting in terms of optimisation, i.e., to
design an Integer Program (IP) for finding whether a specific pair of incomplete rectangles is completable to
an OLR. The first to approach the OLS problem as an IP was Gale (in [19]), where the OLS is formulated as
a 4-index planar assignment problem. Appa et al. in [4], [6] based on this formulation continue to establish
the dimension of the OLS polytope and derive facet-defining and other valid inequalities for this polytope.
Clearly in this formulation the number of rows can be reduced to address the OLR2 problem.

Section 5.1 presents an alternative formulation for the OLR2 case. This is a 3-index formulation shown
for the first time and is attributed to R. Euler, that essentially considers two IP formulations, one for each
rectangle comprising the OLR2 and links the two with what are referred to as orthogonality constraints and
are derived from the representative of C2,4 as shown in Chapter 4. This ensures that the solution will produce
a pair of rectangles in which no pair of values is repeated. Related theoretical results on formulating circuits
of C2 \C1 as circuit inequalities are presented in Sections 5.2 and all such inequalities are lifted and listed in
5.3.

5.1 A 3-index Integer Programming formulation for MORL2

Consider the four disjoint sets I = {1, ...,m}, J = {1, ..., n}, K1 = {k1
1, ..., k

1
n} and K2 = {k1

1, ..., k
2
n}.

Suppose that I and J are the row and column sets respectively, while K1 and K2 are the set of values in R1

and R2 respectively. Let xijk1 be a binary variable that takes value 1 if k1 appears in cell (i, j) of R1 and
takes value 0 otherwise. Variable yijk2 is defined similarly for R2.

For two rectangles each having m rows, a solution to the following IP formulation can have at most 2mn

66

variables take value 1, in which case it produces a pair of m-row orthogonal Latin rectangles of order n.
For solutions with less than 2mn variables, the IP provides a pair of incomplete m-row rectangles (with no
explicit violation) proving that a complete structure does not exist. In a similar manner, when we start with
an incomplete rectangle as an initial solution (i.e. pre-setting one variable per non-empty cell to 1), the IP
will show whether it can be completed or not. In this case, if the incomplete rectangles explicitly violate
the Latin rectangle and/or orthogonality definitions, then the IP will be infeasible due to the violation of the
corresponding constraints.

IP formulation:

Max
∑
{xijk1 : i ∈ I, j ∈ J, k1 ∈ K1}+

∑
{yijk2 : i ∈ I, j ∈ J, k2 ∈ K2}

Subject to,

Latin rectangle constraints:

∑
{xijk1 : i ∈ I} ≤ 1, ∀ j ∈ J, k1 ∈ K1, (5.1.1)∑
{xijk1 : j ∈ J} ≤ 1, ∀ i ∈ I, k1 ∈ K1, (5.1.2)∑
{xijk1 : k1 ∈ K1} ≤ 1, ∀ i ∈ I, j ∈ J, (5.1.3)

∑
{yijk2 : i ∈ I} ≤ 1, ∀ j ∈ J, k2 ∈ K2, (5.1.4)∑
{yijk2 : j ∈ J} ≤ 1, ∀ i ∈ I, k2 ∈ K2, (5.1.5)∑
{yijk2 : k2 ∈ K2} ≤ 1, ∀ i ∈ I, j ∈ J, (5.1.6)

Orthogonality constraints:

xi1j1k1 + xi2j2k1 + yi1j1k2 + yi2j2k2 ≤ 3,

∀ {i1, i2 : i2 > i1} ⊆ I, {j1, j2} ⊂ J, k1 ∈ K1, k2 ∈ K2, (5.1.7)

xijk1 ∈ {0, 1}, ∀ i ∈ I, j ∈ J, k1 ∈ K1,

yijk2 ∈ {0, 1}, ∀ i ∈ I, j ∈ J, k2 ∈ K2

The first six sets of constraints ensure that the produced rectangles R1 and R2 are Latin. More specifically,
constraints (5.1.1) and (5.1.4) ensure that no value is repeated in each column of R1 and R2 respectively,

67

constraints (5.1.2) and (5.1.5) ensure that no value is repeated in each row of R1 and R2 respectively and
constraints (5.1.3) and (5.1.6) ensure that every cell of the rectangles does not contain more than one value.
Finally, constraints (5.1.7) ensure that R1 and R2 are orthogonal, i.e. forbid a pair of values to appear twice.
This is accomplished by introducing a constraint for each possible combination of four variables that rep-
resent a repetition of a pair, and allowing at most three out of the four variables to take value 1. Therefore,
integer vectors (x, y) that are feasible with respect to (5.1.1)-(5.1.7) are in 1− 1 correspondence with pairs
of rectangles (possibly incomplete), each not violating the Latin rectangle and orthogonality definitions.

For m = n where we have an OLS, if such a structure exists then each value k1 must appear exactly once
in each row i and column j of R1 and similarly for k2 in R2. Therefore inequalities (5.1.1)-(5.1.6) can
be written as equality constraints and the objective function becomes arbitrary. We now have a feasibility
problem in which case a feasible solution containing 2n2 variables proves that an OLS of order n exists
whereas an infeasible solution proves that it doesn’t. Similarly for incomplete pairs, if they are completable
the solution will be feasible and infeasible otherwise.

We continue to examine the OLR2 case (m = 2) in more detail. For the OLR2 observe that the formula-
tion has 4n2 variables. The number of variables appearing in each constraint type as well as the number of
constraints of each type are shown in the Table 5.1.1

Type Vars/Cons No. of Cons

(5.1.1) 2 n2

(5.1.2) n 2n

(5.1.3) n 2n

(5.1.4) 2 n2

(5.1.5) n 2n

(5.1.6) n 2n

(5.1.7) 4 (n− 1)n3

Table 5.1.1: Number of variables and constraints

5.2 Theoretical results for circuit inequalities

In this section, we formulate the complete list of circuits found in Chapter 4 as circuit inequalities and then
maximally lift them to derive strong valid inequalities. For this purpose, assume we have two Latin rectan-
gles, then for any circuit C ∈ C2 the corresponding circuit inequality will be violated if C appears in the
rectangles and will be satisfied otherwise. Circuit inequalities (and lifted versions) associated with C1 are
listed in [29], hence here we present all such inequalities for members of C2 \C1 .

68

From Definition 2.1.7 we know that every circuit satisfies the exclusion and minimality properties. Therefore
for all C ∈ C2 \C1 the right hand side of the corresponding circuit inequality is |C| − 1 where |C| is the
cardinality of the circuit. The general form is:∑

{xc : c ∈ C ∩G1 }+
∑
{yc : c ∈ C ∩G2 } ≤ |C| − 1, C ∈ C2 \C1

or, if C is denoted as R− ∪R′−,∑
{xc : c ∈ R−}+

∑
{yc : c ∈ R′−} ≤ |R ∪R′−| − 1, (R− ∪R′−) ∈ C2\C1

For example, (5.1.7) is the set of all inequalities arising from C2,4. Clearly, adding all circuit inequalities
restricts the set of feasible integer vectors (x, y) to those corresponding to pairs of rectangles in which any
two rows are completable in a way that no pair of values occurs more than once (in these two rows only);
hence our interest in actually obtaining these inequalities. However, since the number of circuit inequalities
is prohibitively large, it would be far more useful to employ such inequalities in a cutting-plane algorithm,
i.e., generating them only if violated by the current LP-solution.

Even better, one would be interested in generating lifted circuit-inequalities, i.e., circuit inequalities in which
further variables are included one-by-one in their left-hand side with the largest (positive) coefficient such
that the augmented inequality remains valid. In our setting, an inequality is valid if it includes integer
feasible vectors, i.e., vectors associated with completable pairs of rectangles. This process is known as
sequential lifting [52]. A lifted circuit inequality has the form,∑

{asxs : s ∈ S ∩G1 }+
∑
{asys : s ∈ S ∩G2 }

+
∑
{xc : c ∈ C ∩G1 }+

∑
{yc : c ∈ C ∩G2 } ≤ |C| − 1, C ∈ C2\C1, (5.2.1)

where S ⊆
(
G1 ∪G2

)
\C and as > 0, s ∈ S.

Proposition 5.2.1. No lifted circuit inequality can have a left-hand side coefficient greater than 2.

Proof. Consider the circuit inequality (5.2.1) for a given circuit C ∈ C2 \C1 , that is augmented by introduc-
ing variable xs with coefficient as where s ∈ G1 \ C. Hence,

asxs +
∑
{xc : c ∈ C\G1 }+

∑
{yc : c ∈ C\G2 } ≤ |C| − 1 (5.2.2)

Let C(s) = {c ∈ C ∩ G1 : |s ∩ c| = 2} and let us show that |C(s)| ≤ 3. For s = (is, js, ks), c ∈ C(s)
implies c ∈ {(ic, js, ks), (is, jc, ks), (is, js, kc)} where ic ∈ I\{is}, jc ∈ J\{js} and kc ∈ K\{ks}.
Clearly, |C(s)| > 3 only if there are two elements c, d in C(s) sharing the same two indices with s, e.g.,
(ic, js, ks) and (id, js, ks); but then, circuit C including both (ic, js, ks) and (id, js, ks) implies that value
ks appears twice in column js, i.e. a contradiction to the fact that no C ∈ C2\C1 violates the Latin square

69

structure.

Next, notice that constraints (5.1.1)-(5.1.3) yield that any s ∈ G1 appears in the same constraint with some
c ∈ G1 \{s} if and only if c and s share two among the indices i, j, k. It follows that setting xs = 1 implies
xc = 0 for all c ∈ C(s), in which case (5.2.2) becomes,

as +
∑
{xc : c ∈

(
C ∩G1

)
\C(s)}+

∑
{yc : c ∈ C ∩G2 } ≤ |C| − 1

or, using that |C(s)| ≤ 3,

as ≤ |C| − 1−
(∑

{xc : c ∈
(
C ∩G1

)
\C(s)}+

∑
{yc : c ∈ C ∩G2 }

)
≤ |C| − 1− (|C| − |C(s)|) ≤ |C| − 1− (|C| − 3) = 2.

For a given circuit C ∈ C2 \C1 that is partially lifted, let L be the set of indices of all lifted variables. Clearly
if no variables have been lifted then L = ∅.

Corollary 5.2.2. as ≥ 1 only if |C(s)| ≥ 2 and

a) L(s) = {c ∈ C(s), l ∈ L : |c ∩ l| = 2} = ∅ or

b) there exists a circuit C ′ ∈ C2 \C1 such that C ′ ⊆ (C ∪ L ∪ {s}) \ C(s)

Remark 5.2.3. If case b) of Corollary 5.2.2 holds, then as = 1.

5.3 Lifted circuit inequalities

We now continue to formulate circuit inequalities and present their lifted versions. It becomes necessary at
this point to revert to initial notation and denote values in cell (i, j) of R1− and R2− with k1 ∈ K1 and
k2 ∈ K2 respectively in order to express lifted circuit inequalities in closed form. To express the values
that a given cell can take, we define a 1 − 1 mapping π(j), such that for a row i ∈ I and column j ∈ J the
function returns the value contained in that cell (i, j). The function will return value k1 ∈ K1 for R1 and
value k2 ∈ K2 for R2.

5.3.1 Lifted circuit inequalities for C2,4

Recall that C2,4 (Table 4.2.1) has a single circuit up to equivalence, hence (5.1.7) represents the circuit
inequalities in this class hence,

C2,4 : xi1j1k1 + xi2j2k1 + yi1j1k2 + yi2j2k2 ≤ 3,

70

where {i1, i2} ⊆ I, {j1, j2} ⊂ J, k1 ∈ K1, k2 ∈ K2

By Corollary 5.2.2a., it is easy to see that as ≥ 1 only if s is one of (i1, j2, k
1), (i2, j1, k

1) ∈ G1 or
one of (i1, j2, k2), (i2, j1, k

2) ∈ G2 . Notice however that including both (i1, j2, k
1), (i2, j1, k

1) yields the
inequality

xi1j1k1 + xi2j2k1 + yi1j1k2 + yi2j2k2 + xi1j2k1 + xi2j1k1 ≤ 3

which is not valid since setting the last four variables to value 1 is not allowed (because of the left-hand side
becoming 4), although the corresponding pair of rectangles (see Table 5.3.1) contains no circuit; it follows
that only one of (i1, j2, k1), (i2, j1, k

1) can be included, the same applying to (i1, j2, k
2), (i2, j1, k

2) of G2 .
Hence the lifted circuit inequalities arising from class C2,4 are

xi1j1k1 + xi2j2k1 + yi1j1k2 + yi2j2k2 + xi1j2k1 + yi1j2k2 ≤ 3, (5.3.1)

xi1j1k1 + xi2j2k1 + yi1j1k2 + yi2j2k2 + xi1j2k1 + yi2j1k2 ≤ 3, (5.3.2)

xi1j1k1 + xi2j2k1 + yi1j1k2 + yi2j2k2 + xi2j1k1 + yi1j2k2 ≤ 3 and (5.3.3)

xi1j1k1 + xi2j2k1 + yi1j1k2 + yi2j2k2 + xi2j1k1 + yi2j1k2 ≤ 3, (5.3.4)

where {i1, i2} ⊆ I, {j1, j2} ⊂ J, k1 ∈ K1, k2 ∈ K2

Notice that by performing permutations i1 ↔ i2 and j1 ↔ j2 on inequalities (5.3.1) and (5.3.2), respectively
inequalities (5.3.4) and (5.3.3) are obtained. Therefore we can say that up to equivalence the only maximally
lifted circuit inequalities are (5.3.1) and (5.3.2). From this point onwards we will only present non-equivalent
lifted inequalities.

j1 j2 ... jn
k1 ...

k1 ...

R−

j1 j2 ... jn
k2 ...

k2 ...

R′−

Table 5.3.1: A pair of incomplete rectangles containing no circuit

5.3.2 Lifted circuit inequalities for C2,3

Class 3 consists of two types of circuits, C12,3 and C22,3 . The corresponding circuit inequality for C12,3 depicted
in Table 4.2.39 is presented below and we list inequalities for C22,3 in Appendix B.

71

j1 j2 j3 j4 ... jn
k1
3 k1

4 K1\{k1
1, k

1
2, k

1
3, k

1
4}

k1
1

R∗25−

j1 j2 j3 ... jn
k2

k2

R28−

Table 5.3.2: Representative of C12,3

j1 j2 j3 j4 ... jn
k1
4 k1

3 K1\{k1
1, k

1
2, k

1
3, k

1
4}

k1
1

R∗25−

j1 j2 j3 ... jn
k2

k2

R28−

Table 5.3.3: Representative of C12,3

C12,3 :
∑

j∈J\{j1,j2}

(xi1jπ(j)) + xi2j2k1 + yi1j1k2 + yi2j2k2 ≤ n,

where {i1, i2} ⊆ I, {j1, j2} ⊂ J, {k1
1, k

1
2} ⊂ K1, π : J \ {j1, j2} −→ K1 \ {k1

1, k
1
2}, k2 ∈ K2

We will first lift coefficients for the first row of R∗25. Assume that cells (i1, j3) and (i1, j4) contain values k1
3

and k1
4 respectively, as shown in Table 5.3.2. By Corollary 5.2.2a. it is easy to see that xi1j3k14 can be lifted

with value 1, since |C(s)| = 2 and L = ∅. To make this more clear, notice that |(i1, j3, k1
4)∩(i1, j3, k1

3)| = 2

and |(i1, j3, k1
4) ∩ (i1, j4, k

1
4)| = 2 and also notice that if xi1j3k14 takes value 1 then yi1j3k13 and yi1j4k14 are

forced to take value 0.

Next, if we introduce variable xi1j4k13 with value 1 notice that now,L = {(i1, j3, k1
4)},C(s) = {(i1, j3, k1

3), (i1, j4, k
1
4)}

thus L(s) = 2 6= ∅ and Corollary 5.2.2a. does not hold. However, xi1j3k14 can now take value 1 and therefore
constitutes the circuit depicted in Table 5.3.3 and can be expressed as inequality,

xi1j3k14 + ai1j4k13 xi1j4k13 +
∑

j∈J\{j1,j2,j3,j4}

(xi1jπ(j)) + xi2j2k11 + yi1j1k2 + yi2j2k2 ≤ n,

where {i1, i2} ⊆ I, {j1, j2, j3, j4} ⊂ J, {k1
1, k

1
2, k

1
3, k

1
4} ⊂ K1, π : J\{j1, j2} −→ K1\{k1

1, k
1
2, k

1
3, k

1
4}, k2 ∈

K2,

72

therefore from Corollary 5.2.2b. and Remark 5.2.3, xi1j4k13 can be lifted with value 1. By applying this
logic, all xi1jk1 for j ∈ J \ {j1, j2}, k1 ∈ K1 \ {k1

1, k
1
2, π(j)} can be lifted with value 1 simultaneously.

Exactly as per lifting for circuit in C2,4 , by Corollary 5.2.2a. it follows that either yi1j2k2 or yi2j1k2 can be
lifted with value 1. No more values can be lifted with non-zero coefficient and finally the two maximally
lifted circuit inequalities shown below are the only ones.

∑
j∈J\{j1,j2}

k1∈K1\{k11 ,k12}

(xi1jk1) + xi2j2k11 + yi1j1k2 + yi2j2k2 + yi1j2k2 ≤ n and

∑
j∈J\{j1,j2}

k1∈K1\{k11 ,k12}

(xi1jk1) + xi2j2k11 + yi1j1k2 + yi2j2k2 + yi2j1k2 ≤ n,

where {i1, i2} ⊆ I, {j1, j2} ⊂ J, {k1
1, k

1
2} ⊂ K1, k2 ∈ K2

5.3.3 Lifted circuit inequalities for C2,2

Class 2 consists of nine types of circuits, C12,2 - C92,2 . The corresponding circuit inequalities for C12,2 depicted
in Table 4.2.32 are presented below and the remaining circuit inequalities and their lifted versions for this
class are listed in Appendix B.

C12,2 : xi1j2k13 +
∑

j∈J\{j1,j2,j3}

(xi1jπ1(j)) + xi2j1k12 + xi2j3k1n +
∑

j∈J\{j1,j2,j3,j4}

(xi2jπ2(j))

+ yi1j1k2 + yi2j2k2 ≤ 2n− 3

where {i1, i2} ⊆ I, {j1, j2, j3, j4} ⊂ J, {k1
1, k

1
2, k

1
3, k

1
n} ⊂ K1, k2 ∈ K2, π1 : J \ {j1, j2, j3} −→

K1 \ {k1
1, k

1
2, k

1
3}, π2 : J \ {j1, j2, j3, j4} −→ K1 \ {k1

1, k
1
2, k

1
3, k

1
n}, such that π1(j) 6= π2(j), for all

j ∈ J \ {j1, j2, j3, j4}

73

Variables xi1jk1 , for all j ∈ J \ {j1, j2, j3}, k1 ∈ K1 \ {k1
1, k

1
2, k

1
3, π(j)} and xi2jk1 , for all j ∈

J \ {j1, j2, j3, j4}, k1 ∈ K1 \ {k1
1, k

1
2, k

1
3, k

1
n, π(j)}, can be lifted simultaneously with value 1. From

Remark 5.2.2a. if follows that either xi1j2k2 or xi2j1k2 can be lifted with value 1. No more values can be
lifted with non-zero coefficient and the two maximally lifted circuit inequalities shown below are the only
ones.

xi1j2k13 +
∑

j∈J\{j1,j2,j3}
k1∈K1\{k11 ,k12 ,k13}

(xi1jk1) + xi2j1k12 + xi2j3k1n +
∑

j∈J\{j1,j2,j3,j4}
k1∈K1\{k11 ,k12 ,k13 ,k1n}

(xi2jk1)

+ yi1j1k2 + yi2j2k2 + yi1j2k2 ≤ 2n− 3,

xi1j2k13 +
∑

j∈J\{j1,j2,j3}
k1∈K1\{k11 ,k12 ,k13}

(xi1jk1) + xi2j1k12 + xi2j3k1n +
∑

j∈J\{j1,j2,j3,j4}
k1∈K1\{k11 ,k12 ,k13 ,k1n}

(xi2jk1)

+ yi1j1k2 + yi2j2k2 + yi2j1k2 ≤ 2n− 3

where {i1, i2} ⊆ I, {j1, j2, j3, j4} ⊂ J, {k1
1, k

1
2, k

1
3, k

1
n} ⊂ K1, k2 ∈ K2

5.3.4 Lifted circuit inequalities for C2,1

Class 1 consists of six types of circuits, C12,1 - C62,1 . The corresponding circuit inequalities for C12,1 depicted
in Table 4.2.24 presented below and the remaining circuit inequalities and their lifted versions for this class
are listed in Appendix B.

C12,1 : xi1j2k13 +
∑

j∈J\{j1,j2,j3}

(xi1jπ1(j)) + xi2j1k12 + xi2j3k1n +
∑

j∈J\{j1,j2,j3,j4}

(xi2jπ2(j))

+
∑

j∈J\{j1,j2}

(yi1jπ3(j)) + yi2j2k21 ≤ 3(n− 2)

where {i1, i2} ⊆ I, {j1, j2, j3, j4} ⊂ J, {k1
1, k

1
2, k

1
3, k

1
n} ⊂ K1, {k2

1, k
2
2} ⊂ K2, π1 : J\{j1, j2, j3} −→

K1 \ {k1
1, k

1
2, k

1
3}, π2 : J \ {j1, j2, j3, j4} −→ K1 \ {k1

1, k
1
2, k

1
3, k

1
n}, such that π1(j) 6= π2(j), for all

j ∈ J \ {j1, j2, j3, j4}, π3 : J \ {j1, j2} −→ K2 \ {k2
1, k

2
2}

74

We can easily derive the lifted circuit inequality by replicating procedure followed for the two circuit
inequities presented above for C12,3 and C12,2 . Therefore xi1jk1 , for all j ∈ J \ {j1, j2, j3}, k1 ∈
K1\{k1

1, k
1
2, k

1
3, π1(j)} and for xi2jk1 , for all j ∈ J \{j1, j2, j3, j4}, k1 ∈ K1\{k1

1, k
1
2, k

1
3, k

1
n, π2(j)}, that

can be lifted with value 1. The same also holds for xi1jk2 , for all j ∈ J \{j1, j2}, k2 ∈ K2\{k2
1, k

2
2, π3(j)}.

From Remark 5.2.2a. if follows that xi2j2k22 can be lifted with value 1. No more values can be lifted with
non-zero coefficient and the maximally lifted circuit inequality shown below is the only one.

xi1j2k13 +
∑

j∈J\{j1,j2,j3}
k1∈K1\{k11 ,k12 ,k13}

(xi1jk1) + xi2j1k12 + xi2j3k1n +
∑

j∈J\{j1,j2,j3,j4}
k1∈K1\{k11 ,k12 ,k13 ,k1n}

(xi2jk1)

+
∑

j∈J\{j1,j2}
k12∈K2\{k21 ,k22}

(yi1jk2) + yi1j2k2 ≤ 3(n− 2)

where {i1, i2} ⊆ I, {j1, j2, j3, j4} ⊂ J, {k1
1, k

1
2, k

1
3, k

1
n} ⊂ K1, {k2

1, k
2
2} ⊂ K2

5.3.5 Lifted circuit inequalities for C2,0

Class 0 consists of nine types of circuits, C12,0 - C52,0 . The corresponding circuit inequalities for C12,1 depicted
in Table 4.2.16 is presented below and the remaining circuit inequalities and their lifted versions for this class
are listed in Appendix B.

C12,0 : xi1j2k13 +
∑

j∈J\{j1,j2,j3}

(xi1jπ1(j)) + xi2j1k12 + xi2j3k1n +
∑

j∈J\{j1,j2,j3,j4}

(xi2jπ2(j))

+ yi1j2k23 +
∑

j∈J\{j1,j2,j3}

(yi1jπ3(j)) + yi2j1k22 + yi2j3k2n +
∑

j∈J\{j1,j2,j3,j4}

(yi2jπ4(j)) ≤ 2(2n− 5)

where {i1, i2} ⊆ I, {j1, j2, j3, j4} ⊂ J, {k1
1, k

1
2, k

1
3, k

1
n} ⊂ K1, {k2

1, k
2
2, k

2
3, k

2
n} ⊂ K2, π1 : J \

{j1, j2, j3} −→ K1 \ {k1
1, k

1
2, k

1
3}, π2 : J \ {j1, j2, j3, j4} −→ K1 \ {k1

1, k
1
2, k

1
3, k

1
n}, such that π1(j) 6=

π2(j), for all j ∈ J\{j1, j2, j3, j4}, π3 : J\{j1, j2, j3} −→ K2\{k2
1, k

2
2, k

2
3}, π4 : J\{j1, j2, j3, j4} −→

K2 \ {k2
1, k

2
2, k

2
3, k

2
n}, such that π3(j) 6= π4(j), for all j ∈ J \ {j1, j2, j3, j4}

75

The procedure follows as per the previous classes. The maximally lifted circuit inequality shown below is
the only one.

xi1j2k13 +
∑

j∈J\{j1,j2,j3}
k1∈K1\{k11 ,k12 ,k13}

(xi1jk1) + xi2j1k12 + xi2j3k1n +
∑

j∈J\{j1,j2,j3,j4}
k1∈K1\{k11 ,k12 ,k13 ,k1n}

(xi2jk1)

+ yi1j2k23 +
∑

j∈J\{j1,j2,j3}
k2∈K2\{k21 ,k22 ,k23}

(yi1jk2) + yi2j1k22 + yi2j3k2n +
∑

j∈J\{j1,j2,j3,j4}
k2∈K2\{k21 ,k22 ,k23 ,k2n}

(yi2jk2) ≤ 2(2n− 5)

where {i1, i2} ⊆ I, {j1, j2, j3, j4} ⊂ J, {k1
1, k

1
2, k

1
3, k

1
n} ⊂ K1, {k2

1, k
2
2, k

2
3, k

2
n} ⊂ K2

5.4 Concluding remarks

This chapter presented a new 3-index IP formulation for finding an OLR2. With this model, one can also
test whether a pair of incomplete rectangles is completable. If a solution exists then a completed OLR2 is
given otherwise the problem is infeasible. All circuits found in Chapter 4 were formulated initially as valid
inequalities and then strengthened with the process of lifting. It was proven that no lifted circuit inequality
can have a coefficient larger than 2. It was also shown that most circuits gave rise to more than one maxi-
mally lifted inequalities and their structure vary depending on the lifting sequence.

As topics for further research, it would be interesting to show whether these maximally lifted inequalities
are facet defining and to assess their performance as added cuts for the LP relaxation problem. For the latter,
a polynomial-time separation algorithm will have to be constructed in order to add the right cuts at each
iteration of solving the LP relaxation problem.

The next chapter extends the 3-index IP formulation for the more general case of 3MOLRm and presents an
additional 5-index formulation for solving the same problem. Lastly CP models are introduced and results
on some initial computational results are mentioned.

76

Chapter 6

On the clutter of circuits C3 and
formulations for sets for 3 MOLRm

This chapter extends the previous work on OLR2 to examining sets of 3 MOLR2. This sets the scene for
further research in this direction; that is to obtain circuits for sets of |T | MOLR2 and for more than two
rows, to potentially address the bigger problem of characterising circuits for MOLS in general. The chapter
is organised as follows.

Section 6.1 looks at circuits for the 3 MOLR2 problem. Seven new circuits in C3 \C2 are found and it is
explained in detail how these differ from circuits in C2 . Briefly, these are circuits whose corresponding
incomplete rectangles are individually completable to Latin rectangles and also any two of them can be
completed to an orthogonal pair. However, when all three are completed simultaneously they are no longer
all pairwise orthogonal.

For the general problem of finding or completing a set of 3 MOLRm where m ≤ n, Sections 6.2 and
6.3 present two very different Integer Programming (IP) formulations. The first, in Section 6.2, extends the
3-index formulation discussed in Section 5.1 to now address the problem of finding a set of 3 MOLRm (con-
sisting 3mn2 binary variables). Section 6.3 extends the 4-index planar assignment formulation for finding
an OLS, to a 5-index formulation (consisting of mn4 binary variables), for finding a set of 3 MOLRm. The
former is attributed to D. Gale (in [19]) and one of the most studied Integer Programming (IP) formulations
for finding OLS particularly by Appa et al. in [2], [3], [4], [5], [6].

Finally, Section 6.4 lists Constraint Programming (CP) formulations for finding a single Latin rectangle, an
OLRm or a set of 3 MOLRm and then shows how these formulations can be extended to address the general
problem of finding a set of |T |MOLRmwherem ≤ n. The formulations are based on alldiff constraints
and the principal idea here is that values appearing in each row (column) of a rectangle must be all different
to each other and similarly for the collection of all pairs of value for any two rectangles. Three redundant
models (in the sense that they all cover the same solution space) are introduced and linked to each other

77

using channelling and inverse constraints as defined in [39] and [59]. This is done to improve constraint
propagation and consequently computational time, as in suggested in [16], [10]. Finally we present a new
CP formulation that is unique for the OLS case. Given that all n2 possible pairs of values are found in any
OLS, this formulation assigns a cell to each of these pairs. Some initial computational times for the CP
models are mentioned.

6.1 An introduction to C3

Corollary 3.2.3 shows that C2 ⊂ C3 . All members of C2 were characterised in the previous section and in
this section we list some members of C3 \C2 , i.e. circuits in C3 that do not appear in C2 . Essentially, these
are minimal dependent subsets of SB3 , that are not members of C2 and consequently not members of C1 .

To examine how these different circuits affect completablilty, let us consider three incomplete rectangles
R1−, R2− and R3−. The following four scenarios are possible:

Scenario 1: All three rectangles comprising the triple are completable to set of 3 MORL2, indicating that
R1− ∪R2− ∪R3− does not contain a circuit member of C3 .

Scenario 2: Any of the rectangles comprising the triple is not individually completable to a Latin rectangle
indicating that at least one of R1−, R2−, R3− contains at least one member of C1 and obviously the
three rectangles cannot be completed to form a set of 3 MORL2.

C1 C2 C3

G
3

C1 C2 C3

G
3

G3 \C3 (no circuit) C1

Figure 6.1.1: Venn diagram illustrating Scenario 1 (left), Scenario 2 (right)

Scenario 3: All rectangles are individually completable to a Latin rectangle however, an attempt to com-
plete two rectangles leads to a pair of values being repeated, indicating that there exists a circuit of
C2 \C1 .

Scenario 3: Finally, all pairs of rectangles are completable to orthogonal pairs however, any attempt to
complete all three leads to a pair of values being repeated, indicating that there exits a circuit of
C3 \C2 .

78

C1 C2 C3

G
3

C1 C2 C3

G
3

C2 \C1 C3 \C2

Figure 6.1.2: Venn diagram illustrating Scenario 3 (left), Scenario 4 (right)

Therefore to clearly demonstrate the properties of the new circuits, we comment that every circuit C ∈ C3
is a member of C3 \C2 if:

- Every incomplete rectangle Rt− in C, where t ∈ {1, 2, 3} is completable to a Latin rectangle

- Every pair of incomplete rectangles Rt− ∪ R′t− in C, where t, t′ ∈ {1, 2, 3} is completable to an
OLR2

- The triple R1− ∪R2− ∪R3− cannot be completed to a set of 3 MOLR2

In Table 6.1.1 we give a new representatives of C3 . To simplify notation we assume that I = {1, 2} and
K1 = K2 = K3 = {1, . . . , n}.

j1 j2 j3
1

1

R1−

j1 j2 j3
1

1

R2−

j1 j2 j3
K3\{1, 2, 3}
K3\{1, 2, 3}
R3−

Table 6.1.1: Circuit in C3 \C2

Notice that this set of 3 rectangles does not contain a circuit of C1 since R1−, R2−, R3− are completable to
Latin rectangles. It also does not contain a circuit of C2 \C1 ; it is easy to see that R1− ∪R2− is completable
to an OLR2 and the same holds for R1− ∪R3 and R2− ∪R3− as shown in Tables 6.1.2 and 6.1.3.

j1 j2 j3
k1 k2 1 ...
k3 1 k4 ...

R1

j1 j2 j3
1 2 3 K3\{1, 2, 3}
3 1 2 K3\{1, 2, 3}

R3

Table 6.1.2: An OLR2

79

j1 j2 j3
1 k1 k2 ...
k3 1 k4 ...

R2

j1 j2 j3
1 2 3 K3\{1, 2, 3}
2 3 1 K3\{1, 2, 3}

R3

Table 6.1.3: An OLR2

It remains to establish that Table 6.1.1 satisfies both the exclusion and minimality properties for a set of 3
MOLR2. To prove the former, we attempt to complete Table 6.1.1 as shown in Table 6.1.4. Cells in the first
row of R3−, with no loss of generality, can be filled in natural order. Since value 2 appears in cell (1, j2),
then according to the Latin rectangle definition, cell (2, j2) can only be filled with values 1 or 3. However,
notice that selecting value 1 will result in a repetition of pair (1, 1) in R2− ∪ R3− (see Table 6.1.5) and
selecting value 3 will result in a repetition of pair (1, 3) in R1− ∪R3− (see Table 6.1.6); this establishes that
R1− ∪R2− ∪R3− contains a circuit of C3 \C2 .

j1 j2 j3
1

1

R1−

j1 j2 j3
1

1

R2−

j1 j2 j3
1 2 3 K3\{1, 2, 3}

1 or 3 K3\{1, 2, 3}
R3−

Table 6.1.4: Completing rectangles of Table 6.1.1

j1 j2 j3
1

1

R1−

j1 j2 j3
1

1

R2−

j1 j2 j3
1 2 3 K3\{1, 2, 3}

1 K3\{1, 2, 3}
R3−

Table 6.1.5: Completing rectangles of Table 6.1.1

j1 j2 j3
1

1

R1−

j1 j2 j3
1

1

R2−

j1 j2 j3
1 2 3 K3\{1, 2, 3}

3 K3\{1, 2, 3}
R3−

Table 6.1.6: Completing rectangles of Table 6.1.1

Finally, to prove that the minimality property is also satisfied, notice that if any cell of Table 6.1.1 is emptied,
then the set is completable hence R1− ∪ R2− ∪ R3− is a circuit. Table 6.1.7 presents a set of 3 MOLR2
that can be obtained if cell (1, j4) of R3− in Table 6.1.1 is emptied and notice that set of 3 MOLR2 can be
obtained if any cell of Table 6.1.1 is emptied.

80

j1 j2 j3
k1 k2 1 ...
k3 1 k4 ...

R1

j1 j2 j3
1 k5 k6 ...
k7 1 k8 ...

R2

j1 j2 j3 j4
1 2 k9 3 K3\{1, 2, 3, k9}
2 3 1 K3\{1, 2, 3}

R3−

Table 6.1.7: A set of 3 MOLR2

Tables 6.1.8 to 6.1.13 present six additional non-equivalent circuits in C3 \C2 . Relevant proofs for exclusion
and minimality are presented in Appendix C.

j1 j2 j3
1

1

R1−

j1 j2 j3
K2\{1, 2, 3}
K2\{1, 2, 3}
R2−

j1 j2 j3
K3\{1, 2, 3}
K3\{1, 2, 3}
R3−

Table 6.1.8: Circuit in C3 \C2

j1 j2 j3
1

1

R1−

j1 j2 j3
K2\{1, 2, 3}
K2\{1, 2, 3}
R2−

j1 j2 j3 jn
K3\{1, 2, 3}

K3\{1, 2, 3}
R3−

Table 6.1.9: Circuit in C3 \C2

j1 j2 j3
1

1

R1−

j1 j2 j3 jn
K2\{1, 2, 3}

K2\{1, 2, 3}
R2−

j1 j2 j3 jn
K3\{1, 2, 3}

K3\{1, 2, 3}
R3−

Table 6.1.10: Circuit in C3 \C2

j1 j2 j3
1

1

R1−

j1 j2 j3
1

1

R2−

j1 j2 j3
K3\{1, 2, 3}
K3\{1, 2, 3}
R3−

Table 6.1.11: Circuit in C3 \C2

j1 j2 j3
1

1

R1−

j1 j2 j3
1

1

R2−

j1 j2 j3
K3\{1, 2, 3}

1

R3−

Table 6.1.12: Circuit in C3 \C2

81

j1 j2 j3 j4
K1\{1, 2, 3, 4}
K1\{1, 2, 3, 4}
R1−

j1 j2 j3
K2\{1, 2, 3}
K2\{1, 2, 3}
R2−

j1 j2 j3
K3\{1, 2, 3}
K3\{1, 2, 3}
R3−

Table 6.1.13: Circuit in C3 \C2

6.2 A 3-index Integer Programming formulation for a set of 3 MOLRm

The IP resented below is a generalisation of the formulation presented in Section 5.1, only here, the objec-
tive is to produce 3 mutually orthogonal Latin rectangles of order n.

Consider the disjoint sets T = {1, ..., 3}, I = {1, ...,m} and J = {1, ..., n} and the 3 disjoint sets
Kt = {kt

1, ..., k
t
n}, where t ∈ T , and Kt is the set of values in Rt. Let xijkt be a binary variable that

takes value 1 if kt appears in cell (i, j) of Rt and takes value 0 otherwise.

For three rectangles each havingm rows, the solution can have at most 3mn variables take value 1, in which
case it produces a set of 3 m-row orthogonal Latin rectangles of order n. For solutions with less than 3mn

variables, the IP provides an incomplete set.

Max
∑
{xijkt : i ∈ I, j ∈ J, kt ∈ Kt, t ∈ T}

Subject to,

Latin rectangle constraints:

∑
{xijkt : i ∈ I} ≤ 1, ∀ j ∈ J, kt ∈ Kt, t ∈ T, (6.2.1)∑
{xijkt : j ∈ J} ≤ 1, ∀ i ∈ I, kt ∈ Kt, t ∈ T, (6.2.2)∑
{xijkt : kt ∈ Kt} ≤ 1, ∀ i ∈ I, j ∈ J, t ∈ T, (6.2.3)

Orthogonality constraints:

xi1j1kt1 + xi1j1kt2 + xi2j2kt1 + xi2j2kt2 ≤ 3, (6.2.4)

∀ {i1, i2 : i2 > i1} ⊆ I, {j1, j2} ⊂ J, kt1 ∈ Kt1 , kt2 ∈ Kt2 , {t1, t2} ⊂ T,
xijkt ∈ {0, 1}, ∀ i ∈ I, j ∈ J, kt ∈ Kt, t ∈ T (6.2.5)

82

Constraints (6.2.1) ensure that no value is repeated in each column of Rt, constraints (6.2.2) ensure that no
value is repeated in each row of Rt and constraints (6.2.3) ensure that every cell of the Rt contains exactly
one value.

Finally, constraints (6.2.4) ensure that all Latin rectangles comprising the set of |T | MOLRm are pairwise
orthogonal i.e. forbid a pair of values to appear twice in each pair of rectangles. Therefore, for each pair
of rectangles, we introduce a constraint for each possible combination of four variables that represent a
repetition of a pair, and allowing at most three out of the four variables to take value 1. For clarity, consider
the example presented in Table 6.2.1 in which orthogonality is violated in all pairs of rectangles i.e. in
R1− ∪R2− the values (k1, k2) are repeated in cells (1, j1) and (2, j2); in R1− ∪R3− the values (k1, k3) are
repeated in cells (1, j1) and (2, j2) and in R2− ∪ R3− the values (k2, k3) are repeated in cells (1, j1) and
(2, j2).

j1 j2 j3
k1

k1

R1−

j1 j2 j3
k2

k2

R2−

j1 j2 j3
k3

k3

R3−

Table 6.2.1: A violation of orthogonality

The IP would prevent this violation from occurring with the following orthogonality constraints of (6.2.4) :

xi1j1k1 + xi2j2k1 + xi1j1k2 + xi2j2k2 ≤ 3

xi1j1k1 + xi2j2k1 + xi1j1k3 + xi2j2k3 ≤ 3,

xi1j1k2 + xi2j2k2 + xi1j1k3 + xi2j2k3 ≤ 3

The formulation is defined on 3mn2 binary variables and a total of 3n2(12 +m(m − 1)n(n − 1))/4 con-
straints. The solution allows for at most 3mn variables to equal 1.

For the case where m = n we are interested in finding a set of 3 MOLS therefore the inequalities (6.2.1)
to (6.2.3) can be written as equality constraints enforcing each value to appear exactly once in each row
and column of each rectangle. Clearly in this case the objective function becomes arbitrary and if a set of 3
MOLS exists, then we have a feasible solution with exactly 3n2 variables taking value 1 and if not, then the
problem is infeasible.

The formulation can be instantly generalised to a set of |T |MOLRm, where |T | ≤ (n− 1) is the number of
mutually orthogonal Latin rectangles, if set T = {1, ..., 3} is replaced by T = {1, ..., |T |} In this generalised
case, if a set of |T | MOLRm exist, then the optimal solution consists of |T |mn variables taking value 1. In
general this model contains a total of |T |mn2 variables and |T |n2(12 +m(m− 1)n(n− 1))/4 constraints.

83

6.3 A 5-index Integer Programming formulation for a set of 3 MOLRm

A number of mathematical programming formulations have been given for the OLS problem in [7]. The one
most studied, is a binary 4-index planar assignment formulation attributed to D. Gale (in [19]) who is quoted
as the person who first suggested the application of integer programming to the OLS problem. Due to its
simplicity and symmetry it has formed the base for work on MOLS by Appa et al. in [2], [3], [4], [5], [6].
Here, we first extend Gale’s formulation for sets of 3 MOLRm and then extend it for the general MOLS case.

Similarly to the 3-index formulation, the 5-index formulation also produces a set of 3 mutually orthogonal
Latin rectangles of order n if such a structure exists, or provides a set of 3 incomplete rectangles in which
no violation explicitly occurs and the maximum number of cells are filled. We consider the same disjoint
sets T = {1, ..., 3}, I = {1, ...,m} and J = {1, ..., n} and the 3 disjoint sets Kt = {kt

1, ..., k
t
n}, where Kt

is the set of values in Rt, t ∈ T . Let variable xijk1k2k3 be 1 if values k1, k2 and k3 appear in cell (i, j) of
R1, R2 and R3 respectively.

We now explain one of the constraints in detail to show how the formulation is constructed. For example,
rectangles R2 and R3 must be orthogonal hence each of the ordered pairs of values (k2, k3) must appear at
most once, irrespective of value k1. This property can be ensured by constraint:∑

{xijk1k2k3 : i ∈ I, j ∈ J, k3 ∈ K3} ≤ 1, ∀ k1 ∈ K1, k2 ∈ K2

In a similar manner an additional 9 set of constraints can be created as shown in the formulation below, to
ensure that the solution complies with the Latin rectangle definition and that the orthogonality condition is
imposed.

Max
∑
{xijkl : i ∈ I, j ∈ J, k1 ∈ K1, k2 ∈ K2, k3 ∈ K3}

Subject to ∑
{xijk1k2k3 : i ∈ I, j ∈ J, k1 ∈ K1} ≤ 1, ∀ k2 ∈ K2, k3 ∈ K3, (6.3.1)∑
{xijk1k2k3 : i ∈ I, j ∈ J, k2 ∈ K2} ≤ 1, ∀ k1 ∈ K1, k3 ∈ K3, (6.3.2)∑
{xijk1k2k3 : i ∈ I, j ∈ J, k3 ∈ K3} ≤ 1, ∀ k1 ∈ K1, k2 ∈ K2, (6.3.3)

∑
{xijk1k2k3 : i ∈ I, k1 ∈ K1, k2 ∈ K2} ≤ 1, ∀ j ∈ J, k3 ∈ K3, (6.3.4)∑
{xijk1k2k3 : i ∈ I, k1 ∈ K1, k3 ∈ K3} ≤ 1, ∀ j ∈ J, k2 ∈ K2, (6.3.5)∑
{xijk1k2k3 : i ∈ I, k2 ∈ K2, k3 ∈ K3} ≤ 1, ∀ j ∈ J, k1 ∈ K1, (6.3.6)

84

∑
{xijk1k2k3 : j ∈ J, k1 ∈ K1, k2 ∈ K2} ≤ 1, ∀ i ∈ I, k3 ∈ K3, (6.3.7)∑
{xijk1k2k3 : j ∈ J, k1 ∈ K1, k3 ∈ K3} ≤ 1, ∀ i ∈ I, k2 ∈ K2, (6.3.8)∑
{xijk1k2k3 : j ∈ J, k2 ∈ K2, k3 ∈ K3} ≤ 1, ∀ i ∈ I, k1 ∈ K1, (6.3.9)

∑
{xijk1k2k3 : k1 ∈ K1 k2 ∈ K2, k3 ∈ K3} ≤ 1, ∀ i ∈ I, j ∈ J, (6.3.10)

xijk1k2k3 ∈ {0, 1} ∀ i ∈ I, j ∈ J, k1 ∈ K1 k2 ∈ K2, k3 ∈ K3

The formulation is defined by n5 binary variables, out of which n3 have a coefficient of 1 in each of the
10n2 constraints. The solution allows for at most mn variables to equal 1.

In this formulation, when starting with incomplete rectangles as an initial solution, a filled cell cannot always
be expressed by pre-setting particular variables to take value 1. In fact, it cannot, if that cell is empty in at
least one of the other rectangles. More specifically, consider a set of 3 incomplete MOLRm and take cell
(1, 1) in R1− to contain value 1. In both R2− and R3− take cell (1, 1) to be empty. Then the filled cell of
R1− can be expressed as constraint,

∑
{x111k2k3 : k2 ∈ K2, k3 ∈ K3} ≥ 1 (6.3.11)

For sets of |T | MOLRm of order n, one can extend this formulation to a (|T | + 2)-index assignment for-
mulation, defined by n|T |+2 binary variables out of which exactly n|T | have a coefficient of 1 in each of the(|T |+2

2

)
constraints. The solution will restrict at mn variables to equal 1.

For the case where m = n we have sets of |T | MOLS of order n. The problem is now translated into a
feasibility problem that identifies an MOLS pair of order n or proves that no such exists. Every feasible
solution to this problem is also an optimal one. The solution now restricts n2 variables to equal 1, which is
the exact number of entries in each square of the MOLS. All constraints can now become equalities and we
can now have a (|T |+ 2)-index planar assignment problem.

6.4 A Constraint Programming formulation for a set of 3 MOLRm

In this section we present a series of Constraint Programming (CP) formulations for finding a single Latin
rectangle, an OLR or a set of 3 MOLRm and then show how these formulations can be extended to address
the general problem of finding a set of |T | MOLRm. What differentiates them from other formulations
presented in [7], [5], is that here we introduce new techniques from the literature for the purpose of reducing
computational time.

There are a number of references in the literature, that support the addition of redundant constraints im-
prove computational times by increasing constraint propagation [59], [39], however there is no systematic

85

approach as to how these constraints should be generated. Inspired by cases where these constraints have
proven computationally beneficial results [16], [10], we present two models that leverage the advantages
of channelling constraints. These are used to connect two or more independent formulations for the same
problem; and by independent we mean models that provide the complete description of the problem’s solu-
tion space.

We start by introducing three models for the Latin rectangle problem. Clearly for m = n the models gen-
erate a Latin square. Let I = {1, ...,m}, m ≤ n and J, K = {1, ..., n} be three disjoint sets denoting the
rows, columns an values respectively, of a Latin rectangle.

We first describe a model based on value constraints, these are alldiff expressions imposed on the values
appearing in the rectangle. Let xij be the value in row i and column j of the rectangle R,

alldiff(xij : j ∈ J), ∀ i ∈ I

alldiff(xij : i ∈ I), ∀ j ∈ J

The first constraint forces all values appearing in each row to be different, whereas the second imposes the
same condition for the columns. This feasibility model generates a Latin rectangle (square). To answer the
completability question of an incomplete rectangle (square) we first fix the variables corresponding to filled
cells, to take value 1 and then the model with show the problem is feasible if the rectangle is completable
and or infeasible otherwise.

A similar model can be obtained if instead of focusing on values we introduce row constraints. Let rjk be
the row containing value k in column j of R,

alldiff(rjk : k ∈ K), ∀ j ∈ J

alldiff(rjk : j ∈ J) , ∀ k ∈ K

The first constraint forces all rows containing a value in a particular column, to be different. More specif-
ically, it forces rows in R containing values k in a column j to be different. The second forces the rows
containing a particular value, to be different across all columns.

Now, an alternative third model can be obtained if instead of focusing on rows or values we introduce column
constraints. Let cik be the column containing value k in row i of R,

alldiff(cik : k ∈ K), ∀ i ∈ I

alldiff(cik : i ∈ I), ∀ k ∈ K

Similar logic is applied here as per the row constraints. The first constraint forces all columns containing
a value in a particular row, to be different, i.e. it forces columns in R containing values k in a row i to be
different. The second constraint forces the columns containing a particular value, to be different across all

86

rows.

All three models independently, describe the solution space of the Latin rectangle problem, hence only one
of the three is necessary to produce a solution and the remaining two are redundant. However they can
all be linked to each other to improve propagation. In [39], J. Hooker states the combination of redundant
constraints along with channelling constraints improve constraint propagation and as a result provide much
improved computational times. B. Smith in [59] also states, that channelling constraints can be replaced by
inverse constraints as they offer shorter running times even though constraint propagation is the same. For
the Latin squares problem we discovered this is true for orders higher than 9. Channelling constraints can
be formulated as follows,

rjxij = i, ∀ i ∈ I, j ∈ J , xrjkj = k, ∀ j ∈ J, k ∈ K,

cixij = j, ∀ i ∈ I, j ∈ J , xicik = k, ∀ i ∈ i, k ∈ K,

rcikk = i, ∀ i ∈ I, k ∈ K, crjkk = j, ∀ j ∈ J, k ∈ K

The first set of constraints links the value constraints with the row constraints, the second set links the value
constraints with the column constraints and finally the third set links the row with column constraints.

Alternatively, the three models can be connected the use of inverse constraints, which force two sets of
variables to be in strict correspondence with each other. Assume the variables are represented by two arrays,
then an inverse constraint makes sure that the ith item of one array is the inverse of the ith item of the other
array, and vice versa. Hence the channelling constraints can be recreated as,

inv(xij : i ∈ I, rjk : k ∈ K), ∀ j ∈ J ,
inv(xij : i ∈ I, cik : k ∈ K), ∀ i ∈ I ,
inv(rjk : j ∈ J, cik : i ∈ I), ∀ k ∈ K

Initial tests using IBM ILOG CPLEX Optimization Studio V12.5, for m = n and 2 ≤ n ≤ 100 showed
that computational times significantly and consistently improve with the addition of redundant models to
the first model. In fact, an average improvement of at least 25% and 88% is reached with use of channelling
and inverse constraint respectively. These initial tests showed that inverse constraints for this case perform
better than channelling constraints.

The formulation above can easily be extended to address the problem of finding a set of 3 MOLRm and
consequently for more sets (including the OLR case). We start by constructing the first model based on the
value constraints for each rectangleR1, R2 andR3 comprising the set of 3 MOLRm. Let x1ij , x

2
ij and x3ij be

the value in row i and column j ofR1, R2 andR3 respectively and constraints can be formulated as follows:

87

alldiff(x1ij : j ∈ J), alldiff(x2ij : j ∈ J), alldiff(x3ij : j ∈ J), ∀ i ∈ I

alldiff(x1ij : i ∈ I), alldiff(x2ij : i ∈ I), alldiff(x3ij : i ∈ I), ∀ j ∈ J

alldiff({x1ij , x2ij} : i ∈ I, j ∈ J), alldiff({x1ij , x3ij} : i ∈ I, j ∈ J)

The first two sets of constraints force all values appearing in each row and column to be different, whereas
the last set force all pairs of values occurring from superimposing R1, R2 and R3 to be different (orthogo-
nality constraint).

In similar manner, as for the Latin rectangle problem, we can easily introduce new redundant models (with
column and row constraints) as well as channelling and inverse constraints to link these models with each
other.

We now continue to introduce a new formulation for the problem of finding a pair of OLS. This is a feasi-
bility problem and the goal is to assign a value to every cell of the Latin rectangle such that the Latin square
and orthogonality conditions are satisfied. A primary CP formulation was described and analysed [5] and
was proven to achieve better running times than any IP relaxation technique that concludes infeasibility for
the pairs of OLS problem of order 6. Aiming to improve previous results and also for the purpose of to
introducing new formulations for infeasible problems of higher orders (i.e. sets of 3 MOLS or order 10), we
constructed the following model based on linking two redundant formulations.

We introduce the first model based on alldiff value constraints. Let x1ij and x2ij be the value in row i and
column j of the first square (S1) and the second square (S2) respectively,

alldiff(x1ij , : j ∈ J), alldiff(x2ij , : j ∈ J), ∀ i ∈ I

alldiff(x1ij , : i ∈ I), alldiff(x2ij , : i ∈ I), ∀ j ∈ J

alldiff({x1ij , x2ij}, : i ∈ I, j ∈ J),

The first two sets of constraints force all values appearing in each row and column to be different, whereas
the last set force all pairs of values occurring from superimposing S1 and S2 to be different (orthogonality
constraint).

A second model can be constructed if we look at the problem from a different angle. Instead of thinking
that we have an n × n square whose cells we need to fill with distinct pairs of values without violating the
orthogonality condition, we can reverse this logic to say we have a set of distinct n2 pairs of values all of
which must be placed in a n × n square such that no cell contains more than one pair. Clearly the Latin
square conditions must be respected in both models (i.e. each value to appear once in each row and column).
Hence, let rk1k2 and ck1k2 be the row and column containing the pair of values (k1,k2), where k1 ∈ K1 are
the values appearing S1 and k2 ∈ K2 are the values appearing in S2.

88

alldiff(rk1k2 : k1 ∈ K1), alldiff(ck1k2 : k1 ∈ K1), ∀ k2 ∈ K2

alldiff(rk1k2 : k2 ∈ K2), alldiff(ck1k2 : k2 ∈ K2), ∀ k1 ∈ K1

alldiff({rk1k2 , ck1k2} : k1 ∈ K1, k2 ∈ K2)

The first two sets of constrains ensure that each row and column of S1 and S2 contain distinct values and
the last constraints ensures that each combination of row and column , i.e. each cell (after superimposing S1
and S2 , contains no more than one pair of values. Finally, to link the two independent models we introduce
the channelling constraints,

rx1ijx2ij
= i, cx1ijx2ij

= j, ∀ i ∈ I, j ∈ J

x1rk1k2ck1k2
= k1, x2rk1k2ck1k2

= k2, ∀ k1 ∈ K1, k2 ∈ K2

Initial tests using IBM ILOG CPLEX Optimization Studio V12.5, for 2 ≤ n ≤ 9 showed that computational
times significantly and consistently improve with the addition of redundant models to the first model. An
average improvement of at least 30% and 70% is reached with use of channelling and inverse constraint
respectively. Once again, these initial tests showed that inverse constraints for this case perform better than
channelling constraints.

6.5 Concluding remarks

This section first presented 7 new circuit members of C3 and demonstrated how these circuits have different
properties than members of C2 .

Moreover, two different IP formulations were presented for solving the same problem: finding a set of
3MOLRm or completing such an incomplete triple. The first, a 3-index formulation, is new and consists of
three models that are linked with newly introduced constraints called orthogonality constraints. The second,
is a highly symmetrical 5-index assignment formulation that in some recent research has been the base for
analysing the OLS problem.

It is well known that IP for large number of n does not produce results in a reasonable amount of time.
However, a natural next step could be to compare the performance of the two formulations for small values
of n and relate results to their structural differences. This can also be considered in combination with the
maximally lifted circuit inequalities presented in Chapter 5.

In addition to the IP formulations, this chapter presented CP formulations for finding Latin rectangles, sets
of 3 MOLRm but also OLS. For all formulations, we applied the idea of combining independent models and
linking them together into one model, to improve constraint propagation and consequently computational
times. Initial computational experiments showed that this method is affecting, and in fact, inverse constraints
compared to channelling constraints should be preferred for linking the independent models. As next steps,

89

further work on exploring the power of CP can be done, in order to achieve the best computational results.

With this chapter, the work the on MOLR comes to an end. The next chapter considers variation of the Latin
rectangles problem known as the multi-index bottleneck assignment problem.

90

Chapter 7

The multi-level bottleneck assignment
problem (MBA)

Latin squares and OLS are well known for their applications in scheduling and timetabling [20], [23], [48].
As an example, consider a truck scheduling problem for a period of n days, each day having m different
jobs to be carried out by m drivers. The goal is to derive a schedule where for each day, drivers are assigned
to a job in such a way that no driver has more than one job in a day and does not repeat a job throughout the
period of ndays. This is a feasibility problem whose solution can easily be given by an m-row Latin rectan-
gle of order n. There are many variations of this problem; one of which is to relax the last requirement to
allow for the assignment of a driver to the same job more than once. The problem becomes an optimisation
problem when a cost is assigned to each job. This cost can be interpreted as hours of travel or the size of
load the truck is carrying. A natural objective would be to minimise the heaviest load. This variation of the
simple scheduling problem is known as the multi-level bottleneck assignment problem (MBA) and is the
focus of this chapter.

In Section 7.1 the MBA problem is formally defined taking a graph theoretical approach. Depending on
whether a driver can be assigned to any job in a given day or to only a subset of jobs, the MBA problem is
divided into three types: complete, mixed and arbitrary. If the problem is complete it means that the driver
can be assigned to any job in a day, i.e. there are no restrictions; if arbitrary then there are restrictions for
each day and mixed if for some days the problem is complete and for other days arbitrary. Furthermore, it
is stated by Burkard et al. in [13], that the complexity status of the complete-MBA problem is open and the
focus of Section 7.2 is to prove that it is NP-hard.

Section 7.3 formulates the MBA problem both as an IP and a CP. For large instances of the problem both
methods fail to provide a solution in reasonable time and therefore Section 7.4 focuses on deriving heuristics
with a good approximation that solve the problem in polynomial time. More specifically, for MBA with
n = 3 days (MBA3), three new heuristics are presented. For complete-MBA3 a 7

6 -approximation algorithm
is given for a special case where job costs are high. For mixed-MBA3 a 3

2 -approximation algorithm is

91

presented and it is the first time a heuristic is shown for the case of one arbitrary edge-set and one complete
edge-set of the MBA problem. Lastly, a simple 2-approximation algorithm is shown for arbitrary-MBA3

and it is proven that no polynomial time algorithm can improve upon the factor of 2, unless P= NP .

7.1 Problem description

We describe them-dimensional bottleneck assignment problem (MBA). Consider the two sets I = 1, . . . ,m

and J = 1, . . . , n where i ∈ I and j ∈ J . Let V1, . . . , Vm be m pairwise disjoint sets, each with cardinality
n, and let V =

⋃
i∈I Vi. Set V is the node-set of an m-partite graph that has a given set of arcs E of the

following form: E = {(v, v′) : v ∈ Vi, v′ ∈ Vi+1, i ∈ I\{m}}. One can notice that members of E only
connect nodes of consecutive sets, i.e. connect a node from Vi with a node from Vi+1, where i ∈ I\{m}.
Moreover, every v ∈ V has a weight denoted by w(v) ∈ N. Note, that if there exists a node-set Vi with car-
dinality d = |Vi| where d < m and m = maxi∈I |Vi|, then we can add m− d dummy nodes with w(v) = 0

to obtain sets with equal number of nodes.

A feasible m-tuple, which we call a duty, is an ordered list of nodes Dj(v1, . . . , vm) such that vi ∈ Vi

where i ∈ I , j ∈ J and (vi, vi+1) ∈ E for i ∈ I\{m}. For a given j ∈ J , the cost of a duty
equals c(Dj) =

∑
i∈I w(vi) where vi ∈ Dj , i ∈ I . The goal is to find a partition of V into n duties

D1, D2, . . . , Dn such that maxj∈Jc(Dj) is minimum. Therefore a solution s to the MBA problem is a col-
lection of n m-tuples and the cost of the solution equals c(s) = maxj∈J{c(Dj) : s = {D1, D2, . . . , Dn}}.

This problem was introduced by Carraresi and Gallo [15], motivated by an application in bus driver schedul-
ing. The goal here is to design a balanced allocation of shifts to each driver for a certain period of time. In
the context of this application, a set Vi corresponds to the shifts that need to be carried on day i ∈ I and
an edge (vi, vi+1) ∈ E where i ∈ I\{m} indicates that it is possible to perform shift vi+1 directly after
shift vi. The weight of a shift w(v) represents a measure of cost for example the length of the shift or its
lateness. A duty Dj is a set of shifts, one from each day, to be carried out by a driver and clearly each shift
can be assigned to only one driver. The cost of a duty is simply the load of a driver, and in order to achieve
a balanced allocation of shifts we want to minimise the load of the driver that is worst off i.e. to minimise
the maximum load.
LetEi where i ∈ I\{m} denote the edge-set between node-sets Vi and Vi+1. If there exists an edge between
every node of Vi and Vi+1, then Ei is called complete otherwise arbitrary. Hence, the following three cases
arise,

1. complete-MBA: for all i ∈ I\{m}, Ei is complete,

2. mixed-MBA: ∃ i ∈ I\{m} such that Ei is complete and ∃ i′ ∈ I\{m} such that Ei′ is arbitrary,

3. arbitrary-MBA: for all i ∈ I\{m}, Ei is arbitrary
An example of a complete-MBA as well as its optimal solution are presented below.

92

Example 7.1.1
Figure 7.1.1 illustrates an MBA problem for m = 3 days and n = 4 shifts therefore I = {1, . . . , 3}
and J = {1, . . . , 4}. The node-sets are V1 = {v11, v12, v13, v14}, V2 = {v21, v22, v23, v24} and V3 =

{v31, v32, v33, v34}. Clearly V = V1 ∪ V2 ∪ V3. For the shift weights of these days we have, {w(v1j) :

v1j ∈ V1, for all j ∈ J} = {1, 2, 5, 3}, {w(v2j) : v2j ∈ V2, for all j ∈ J} = {10, 8, 2, 0} and
{w(v3j) : v3j ∈ V3, for all j ∈ J} = {2, 1, 6, 7}. All lines represent the edges of E and notice that all
nodes of consecutive node-sets are connected, therefore E is complete.
An optimal solution to this example is a partition of V into 4 duties. Hence, S = {D1, D2, D3, D4} where
D1 = {v11, v21, v32}, D2 = {v12, v22, v31}, D3 = {v13, v24, v33} and D4 = {v14, v23, v34}. Consequently,
c(D1) = 1+10+1 = 12, c(D2) = 2+8+2 = 12, c(D3) = 5+0+6 = 11 and c(D4) = 3+2+7 = 12.
The cost of the solution is max{12, 12, 11, 12} = 12.

day 1

shift 1 1

shift 2 2

shift 3 5

shift 4 3

day 2

10

8

2

0

day 3

2

1

6

7

Figure 7.1.1: MBA example for m = 3, n = 4

7.2 Complexity results

In [15] the problem is described using a weight w(v) on each edge leaving node v, when v ∈
⋃m−2
i=1 Vi,

and an edge with weight w(v) + w(v′) for each edge (v, v′) ∈ Vm−1 × Vm. They show that the problem is
NP-hard when m is part of the input by a reduction from Even-Odd Partition, and they leave as an open
problem the complexity for a fixed m. MBA is also described in the recent book of Burkard et al. [13],
where it is stated that the complexity of this problem is unresolved for each fixed m ≥ 3 (pages 188-189);
we will now settle this question.

Finding a feasible solution to the MBA is not a difficult problem. As observed in [15], there exists a feasible
solution if edge-set E contains a perfect matching between each pair of sets (Vi, Vi+1), where i ∈ I\{m}.
However, finding an optimal solution is a far more difficult problem, even for m = 3. We will refer to the
MBA problem for which m = 3 as MBA3.

93

Let S be the set of all feasible solutions (schedules). We denote with c(s,Dj) =
∑3

i=1w(vi) the cost of
solution s for some duty Dj ∈ D, where j ∈ J . The mini-max optimisation problem corresponding to
MBA3 consists of finding a solution s ∈ S with the best worst cost across all duties Dj ∈ D. This can be
stated as,

mins∈S maxj∈J c(s,Dj) (7.2.1)

We will now show that MBA3 is NP-hard. For this to be true we need to show that the decision version of
our problem, as stated below, is NP-complete.

Instance: A non-negative integer a and a 3-partite graph G(V,E) with V = V1 ∪V2 ∪V3 and |V1| = |V2| =
|V3| = n. We assume the edge-set is complete therefore E := {(v, v′)| (v, v′) ∈ (V1 × V2) ∪ (V2 × V3)}
and for each 1 ≤ i ≤ 3, vj ∈ Vi has a non-negative integer weight w(vj).

Question: Does there exist a solution s ∈ S consisting of n duties such that the maximum load of a duty is
no more than a?

The decision version of MBA3 is obviously in NP , since given a solution we can easily verify its correct-
ness by checking whether the sum of weights in each duty does not exceed a. To complete the proof, we
will show that the Numerical 3-Dimensional Matching problem which is proven to beNP-complete in [33]
, reduces to the decision version of complete-MBA3.

The Numerical 3-Dimensional Matching problem (N3DM): has as input 3 sets of positive integers
X = {x1, . . . , xn}, Y = {y1, . . . , yn}, and Z = {z1, . . . , zn}, and a positive integer bound a such that
xi, yi, zi ≤ a, ∀i = {1, ..., n} and also

∑n
i=1(xi + yi + zi) = na. The question is whether there exist n

disjoint triples, each containing one element from each of the three sets, such that for each triple (xi, yj , zk)
we have xi + yj + zk = a, where i, j, k ∈ {1, ..., n}.

Z

z1

z2

z3

z4

Y

y1

y2

y3

y4

X

x1

x2

x3

x4

x1 + y1 + z2 = B

x2 + y2 + z1 = B

x3 + y4 + z3 = B

x4 + y3 + z4 = B

Figure 7.2.1: N3DM example for m = 3, n = 4

94

To construct, from a given instance of N3DM , an instance of MBA3, let the number of shifts equal n, and
the number of daysm = 3. We assume that the edge-set E is complete and the weight of a node vi ∈ V1 (or,
in terms of [15], the weight of an edge leaving a node in V1), equal xi, thus w(vi) = xi for each vi ∈ V1.
Similarly, we have w(vi) := yi for each vi ∈ V2, and w(vi) := zi for each vi ∈ V3 (or, when phrased in
terms of [15], the weight of an edge leaving node vi ∈ V2, going to node vi′ ∈ V3 equals yi + zi′ , where
1 ≤ i and i′ ≤ n.

There exists a solution consisting of n duties such that the maximum load of a duty is no more than a, if
there exists an instance of N3DM. From the example illustrated in Figure 7.2.1 it is easy to see that a “Yes”
instance of N3DM corresponds to a solution of our problem with cost of each duty equal to a. Clearly a “No”
instance of N3DM corresponds to a solution to MBA3 with highest duty cost greater than a or corresponds
to an infeasible instance of MBA3. We have now shown that MBA3 is at least as hard as N3DM and we
have settled the question in [13] by proving that complete-MBA3 is NP-hard. Therefore we conclude the
following,

Theorem 7.2.1. Complete-MBA for a fixed value of m is NP-hard.

7.3 Formulations for the MBA problem

Many exact and heuristic approaches are applied to several generalisations of MBA mainly motivated by the
various applications such as crew rostering and manpower scheduling [9], [14], [15]. Although there exist
many approaches to solve large instances of more general problems, MBA in its fundamental form is not
computationally well understood. In this section we explore the structure of the problem and present IP and
CP formulations.

7.3.1 An Integer Programming formulation

In the context of the bus driver scheduling application, let the disjoint sets I , J andK denote the set of days,
shifts and duties respectively, where I = {1, ...,m}, J,K = {1, ..., n}. Let the binary variable xijk take
value 1 if on day i shift j is assigned to duty k and value 0 otherwise. Parameter wij denotes the weight of
shift j on day i and cDk denotes the cost of duty k. Complete-MBA can be formulated as follows,

95

Min Maxk∈K cDk (7.3.1)

s.t.
∑
j∈J

xijk = 1, ∀ i ∈ I, k ∈ K, (7.3.2)∑
k∈K

xijk = 1, ∀ i ∈ I, j ∈ J, (7.3.3)∑
i∈I, j∈J

wij xijk − cDk = 0, ∀ k ∈ K, (7.3.4)

xijk ∈ {0, 1}, ∀ i ∈ I, j ∈ J, k ∈ K (7.3.5)

Constraint (7.3.3) ensures that in a day, each duty contains only one shift. Constraint (7.3.4) ensures that in
a day, each shift is assigned to only one duty. Finally constraint (7.3.5) defines the cost of a duty.
A linearised IP formulation is obtained if the objective function (7.3.8) is replaced by (7.3.6) and constraint
(7.3.7) is added,

Min cD1 (7.3.6)

cDk ≤ cD1, ∀ k ∈ K (7.3.7)

7.3.2 A Constraint Programming formulation

CP models for the MBA problem have natural formulations using alldiff constraints. In this case, these
constraints force a particular set of integer variables to take values within a given set. The strength of the
alldiff constraint is an efficient propagation algorithm that is able to reduce the domain of each variable
by exploiting matching theory properties.

As for the IP model the disjoint sets I , J and K denote the set of days, shifts and duties respectively, where
I = {1, ...,m}, J,K = {1, ..., n}. Let Dij be a finite domain of integer array variables that gives the duty
containing shift j on day i and similarly let Sik give the shift allocated to duty k on day i. The domain of
each Dij is set K and the domain of each Sik the set J . Additionally, let cDk denote the cost of duty k and
let wji denote the weight of shift j ∈ J on day i ∈ I .

Min cD1 (7.3.8)

s.t. alldiff ({Sik} : k ∈ K), ∀ i ∈ I (7.3.9)∑
i∈I

wSiki − cDk = 0, ∀ k ∈ K (7.3.10)

cDk ≤ cD1, ∀ k ∈ K (7.3.11)

96

Constraint (7.3.9) ensures that in a day, each duty contains a different shift and (7.3.10) calculates the cost
of the kth duty by adding the weights of the shifts that are assigned to it over the period of m days. This is a
simple CP model that will minimise the cost of the heaviest duty and produce a schedule of shifts assigned
duties.

A widely used technique aiming to improve the efficiency of a CP model, is to add redundant constraints.
For this case, these are constraints that are logically implied by others in the model and often improve
constraint propagation, thus making the CP model computationally faster. We list three different sets of
redundant constraints for the MBA problem.

alldiff ({Dij} : j ∈ J), ∀ i ∈ I (7.3.12)

Constraint (7.3.12) ensures that in a day, each shift is assigned to a different duty. This is implied by
constraint (7.3.9), fact which makes (7.3.12) redundant.
Remember that inverse constraints force two groups of decision variables to be in strict correspondence with
each other. Constraint invtherefore ensures that in a day, the duty containing shift j, is duty k and the shift
assigned to that duty k, is shift j.

inv ({Dij , Sik} : j ∈ J, k ∈ K), ∀ i ∈ I (7.3.13)

Also remember that channelling constraints relate variables of two mutually redundant models. Constraint
(7.3.14) states that in a day, the shift assigned to the duty containing shift j, is shift j and constraint (7.3.15)
states that in a day, the duty containing the shift assigned to duty k, is duty k.

SDIJ i = j, ∀ i ∈ I, j ∈ J (7.3.14)

DSIK i = k, ∀ i ∈ I, k ∈ K (7.3.15)

7.4 Approximation algorithms for the MBA3 problem

Ideally, we would like to have a polynomial time algorithm that finds an optimal solution to the MBA prob-
lem for all instances. It has been shown that this is not possible, as is the case for many discrete optimisation
problems. Among others, a common approach is to relax the optimality requirement and construct algo-
rithms that run in polynomial time and provide solutions that approximate the optimal one in terms of value.
In this section, we focus on MBA3.

First, it is worth elaborating on related work for the complete case. For complete-MBA3 Hsu gives in [41] a
3
2 -approximation algorithm that runs inO(nlogn), and a 4

3 -approximation algorithm that runs inO(n3logn).

97

In summary, for a given n× 3 weight matrix the first algorithm sorts, for each column, values in ascending
order and then recursively places the largest weight of the matrix in the row with the smallest sum. The
second algorithm, although similar to the first, applies the restriction that in every row there can appear at
most 2 of the 2n largest weights of the matrix. Moreover, Coffman and Yannakakis in [17] give a (32 −

1
2n)-

approximation algorithm for complete-MBA that runs in O(n2m). They describe an algorithm called Row
Sum which in summary, takes the n×mmatrix of all shift weights and after placing them largest weights of
the matrix in separate rows, arranges all other elements in each column in ascending order. Next, it performs
exchanges between weights (in the same column) appearing in the lowest and highest row sum in order to
reduce the latter.

In this section, we first present a simple 2-approximation algorithm called Sequential Bottleneck (SB) for
arbitrary-MBA3 and show that this approximation factor is the best possible. We in fact show, that no
polynomial time algorithm can improve upon the factor of 2, unless P=NP. For mixed-MBA3, we present a
3
2 -approximation algorithm called Assign and Bottleneck (AB) and to our knowledge this is the first time a
heuristic is shown for the case of one arbitrary edge-set and one complete edge-set for MBA3. Finally, for a
special case of complete-MBA3 we describe a 7

6 -approximation algorithm called Heavy Weight (HW). For
all three approximation algorithms we give examples to demonstrate their bounds are tight.

7.4.1 Sequential Bottleneck heuristic

For arbitrary-MBA3, we present the Sequential Bottleneck (SB) heuristic, which is a 2-approximation poly-
nomial algorithm that runs in two stages. In summary, SB first computes a bottleneck matching M between
node-sets V1 and V2 and then computes a bottleneck matching between M and V3. As a reminder, E1 (the
edge-set between V1 and V2) and E2 (the edge-set between V2 and V3) are arbitrary, therefore not every shift
(node) of V1 can be succeeded by every shift (node) in V2 and the same holds for shifts in V2 and V3. More
formally,

Stage 1: Let the binary variable xv,v′ take value 1 if shift v ∈ V1 is succeeded by shift v′ ∈ V2 and 0

otherwise. Parameter w(v) denotes the weight of shift v ∈ V1 and w(v′) denotes the weight of shift v′ ∈ V2.
In this stage, SB solves the following integer program:

min maxv∈V1, v′∈V2 (w(v) + w(v′)) xv,v′

s.t.
∑

v′: {v,v′}∈E1

xv,v′ = 1 ∀ v ∈ V1∑
v : {v,v′}∈E1

xv,v′ = 1 ∀ v′ ∈ V2

xv,v′ ∈ {0, 1} ∀ {v, v′} ∈ E1.

Stage 2: Let us denote the resulting matching from Stage 1 as M , i.e., M = {(v, v′)| x∗v,v′ = 1}, where
x∗v,v′ is the solution to the IP presented above and let w(M) denote the the highest weight of this matching.

98

Now let w(v′) := w(v) + w(v′), ∀ (v, v′) ∈ M where v ∈ V1 and let w(v′′) denote the weight of shift
v′′ ∈ V3. Lastly, let the binary variable xv′,v′′ take value 1 if shift v′ ∈ V2 is succeeded by shift v′′ ∈ V3 and
0 otherwise.

min maxv′∈V2, v′′∈V3 (w(v
′) + w(v′′)) xv′,v′′

s.t.
∑

v′′: {v′,v′′}∈E2

xv′,v′′ = 1 ∀ v′ ∈ V2∑
v′ : {v′,v′′}∈E2

xv′,v′′ = 1 ∀ v′′ ∈ V2

xv′,v′′ ∈ {0, 1} ∀ {v′, v′′} ∈ E2.

The final maximum duty cost is given by the objective function of the second IP, and for a given instance I
is denoted by SB(I).

Theorem 7.4.1. SB is a polynomial-time, 2-approximation algorithm for MBA3.

Proof. Obviously, SB is a polynomial-time algorithm, since it amounts to solving two bottleneck assignment
problems. Now consider the solution obtained by SB; let its cost be determined by the triple (v, v′, v′′) ∈
V1 × V2 × V3. Then:

SB(I) = w(v) + w(v′) + w(v′′) ≤ w(M) + maxv′′∈V3 w(v
′′)

Further, it is easily seen that OPT ≥ w(M), and that OPT ≥ maxv′′∈V3 w(v
′′), where OPT refers to the cost

of an optimal solution. It follows that SB(I) ≤ 2OPT.
A worst-case example for arbitrary-MBA3 that demonstrates how the upper bound can be achieved, is shown
in Figure 7.4.1; where SB(I)=2OPT.

99

day 1

shift 1 4

shift 2 2

shift 3 1

shift 4 0

day 2

0

0

1

3

day 3

4

0

0

0

day 1

shift 1 4

shift 2 2

shift 3 1

shift 4 0

day 2

0

0

1

3

day 3

4

0

0

0

OPT = 4 SB(I) = 8

Figure 7.4.1: Example for worst-case performance of SB

Finally, notice that SB detects whether an instance has a feasible solution. Also, notice that in order to ob-
tain a ratio of 2, any assignment in the second stage suffices. And although even more elaborate algorithms
than SB can certainly be conceived, no polynomial time algorithm can improve upon the factor of 2 (unless
P=NP), as we show next.

For the case of complete-MBA3, one could derive the optimal solutions for the two bottleneck problems
without solving the suggested IP models but with use of a simple algorithm that involves sorting and sum-
ming of node-sets. More specifically, we refer to a (2− 1

n)-approximation algorithm that runs inO(mnlogn)
and was introduced by Hsu in [41]. It works as follows: Weights of nodes in V1 are first sorted in ascending
order and added to the weights of nodes in V2 which are sorted in descending order. Weight sums of the
resulting matching are then sorted in ascending order and added to weights of nodes in V3 which are sorted
in descending order. For m > 3 the process is repeated until all node-sets are processed.

We now continue to show that arbitrary-MBA3 cannot be approximated within a factor of 2 unless P=NP.
This is done with use of a traditional technique: we will show that a “Yes” instance of 3-Dimensional Match-
ing (3DM) corresponds to an instance of arbitrary -MBA3 with cost 1, whereas a “No” instance corresponds
to an instance of our problem with cost 2 (or one that has no feasible solution). Then, a polynomial time
approximation algorithm with a worst-case ratio strictly less than 2 would be able to distinguish the “Yes”
instances of 3DM from the “No” instances and this would imply P=NP. We first describe 3DM.

The 3-Dimensional Matching problem (3DM): has as input 3 sets of positive integers X = {x1, ..., xq},
Y = {y1, ..., yq}, and Z = {z1, ..., zq} and a subset T ⊆ X × Y × Z. The question is whether there exists
a subset T ′ of T such that each element of X ∪ Y ∪ Z is in exactly one triple of T ′.

100

Let the number of triples be denoted by |T | = p. Further, let the number of triples in which element yj
occurs, be denoted by #occ(yj), j = {1, ..., q}. Starting from an arbitrary instance of 3DM, we now build
a corresponding instance of arbitrary-MBA3 by specifying Vi where i = {1, 2, 3}, E and the weights w as
follows:

- For each triple in T , there is a node in V2. We refer to these nodes as triple nodes.

- For each xi ∈ X where i = {1, ..., q}, there is a node in V1. In addition, for each yj ∈ Y , there
are #occ(yj) − 1 nodes in V1, where j = {1, ..., q}; for such a node in V1 we say that this node
corresponds to element yj . These latter nodes will be referred to as the dummy nodes of V1.

- For each zk ∈ Z where k = {1, ..., q}, there is a node in V3. Further, we have p− q additional nodes
in V3 which will be referred to as the dummy nodes of V3.

Notice that this construction ensures that |V1| = |V2| = |V3| = p. Let the nodes of V1, V2, and V3 be denoted
by {x′1, ..., x′p}, {t′1, ..., t′p} and {z′1, ..., z′p} respectively. Thus, {x′1, ..., x′q} are the non-dummy nodes of V1
and {x′q+1, ..., x

′
p} are the dummy nodes of V1; notice that each dummy node of V1 corresponds to some

element yi ∈ Y . Further, triple nodes {t′1, ..., t′p} simply correspond to the triples in T , while {z′1, ..., z′q}
are the non-dummy nodes of V3, and {z′q+1, ..., z

′
p} are the dummy nodes of V3. The edge set E is defined

as follows:

- There is an edge (x′i, t
′
j) if xi is in the j-th triple in T , for i = {1, ..., q} and j = {1, ..., p}.

- There is an edge (t′j , z
′
k) if zk is in the j-th triple in T , for k = {1, ..., q} and j = {1, ..., p}.

- There is an edge (t′j , z
′
k), for j = {1, ..., p} and k = {q + 1, ..., p}.

- There is an edge (x′i, t
′
k) if element yj ∈ Y , to which dummy node x′i corresponds, is contained in the

k-th triple of T .

To complete the description of our instance of arbitrary-MBA3, we assign a 0 weight to all nodes of V1, V2
and V3 with the exception of the dummy nodes in V1 the non-dummy nodes in V3 which are assigned a
weight of 1.

Lemma 7.4.2. If the instance of 3DM is a YES-instance, the corresponding instance of MBA3 has cost 1. If
the instance of 3DM is a NO-instance, the corresponding instance of MBA3 has cost 2, or is infeasible.

Proof. Suppose that the instance of 3DM is a YES-instance. Then we construct a solution to the corre-
sponding MBA3 instance as follows. First, we copy each of the q triples in T ′ to duties in our solution of
MBA3 by selecting the corresponding triple node t′j in V2, together with the associated nondummy node x′i
from V1 and nondummy node z′k from V3 (notice that the corresponding edges are in E). The resulting q
duties contain all nondummy nodes in V1 as well as all nondummy nodes in V3. Further, we build duties

101

containing the dummy nodes in V1 by assigning each such node to the triple node in V2 that contains ele-
ment yj corresponding to the dummy node in V1. This is always possible, since the instance of 3DM is a
YES-instance, and hence, for each yj ∈ Y , exactly #occ(yj) − 1 nodes in V2 remain. Since the edge set
E contains any edge between a dummy node in V3 and a node in V2, we can extend these pairs to duties by
assigning the dummy nodes in V3 to these pairs. Observe that each resulting duty has cost 1.
A “No” instance for 3DM is such, either because some element of X ∪ Y ∪ Z does not appear in T ; or
because even though all elements of X ∪ Y ∪Z appear in T (implying that T has at least q triples) in every
subset T ′ of T where |T ′| = q, at least one of the members of X ∪ Y ∪ Z is repeated. For the first case,
it is obvious that if an element of X or Z does not appear in T then the corresponding arbitrary-MBA3

problem is infeasible since an edge connecting the corresponding node of V1 or V3 with a triple node of V2
does not exist. For the second case, we will assume that it is possible to construct a corresponding solution
to arbitrary-MBA3 where duty cost is not 2 and prove that this is not possible. Let us consider any subset
V ′2 of the triple nodes such that |V ′2 | = q and let the repeated element in the corresponding triples belong to
X . There exist q edges (t′, z) where t′ ∈ V ′2 and z ∈ V3 connecting nodes in V ′2 with q non-dummy nodes
in V3. Up to this point, the cost of these “partially” constructed duties is 1. Now each element in V ′2 must be
connected with a non-dummy node of V1 which is not possible, since two nodes in V ′2 are connected to the
same node in V1. Thus there will always exist a duty in the solution containing a dummy node of V1 and a
non-dummy node of V3 and subsequently its duty cost will be 2. A similar argument holds if the repeated
element belongs to Z.

For clarity we present Example 7.4.1 showing a “Yes” 3DM instance that corresponds to a highest duty cost
of 1 for arbitrary-3MBA. We also present Example 7.4.2 showing a “No” 3DM instance that corresponds to
a highest duty cost of 2 for arbitrary-3MBA.

Example 7.4.1
Consider the 3DM instanceX = {x1, x2, x3}, Y = {y1, y2, y3}, Z = {z1, z2, z3} and T = {(x1, y1, z1),
(x1, y1, z2), (x2, y2, z1), (x3, y3, z3)}. There exists a solution T ′ = {(x1, y1, z2), (x2, y2, z1),
(x3, y3, z3)}. Notice that T ′ ⊂ T and that all elements of X ∪ Y ∪ Z appear in T ′. Figure 7.4.2 presents
the corresponding solution for arbitrary-MBA3. In this construction (and also for Example 7.4.2), shaded
nodes have weight of 1 and all other weight of 0; double circled nodes are the dummy nodes of V1 and V3.
Finally, the duties are {(x′1, t′2, z′2), (x′2, t′3, z′1), (x′3, t′4, z′3), (x′4, t′1, z′4)} and notice that every duty
has cost 1, as it contains exactly one shaded node.

102

V1

shift 1

shift 2

shift 3

shift 4

V2 V3

t’1

t’2

t’3

t’4

x’1

x’2

x’3

x’4

z’1

z’2

z’3

z’4

Figure 7.4.2: Solution with duty cost 1, corresponding to “Yes” instance of 3DM

Example 7.4.2
Consider the 3DM instanceX = {x1, x2, x3}, Y = {y1, y2, y3}, Z = {z1, z2, z3} and T = {(x1, y1, z1),
(x1, y2, z2), (x2, y1, z3), (x3, y3, z3)}. There does not exists a solution to this 3DM instance. Figure 7.4.3
presents a corresponding solution to this instanced for arbitrary-MBA3. Notice that in every attempt to
construct 4 duties, the highest duty cost is always 2, as there is always a duty containing two shaded nodes.
One such set if duties is {(x′1, t′2, z′2), (x′2, t′3, z′3), (x′3, t′4, z′4), (x′4, t′1, z′1)}.

V1

shift 1

shift 2

shift 3

shift 4

V2 V3

t’1

t’2

t’3

t’4

x’1

x’2

x’3

x’4

z’1

z’2

z’3

z’4

Figure 7.4.3: Solution with duty cost 2, corresponding to “No” instance of 3DM

The instances we have constructed have weights in {0, 1}, however the arguments hold when the degree of
each node is bounded by some constant. Based on Lemma 7.4.2 we can now state:

Theorem 7.4.3. There is no polynomial time algorithm for arbitrary-MBA3 that achieves an approximation
guarantee of 2− ε, for any ε > 0, unless P=NP.

103

7.4.2 Assign and Bottleneck heuristic

For mixed-MBA3, we present the Assign and Bottleneck (AB) heuristic, which is a 3
2 -approximation poly-

nomial algorithm. We assume the edge set E2 (i.e., the edge set between V2 and V3) is arbitrary and the
edge set E1 (i.e., the edge set between V1 and V2) is complete. Notice that, for complete-MBA3, both [41]
and [17] present 3

2 -approximation algorithms. These heuristics, however, do not seem to be generalisable
to mixed-MBA3 while preserving the approximation factor. The main part of AB consists of the proce-
dure called Core-AB, which takes a guess of the optimal cost from the interval [

⌈∑
v∈V w(v)

3n

⌉
,W], where

W is the largest weight occurring in the input, and finds a feasible solution with the cost at most 3
2 times

the guess, if there exists one. AB outputs the feasible solution corresponding to the smallest guess. Let
V = V1 ∪ V2 ∪ V3 and let w(v) denote the weight of node v ∈ V .

Algorithm 1 Heuristic-AB
{Input: MBA3 Instance}
Call Sequential Bottleneck(SB)
if no feasible solution found then

STOP
Output: No feasible solution

end if

upper =W

lower =
⌈∑

v∈V w(v)

3n

⌉
repeat
OPT = upper+lower

2
Call Core-AB(OPT)
if no feasible solution exists then
lower = OPT

else
upper = OPT

end if
until upper = lower

Call Core-AB(upper)
Output: Solution

Description of Core-AB:We assume that the value of the optimal solution, called OPT , is known. This
is not a problem as OPT ∈ [

⌈∑
v∈V w(v)

3n

⌉
,W]. Without loss of generality, we further assume that the

nodes in V1, V2, and V3 are ordered in non-increasing order of their weights, with V1 = {v1, v2, ..., vn} and
V2 = {v′1, v′2, ..., v′n}. We say that a node v ∈ V is heavy if w(v) > OPT

2 , and we call v non-heavy
otherwise. Let ki be the number of heavy nodes in Vi, where i = {1, 2, 3}; notice that k1 + k2 + k3 ≤ n.

Core-AB has two stages. In the first stage, we solve an instance of the maximum weight perfect matching
problem on a bipartite graph G′ = (V2, V3, E

′
2). The edge set E′2 is defined as follows: there is an edge

(v′, v′′) ∈ E′2 (with v′ ∈ V2 and v′′ ∈ V3), if (i) (v′, v′′) ∈ E2, and (ii) w(v′) +w(v′′) ≤ OPT . Further, we

104

define the weight w′ of an edge (v′, v′′) ∈ E′2 as follows:

w′(v′, v′′) = 1 if w(v′) + w(v′′) ≤ OPT/2
= 0 otherwise

In the second stage, we compute a bottleneck matching between the nodes from V1 and the n pairs found in
Stage 1; this gives us the solution of AB.

Theorem 7.4.4. Heuristic AB is a polynomial-time 3
2 -approximation algorithm for mixed-MBA3.

Proof. We begin by showing that AB is a polynomial-time algorithm. The first stage of Core-AB amounts
to solving a maximum weight bipartite perfect matching problem, which can be done in polynomial time
and Core-AB is run at most logW times.

Let us next argue that heuristic AB finds a feasible solution whenever one exists. Indeed, assuming an opti-
mal solution exists, any pair of nodes (v′, v′′) (with v′ ∈ V2 and v′′ ∈ V3) that are together in a duty in an
optimal solution, are connected in G′. This is true, since these (v′, v′′) apparently satisfy (v′, v′′) ∈ E2, and
w(v′) + w(v′′) ≤ OPT . Thus, a perfect matching exists in G′, and since we solve an assignment problem
in the first stage of AB, we find a perfect matching in the first stage. Then it follows easily that, since E1 is
complete by assumption, a feasible solution is found by AB.

We now prove the approximation guarantee. Again due to the existence of an optimal solution there exists
a perfect matching in G′ such that there are at least k1 edges that are vertex disjoint whose weight in the
original graph is bounded by OPT/2. Therefore, a maximum weight matching in G′ will have weight at
least k1. Clearly in the second stage the k1 heavy elements from V1 can be bottleneck matched with these
pairs. The total weight of each of these triples will be bounded by 3

2OPT . Any other triple will consist
of three non-heavy nodes and hence its weight is also bounded by 3

2OPT . This proves the approximation
factor.

A worst-case example for mixed-MBA3 that demonstrates how the upper bound can be achieved, is shown
in Figure 7.4.4, where AB(I)=3

2OPT.

105

day 1

shift 1

shift 2 0

day 2

1/2

day 3

OPT = 1

01/2

1/2 1/2

day 1

shift 1

shift 2 0

day 2

1/2

day 3

AB(I) = 3/2

01/2

1/2 1/2

Figure 7.4.4: Example for worst-case performance of AB

7.4.3 Heavy Weight heuristic

In this section, we assume OPT, the optimal solution to an MBA3 problem is known and we scale the
weights of all nodes v ∈ V by dividing them by OPT. Moreover, let V (v) denote the node-set Vj containing
node v ∈ V , where j ∈ {1, 2, 3} and note that V1 ∪ V2 ∪ V3 = V .

Remark 7.4.5. It holds that,

(i) ∀v ∈ V , w(v) ≤ 1

(ii) There exist no more than 2n nodes v ∈ V with weight w(v) ≥ 1
2

(iii) There exist at least n nodes v ∈ V with weight w(v) ≤ 1
3

Proof. Statements (i) and (ii) are obvious. For (iii), let us assume that there exist only n − 1 nodes in
v ∈ V with weight w(v) ≤ 1

3 . Then, in the optimal solution there exists a triple (p, q, r) where w(p), w(q),
w(r) > 1

3 and therefore w(p) + w(q) + w(r) > 1. This cannot be true.

Theorem 7.4.6. Let V be the node-set of a complete-MBA3 problem and let A, B be two disjoint n-subsets
of V . Then the bipartite graph G(A,B,E) has a perfect matching, where the edge-set E is defined as
follows: there is an edge (a, b) ∈ E (with a ∈ A and b ∈ B) if V (a) 6= V (b).

Proof. According to Hall’s theorem [37] on the sufficient condition for the existence of a perfect matching
in bipartite graphs (see Theorem 1.4.1), we must show that for every subset S of A, the number of distinct
nodes adjacent to some member of S is at least |S|. Let V A

j = A∩Vj , ∀j ∈ {1, 2, 3} and let V C
j = C ∩Vj ,

∀j ∈ {1, 2, 3}. By definition of the edge-set E, node a ∈ V A
j is not adjacent to any of the members of V C

j

and is adjacent to all other n− |V C
j | nodes in C. Since |V C

j | ≤ n− |V A
j | we conclude that,

Statement 1: each node a ∈ V A
j is adjacent to at least |V A

j | nodes in C.

If S = A or S contains at least one member of each V A
j , where j ∈ {1, 2, 3} then from Statement 1 it

follows that S is adjacent to exactly n nodes c ∈ C. If S is a subset of V A
j , where j ∈ {1, 2, 3}, then from

106

Statement 1 we know that S is adjacent to exactly |V A
j | members of C and |S| ≤ |V A

j |. Finally, if S is
a subset of V A

1 ∪ V A
2 , containing at least one node from each of the two sets, then each member of V A

1 is
adjacent to |V C

2 |+ |V C
3 | members of C and each member of of V A

2 is adjacent to |V C
1 |+ |V C

3 | members of
C. This gives us a total of n distinct nodes and it follows that S is adjacent to exactly n nodes and |S| ≤ n

(note that |V C
1 | + |V C

2 | + |V C
3 | = |C| = n). A similar argument holds if S is a subset of V A

2 ∪ V A
3 or a

subset of V A
1 ∪ V A

3 .

We now continue to describe the Heavy Weight (HW) heuristic.

Let nodes in V be arranged in decreasing order. The Heavy Weight (HW) heuristic, is a 7
6 -approximation

polynomial algorithm for a special case: the 2nth node has weight greater than 1
3 . Since the value of OPT

is actually not known, steps 1 to 3 will be repeated as demonstrated for the heuristics of the previous section,
until a perfect matching in Step 2 is found.

Step 1: Let nodes in V be arranged in decreasing order such that w(vi) ≥ w(vi+1), ∀v ∈ V where
i = {1, ..., 3n − 1}. Let k be the number of nodes v ∈ V such that w(v) > 1

2 and let A contain these first
k nodes of V in addition to nodes n+k+1 to 2n. Lastly, letB be a set containing the n lightest nodes of V .

Step 2: Find a perfect matching for the bipartite graph G = (A,B,E) where E is defined as follows: there
exists an edge (a, b) ∈ E (with a ∈ A and b ∈ B), if w(a) + w(b) ≤ 2

3 .

Step 3: Extend the pair (a, b) to a triple (a, b, c) by adding a node c ∈ Vj such that V (a) 6= V (b) 6= Vj .

Theorem 7.4.7. HW is a polynomial-time 7
6 -approximation algorithm for complete-MBA3 for the case

where the 2nth node of V has weight greater than 1
3 .

Proof. We fist list some observations:

(i) Since the 2nth node of V has weight greater than 1
3 , then each triple in the optimal solution consists of

two nodes with weight greater than 1
3 and one node with weight less than 1

3 .

(ii) From (i) it follows that ∀v ∈ V , w(v) < 2
3 .

(iii) Assume (v1, v2, v3) is a triple in the optimal solution of MBA3 with w(v1), w(v2) > 1
3 and w(v3) < 1

3 .
Then it holds that w(v1) + w(v3) ≤ 2

3 and w(v2) + w(v3) ≤ 2
3 .

We will first show that the bipartite graph in Step 2 always has a perfect matching. It is equivalent to show
that the maximum weight perfect matching problem on a graph G′ described below, always has a solution
with objective function value equal to n. Therefore, consider an n-regular graph G′(A,B,E′) where A and
B are as defined in Step 1 and edge set E′ consists of n2 edges (a, b), with a ∈ A and b ∈ B. Further we

107

define a weight w′ of an edge (a, b) ∈ E′ as follows:

w′(a, b) = 1 if w(a) + w(b) ≤ 2

3
= 0 otherwise

From Theorem 7.4.6 it follows that this problem always has a solution. It remains to show that the objective
function value is always equal to n. First note that from observation (ii) we know that all nodes have weight
less than 1

3 . Now assume the objective function value is equal to n − 1. Then in the solution there exists a
pair of nodes (a1, b1) for which w′(a1, b1) > 2

3 . If w(a1) > 1
2 we have a contradiction, since in the optimal

solution of MBA3 no two of the heaviest k nodes of V with weight greater than 1
2 can appear in the same

triple. Therefore from observation (i) and (iii) it follows that for each of these nodes there exists a matching
with a member of B and edge-weight equal to 1. If w(a1) ≤ 1

2 , then in the optimal solution of MBA3, node
b1 appears in a triple with node v1 ∈ V \A∪B and from observation (iii) we know that w(v1)+w(b1) < 2

3 .
However, by definition of set A in Step 1, w(v1) ≥ w(a1) which results in a contradiction.

We have now shown the bipartite graph in Step 2 always has a perfect matching and it remains to prove the
approximation guarantee. By definition of sets A andB in Step 1, it follows that ∀v ∈ V \A∪B, w(v) ≤ 1

2 .
Therefore for the resulting triples (a, b, c) after the completion of Step 3, it holds that w(a) +w(b) ≤ 2

3 and
w(c) < 1

2 and therefore w(a) + w(b) + w(c) ≤ 7
6 .

A worst-case example for complete-MBA3 that demonstrates how the upper bound can be achieved, is
shown in Figure 7.4.5, where ε > 0 and HW(I)=7

6 .

day 1

shift 1

shift 2

day 2 day 3

OPT = 1

day 1

shift 1

shift 2

day 2 day 3

HW(I) = 7/6

4/6 - ε 3/6 ε

3/6 + ε 2/6 + ε 0

4/6 - ε 3/6 ε

3/6 + ε 2/6 + ε 0

Figure 7.4.5: Example for worst-case performance of HW

7.5 Concluding remarks

This chapter introduced the MBA problem within the context of a driver’s scheduling problem. It was shown
that finding an MBA3 isNP-hard, by reducing the problem to the N3DM problem. An IP formulation was
presented, but since for a large number of shifts this does not give a solution in a reasonable amount of time,
heuristic algorithms were introduced. Specifically for complete-MBA3, mixed-MBA3 and arbitrary-MBA3

108

a 7
6 , 3

2 and 2-approximation algorithms respectively were given.

As a first step to find fast ways of reaching optimal solutions, a CP formulation was shown. However, com-
putational experiments were not included and it would be interesting to test and improve how CP performs
for this type of problem.

In further research, it would also be interesting to consider a similar problem to the MBA, where the goal is
assigning duties as fairly as possible, in the sense that the cost of duties across all drivers must be as close
as possible. We can call this the Fairness m-dimensional bottleneck assignment problem and refer to it as
FMBA. One way to approach this problem, is to minimise the largest difference between two duty costs,
amongst all pairs of duties. Reasonably, the greatest difference will appear between the heaviest (denoted
by cDmax) and lightest (denoted by cDmin) duty cost. Therefore, the aim now is to find a partition of V into
n duties D1, D2, . . . , Dn such that cDmax− cDmin is minimum. This essentially means that we would like
to simultaneously maximise the lightest duty cost and minimise the highest one. Further research can focus
on showing complexity of the FMBA problem. It is clear from the example below that an optimal solution
to the MBA problem is not optimal for FMBA. However, this raises the question as to whether the opposite
holds.

day 1

shift 1 4

shift 2 2

shift 3 1

day 2

1

0

0

Optimal solution to MBA

day 1

shift 1 4

shift 2 2

shift 3 1

day 2

1

0

0

Optimal solution to FMBA

Figure 7.5.1: Optimal solution to MBA is not optimal solution to FMBA.

109

Appendix A: Completion of pink rectangles

j1 j2 j3 ... jn
1 2 K1\{1, 2}
K1 1 2 K1\{1, 2, k1}

R∗1−
j1 j2 ... jn
1 k2 K1\{1, k2}
2 1 K1\{1, 2}

R2−
j1 j2 j3 j4 ... jn
1 3 2 K1\{1, 2, 3}
2 1 n 3 K1\{1, 2, 3, n}

R∗6−
j1 j2 j3 ... jn
1 2 K1\{1, 2}
n 1 2 K1\{1, 2, n}

R10−

,

j1 j2 j3 ... jn
2 1 K1\{1, 2}
n 2 1 K1\{1, 2, n}

R10−
j1 j2 ... jn
1 2 K1\{1, 2}
k1 1 ...

R∗25−
j1 j2 ... jn
1 k1 ...
k2 1 ...

R28−

Table A.1: Completion of type I pink rectangles

110

j1 j2 j3 jn
1 2 3 K1\{1, 2, 3}
3 1 2 K1\{1, 2, 3}

R∗4−

,

j1 j2 j3 jn
1 2 3 K1\{1, 2, 3}
2 3 1 K1\{1, 2, 3}

R∗4−
j1 j2 j3 ... jn
1 2 K1\{1, 2}
2 1 3 K1\{1, 2, 3}

R∗7−

,

j1 j2 j3 ... jn
1 2 K1\{1, 2}
2 3 1 K1\{1, 2, 3}

R∗7−
j1 j2 ... jn
1 2 K1\{1, 2}
3 1 K1\{1, 3}

R8−

,

j1 j2 ... jn
2 1 K1\{1, 2}
1 3 K1\{1, 3}

R8−
j1 j2 j3 ... jn
1 2 k1 K1\{1, 2, k1}
2 1 3 K1\{1, 2, 3}

R15−

,

j1 j2 j3 ... jn
1 2 k1 K1\{1, 2, k1}
3 1 2 K1\{1, 2, 3}

R15−
j1 j2 j3 ... jn
2 1 k1 K1\{1, 2, k1}
1 2 3 K1\{1, 2, 3}

R15−

,

j1 j2 j3 ... jn
2 1 k1 K1\{1, 2, k1}
3 2 1 K1\{1, 2, 3}

R15−
j1 j2 j3 ... jn
1 2 3 K1\{1, 2, 3}
3 1 2 K1\{1, 2, 3}

R∗15−

,

j1 j2 j3 ... jn
1 2 3 K1\{1, 2, 3}
2 3 1 K1\{1, 2, 3}

R∗15−
j1 j2 j3 ... jn
2 1 3 K1\{1, 2, 3}
1 3 2 K1\{1, 2, 3}

R∗15−

,

j1 j2 j3 ... jn
2 1 3 K1\{1, 2, 3}
3 2 1 K1\{1, 2, 3}

R∗15−
j1 j2 j3 j4 ... jn
1 2 3 K1\{1, 2, 3}
2 1 n 3 K1\{1, 2, 3, n}

R23−

,

j1 j2 j3 j4 ... jn
1 2 3 K1\{1, 2, 3}
2 3 n 1 K1\{1, 2, 3, n}

R23−
j1 j2 j3 j4 ... jn
1 2 3 K1\{1, 2, 3}
3 1 n 2 K1\{1, 2, 3, n}

R23−

,
Similar completion for R23− if values

1, 2, 3 are placed in different cells in first row.

j1 j2 j3 ... jn
1 2 3 K1\{1, 2, 3}
2 3 1 K1\{1, 2, 3}

R24−

,

j1 j2 j3 ... jn
1 2 3 K1\{1, 2, 3}
3 1 2 K1\{1, 2, 3}

R24−
Similar completion for R24− if values 1, 2, 3 are placed in different cells in first row.

Table A.2: Completion of type II pink rectangles (Continued in Table 7.5)

111

j1 j2 j3 ... jn
1 2 3 K1\{1, 2, 3}
2 1 ...

R∗27−

,

j1 j2 j3 ... jn
1 3 2 K1\{1, 2, 3}
2 1 ...

R∗27−
j1 j2 j3 ... jn
3 2 1 K1\{1, 2, 3}
2 1 ...

R∗27−

Table A.3: Completion of type II pink rectangles

j1 j2 ... jn
1 2 K1\{1, 2}
2 1 K1\{1, 2}

R∗2−
j1 j2 ... jn
1 2 K1\{1, 2}
2 1 K1\{1, 2}

R11−

,

j1 j2 ... jn
2 1 K1\{1, 2}
1 2 K1\{1, 2}

R11−
j1 j2 ... jn
1 2 K1\{1, 2}
2 1 ...

R∗26−
j1 j2 ... jn
1 2 ...
2 1 ...

R29−

Table A.4: Completion of type III pink rectangles

112

Appendix B: Lifted circuit inequalities

Lifted circuit inequalities of Class 3

Inequalities for C12,3 are presented in Chapter 5. Here we formulate and lift circuit inequalities for C22,3 .

C22,3 :
∑

j∈J\{j1,j2}

(xi1jπ(j)) + xi2j1k12 + xi2j2k1 + yi1j1k21 + yi1j2k22 + yi2j1k22 + yi2j2k21 ≤ n+ 2,

where {i1, i2} ⊆ I, {j1, j2} ⊂ J , {k1
1, k

1
2, k

1
3} ⊂ K1, π : J \ {j1, j2} −→ K1 \ {k1

1, k
1
2, k

1
3},

{k2
1, k

2
2} ⊂ K2

Lifted circuit inequalities:

∑
j∈J\{j1,j2,j3}

k1∈K1\{k11 ,k12 ,k13}

(xi1jk1) + xi2j1k12 + xi2j2k11 + yi1j1k21 + yi1j2k22 + yi2j1k22 + yi2j2k21

+ xi2j1k11 + 2yi1j2k21 + yi1j1k22 ≤ n+ 2,

∑
j∈J\{j1,j2,j3}

k1∈K1\{k11 ,k12 ,k13}

(xi1jk1) + xi2j1k12 + xi2j2k11 + yi1j1k21 + yi1j2k22 + yi2j1k22 + yi2j2k21

+ xi2j1k11 + 2yi1j2k21 + yi2j1k21 ≤ n+ 2,

∑
j∈J\{j1,j2,j3}

k1∈K1\{k11 ,k12 ,k13}

(xi1jk1) + xi2j1k12 + xi2j2k11 + yi1j1k21 + yi1j2k22 + yi2j1k22 + yi2j2k21

+ xi2j1k11 + 2yi1j2k21 + yi2j2k22 ≤ n+ 2,

113

∑
j∈J\{j1,j2,j3}

k1∈K1\{k11 ,k12 ,k13}

(xi1jk1) + xi2j1k12 + xi2j2k11 + yi1j1k21 + yi1j2k22 + yi2j1k22 + yi2j2k21

+ xi2j1k11 + 2yi1j1k22 + yi1j2k21 ≤ n+ 2,

∑
j∈J\{j1,j2,j3}

k1∈K1\{k11 ,k12 ,k13}

(xi1jk1) + xi2j1k12 + xi2j2k11 + yi1j1k21 + yi1j2k22 + yi2j1k22 + yi2j2k21

+ xi2j1k11 + 2yi1j1k22 + yi2j1k21 ≤ n+ 2,

∑
j∈J\{j1,j2,j3}

k1∈K1\{k11 ,k12 ,k13}

(xi1jk1) + xi2j1k12 + xi2j2k11 + yi1j1k21 + yi1j2k22 + yi2j1k22 + yi2j2k21

+ xi2j1k11 + 2yi1j1k22 + yi2j2k22 ≤ n+ 2,

∑
j∈J\{j1,j2,j3}

k1∈K1\{k11 ,k12 ,k13}

(xi1jk1) + xi2j1k12 + xi2j2k11 + yi1j1k21 + yi1j2k22 + yi2j1k22 + yi2j2k21

+ xi2j1k11 + 2yi2j1k21 + yi1j1k22 ≤ n+ 2,

∑
j∈J\{j1,j2,j3}

k1∈K1\{k11 ,k12 ,k13}

(xi1jk1) + xi2j1k12 + xi2j2k11 + yi1j1k21 + yi1j2k22 + yi2j1k22 + yi2j2k21

+ xi2j1k11 + 2yi2j1k21 + yi1j2k21 ≤ n+ 2,

∑
j∈J\{j1,j2,j3}

k1∈K1\{k11 ,k12 ,k13}

(xi1jk1) + xi2j1k12 + xi2j2k11 + yi1j1k21 + yi1j2k22 + yi2j1k22 + yi2j2k21

+ xi2j1k11 + 2yi2j1k21 + yi2j2k22 ≤ n+ 2,

114

∑
j∈J\{j1,j2,j3}

k1∈K1\{k11 ,k12 ,k13}

(xi1jk1) + xi2j1k12 + xi2j2k11 + yi1j1k21 + yi1j2k22 + yi2j1k22 + yi2j2k21

+ xi2j1k11 + 2yi2j2k22 + yi2j1k21 ≤ n+ 2,

∑
j∈J\{j1,j2,j3}

k1∈K1\{k11 ,k12 ,k13}

(xi1jk1) + xi2j1k12 + xi2j2k11 + yi1j1k21 + yi1j2k22 + yi2j1k22 + yi2j2k21

+ xi2j1k11 + 2yi2j2k22 + yi1j1k22 ≤ n+ 2,

∑
j∈J\{j1,j2,j3}

k1∈K1\{k11 ,k12 ,k13}

(xi1jk1) + xi2j1k12 + xi2j2k11 + yi1j1k21 + yi1j2k22 + yi2j1k22 + yi2j2k21

+ xi2j1k11 + 2yi2j2k22 + yi1j2k21 ≤ n+ 2,

where {i1, i2} ⊆ I, {j1, j2, j3} ⊂ J, {k1
1, k

1
2, k

1
3} ⊂ K1, {k2

1, k
2
2} ⊂ K2

Lifted circuit inequalities of Class 2

Class 2 consists of nine types of circuits, C12,2 , C22,2 , C32,2 , C42,2 , C52,2 , C62,2 , C72,2 , C82,2 and C92,2 . The
corresponding circuit inequalities for C12,2 are presented in Chapter 5. Here we formulate and lift circuit
inequalities for the remaining six subclasses.

The corresponding circuit inequalities for C22,2 depicted in Table 4.2.33 are of the form:

C22,2 :
∑

j∈J\{j1,j2}

(xi1jπ1(j)) + xi2j1k1n +
∑

j∈J\{j1,j2,j3}

(xi2jπ2(j)) + yi1j1k2 + yi2j2k2 ≤ 2n− 3

where {i1, i2} ⊆ I, {j1, j2, j3} ⊂ J, {k1
1, k

1
2, k

1
n} ⊂ K1, k2 ∈ K2, π1 : J \ {j1, j2} −→

K1 \ {k1
1, k

1
2}, π2 : J \ {j1, j2, j3} −→ K1 \ {k1

1, k
1
2, k

1
n}, such that π1(j) 6= π2(j) where j ∈

J \ {j1, j2, j3}

115

Lifted circuit inequalities:

∑
j∈J\{j1,j2}

k1∈K1\{k11 ,k12}

(xi1jk1) + xi2j1k1n +
∑

j∈J\{j1,j2,j3}
k1∈K1\{k11 ,k12 ,k1n}

(xi2jk1) + yi1j1k2 + yi2j2k2 + yi1j2k2 ≤ 2n− 3

and

∑
j∈J\{j1,j2}

k1∈K1\{k11 ,k12}

(xi1jk1) + xi2j1k1n +
∑

j∈J\{j1,j2,j3}
k1∈K1\{k11 ,k12 ,k1n}

(xi2jk1) + yi1j1k2 + yi2j2k2 + yi2j1k2 ≤ 2n− 3

where {i1, i2} ⊆ I , {j1, j2, j3} ⊂ J , {k1
1, k

1
2, k

1
n} ⊂ K1, k2 ∈ K2

The corresponding circuit inequalities for C32,2 depicted in Table 4.2.34 are of the form:

C32,2 :
∑

j∈J\{j1,j2}

(xi1jπ1(j) + xi2jπ2(j)) + yi1j1k2 + yi2j2k2 ≤ 2n− 3

where {i1, i2} ⊆ I , {j1, j2} ⊂ J , {k1
1, k

1
2} ⊂ K1, k2 ∈ K2, π1, π2: J \ {j1, j2} −→

K1 \ {k1
1, k

1
2}, such that π1(j) 6= π2(j), where j ∈ J \ {j1, j2}

Lifted circuit inequalities:

∑
j∈J\{j1,j2}

k1∈K1\{k11 ,k12}

(xi1jk1 + xi2jk1) + yi1j1k2 + yi2j2k2 + yi1j2k2 ≤ 2n− 3

and

∑
j∈J\{j1,j2}

k1∈K1\{k11 ,k12}

(xi1jk1 + xi2jk1) + yi1j1k2 + yi2j2k2 + yi2j2k2 ≤ 2n− 3

where {i1, i2} ⊆ I , {j1, j2} ⊂ J , {k1
1, k

1
2} ⊂ K1, k2 ∈ K2

116

The corresponding circuit inequalities for C42,2 depicted in Table 4.2.35 are of the form:

C42,2 :
∑

j∈J\{j1,j2,j3}

(xi1jπ1(j) + xi2jπ2(j)) + yi1j1k21 + yi1j2k22 + yi2j1k22 + yi2j2k21 ≤ 2n− 3

where {i1, i2} ⊆ I , {j1, j2, j3} ⊂ J , {k1
1, k

1
2, k

1
3} ⊂ K1, {k2

1, k
2
2} ⊂ K2, π1, π2: J \

{j1, j2, j3} −→K1 \ {k1
1, k

1
2, k

1
3}, such that π1(j) 6= π2(j), where j ∈ J \ {j1, j2, j3}

Lifted circuit inequalities:

∑
j∈J\{j1,j2,j3}

k1∈K1\{k11 ,k12 ,k13}

(xi1jk1 + xi2jk1) + yi1j1k21 + yi1j2k22 + yi2j1k22 + yi2j2k21 + 2yi1j1k22

+ yi1j2k21 ≤ 2n− 3

and

∑
j∈J\{j1,j2,j3}

k1∈K1\{k11 ,k12 ,k13}

(xi1jk1 + xi2jk1) + yi1j1k21 + yi1j2k22 + yi2j1k22 + yi2j2k21 + 2yi1j1k22

+ yi2j1k21 ≤ 2n− 3

where {i1, i2} ⊆ I , {j1, j2, j3} ⊂ J , {k1
1, k

1
2, k

1
3} ⊂ K1, {k2

1, k
2
2} ⊂ K2

The corresponding circuit inequalities for C52,2 depicted in Table 4.2.36 are of the form:

C52,2 :
∑

j∈J\{j1,j2,j3}

(xi1jπ1(j)) + xi2jk1n +
∑

j∈J\{j1,j2,j3,j4}

(xi2jπ2(j)) + yi1j1k21 + yi1j2k22 + yi2j1k22

+ yi2j2k21 ≤ 2n− 3

where {i1, i2} ⊆ I, {j1, j2, j3, j4} ⊂ J , {k1
1, k

1
2, k

1
3, k

1
n} ⊂ K1, {k2

1, k
2
2} ⊂ K2, π1 : J \

{j1, j2, j3} −→ K1 \ {k1
1, k

1
2, k

1
3}, π2 : J \ {j1, j2, j3, j4} −→ K1 \ {k1

1, k
1
2, k

1
3, k

1
n}, such that

π1(j) 6= π2(j), where j ∈ J \ {j1, j2, j3, j4}

117

Lifted circuit inequalities:

∑
j∈J\{j1,j2,j3}

k1∈K1\{k11 ,k12 ,k13}

(xi1jπ1(j)) + xi2jk1n +
∑

j∈J\{j1,j2,j3,j4}
k1∈K1\{k11 ,k12 ,k13 ,k1n}

(xi2jπ2(j)) + yi1j1k21 + yi1j2k22 + yi2j1k22

+ yi2j2k21 + 2yi1j1k22 + yi1j2k21 ≤ 2n− 3

and

∑
j∈J\{j1,j2,j3}

k1∈K1\{k11 ,k12 ,k13}

(xi1jπ1(j)) + xi2jk1n +
∑

j∈J\{j1,j2,j3,j4}
k1∈K1\{k11 ,k12 ,k13 ,k1n}

(xi2jπ2(j)) + yi1j1k21 + yi1j2k22 + yi2j1k22

+ yi2j2k21 + 2yi1j1k22 + yi2j1k21 ≤ 2n− 3

where {i1, i2} ⊆ I , {j1, j2, j3, j4} ⊂ J , {k1
1, k

1
2, k

1
3, k

1
n} ⊂ K1, {k2

1, k
2
2} ⊂ K2

The corresponding circuit inequalities for C62,2 depicted in Table 4.2.37 are of the form:

C62,2 :
∑

j∈J\{j1,j2}

(xi1jπ1(j)) + xi2j2k11 +
∑

j∈J\{j1,j2}

(yi1jπ2(j)) + yi2j2k21 ≤ 2n− 3

where {i1, i2} ⊆ I , {j1, j2} ⊂ J , {k1
1, k

1
2} ⊂ K1, {k2

1, k
2
2} ⊂ K2 π1 : J \ {j1, j2} −→

K1 \ {k1
1, k

1
2}, π2 : J \ {j1, j2} −→K2 \ {k2

1, k
2
2}

Lifted circuit inequalities:

∑
j∈J\{j1,j2}

k1∈K1\{k11 ,k12}

(xi1jk1) + xi2j2k11 +
∑

j∈J\{j1,j2}
k2∈K2\{k21 ,k22}

(yi1jπ2(j)) + yi2j2k21 ≤ 2n− 3

where {i1, i2} ⊆ I , {j1, j2} ⊂ J , {k1
1, k

1
2} ⊂ K1, {k2

1, k
2
2} ⊂ K2

The corresponding circuit inequalities for C72,2 depicted in Table 4.2.38 are of the form:

C72,2 :
∑

j∈J\{j1,j2}

(xi1jπ1(j)) + xi2j1k12 + xi2j2k11 +
∑

j∈J\{j1,j2,j3}

(yi1jπ2(j)) + yi2j2k22 + yi2j2k21 ≤ 2(n− 1)

118

where {i1, i2} ⊆ I , {j1, j2, j3} ⊂ J , {k1
1, k

1
2} ⊂ K1, {k2

1, k
2
2, k

2
3} ⊂ K2 π1 : J \ {j1, j2} −→

K1 \ {k1
1, k

1
2}, π2 : J \ {j1, j2, j3} −→K2 \ {k2

1, k
2
2, k

2
3}

Lifted circuit inequalities:

∑
j∈J\{j1,j2}

k1∈K1\{k11 ,k12}

(xi1jk1) + xi2j1k12 + xi2j2k11 + xi2j1k11 +
∑

j∈J\{j1,j2,j3}
k2∈K2\{k21 ,k22 ,k23}

(yi1jπ2(j)) + yi2j2k22 + yi2j2k21

+ yi2j1k21 ≤ 2(n− 1)

and

∑
j∈J\{j1,j2}

k1∈K1\{k11 ,k12}

(xi1jk1) + xi2j1k12 + xi2j2k11 + xi2j1k11 +
∑

j∈J\{j1,j2,j3}
k2∈K2\{k21 ,k22 ,k23}

(yi1jπ2(j)) + yi2j2k22 + yi2j2k21

+ yi2j2k22 ≤ 2(n− 1)

where {i1, i2} ⊆ I , {j1, j2, j3} ⊂ J , {k1
1, k

1
2} ⊂ K1, {k2

1, k
2
2, k

2
3} ⊂ K2

Lifted circuit inequalities of Class 1

Class 1 consists of six types of circuits, C12,1 , C22,1 , C32,1 , C42,1 , C52,1 and C62,1 . The corresponding circuit
inequalities for C12,1 are presented in Chapter 5. Here we formulate and lift circuit inequalities for the re-
maining subclasses.

The corresponding circuit inequalities for C22,1 depicted in Table 4.2.25 are of the form:

C22,1 :
∑

j∈J\{j1,j2}

(xi1jπ1(j)) + xi2j1k1n +
∑

j∈J\{j1,j2,j3}

(xi2jπ2(j)) +
∑

j∈J\{j1,j2}

(yi1jπ3(j))

+ yi2j2k21 ≤ 3(n− 2)

where {i1, i2} ⊆ I , {j1, j2, j3} ⊂ J , {k1
1, k

1
2, k

1
n} ⊂ K1, k2 ∈ K2, π1 : J \ {j1, j2} −→

K1 \ {k1
1, k

1
2}, π2 : J \ {j1, j2, j3} −→ K1 \ {k1

1, k
1
2, k

1
n}, such that π1(j) 6= π2(j) where

j ∈ J \ {j1, j2, j3}, π3 : J \ {j1, j2} −→K2 \ {k2
1, k

2
2}

119

Lifted circuit inequalities:

∑
j∈J\{j1,j2}

k1∈K1\{k11 ,k12}

(xi1jk1) + xi2j1k1n +
∑

j∈J\{j1,j2,j3}
k1∈K1\{k11 ,k12 ,k1n}

(xi2jk1) +
∑

j∈J\{j1,j2}
k12∈K2\{k21 ,k22}

(yi1jk2) + yi2j2k21

+ yi2j2k22 ≤ 3(n− 2)

where {i1, i2} ⊆ I , {j1, j2, j3} ⊂ J , {k1
1, k

1
2, k

1
n} ⊂ K1, {k2

1, k
2
2} ⊂ K2

The corresponding circuit inequalities for C32,1 depicted in Table 4.2.26 are of the form:

C32,1 :
∑

j∈J\{j1,j2,j3}

(xi1jπ1(j)) + xi2j3k1n +
∑

j∈J\{j1,j2,j3,j4}

(xi2jπ2(j)) +
∑

j∈J\{j1,j2}

(yi1jπ3(j)) + yi2j2k21

+ yi2j1k22 ≤ 3n− 7

where {i1, i2} ⊆ I , {j1, j2, j3, j4} ⊂ J , {k1
1, k

1
2, k

1
3, k

1
n} ⊂ K1, {k2

1, k
2
2} ⊂ K2, π1 :

J \ {j1, j2, j3} −→ K1 \ {k1
1, k

1
2, k

1
3}, π2 : J \ {j1, j2, j3, j4} −→ K1 \ {k1

1, k
1
2, k

1
3, k

1
n}, such that

π1(j) 6= π2(j), where j ∈ J \ {j1, j2, j3, j4}, π3 : J \ {j1, j2} −→K2 \ {k2
1, k

2
2}

Lifted circuit inequalities:

∑
j∈J\{j1,j2,j3}

k1∈K1\{k11 ,k12 ,k13}

(xi1jk1) + xi2j3k1n +
∑

j∈J\{j1,j2,j3,j4}
k1∈K1\{k11 ,k12 ,k13 ,k1n}

(xi2jk1) +
∑

j∈J\{j1,j2}
k12∈K2\{k21 ,k22}

(yi1jk2) + yi2j1k22

+ yi2j2k21 + yi2j1k21 ≤ 3n− 7

where {i1, i2} ⊆ I , {j1, j2, j3, j4} ⊂ J , {k1
1, k

1
2, k

1
3, k

1
n} ⊂ K1, {k2

1, k
2
2} ⊂ K2

The corresponding circuit inequalities for C42,1 depicted in Table 4.2.27 are of the form:

C42,1 :
∑

j∈J\{j1,j2,j3}

(xi1jπ1(j) + xi2jπ2(j)) +
∑

j∈J\{j1,j2}

(yi1jπ3(j)) + yi2j2k21 + yi2j1k22 ≤ 3n− 7

where {i1, i2} ⊆ I , {j1, j2, j3} ⊂ J , {k1
1, k

1
2, k

1
3} ⊂ K1, {k2

1, k
2
2} ⊂ K2, π1, π2 : J \

{j1, j2, j3} −→K1 \ {k1
1, k

1
2, k

1
3}, such that π1(j) 6= π2(j), π3 : J \ {j1, j2} −→K2 \ {k2

1, k
2
2}

120

Lifted circuit inequalities:

∑
j∈J\{j1,j2,j3}

k1∈K1\{k11 ,k12 ,k13}

(xi1jk1 + xi2jk1) +
∑

j∈J\{j1,j2}
k12∈K2\{k21 ,k22}

(yi1jk2) + yi2j1k22 + yi2j2k21 + yi2j1k21 ≤ 3n− 7

where {i1, i2} ⊆ I , {j1, j2, j3} ⊂ J, {k1
1, k

1
2, k

1
3} ⊂ K1, {k2

1, k
2
2} ⊂ K2

The corresponding circuit inequalities for C52,1 depicted in Table 4.2.28 are of the form:

C52,1 :
∑

j∈J\{j1,j2}

(xi1jπ1(j) + xi2jπ2(j)) +
∑

j∈J\{j1,j2,j3}

(yi1jπ3(j)) + yi2j2k21 + yi2j1k22 ≤ 3(n− 2)

where {i1, i2} ⊆ I , {j1, j2, j3} ⊂ J, {k1
1, k

1
2} ⊂ K1, {k2

1, k
2
2, k

2
3} ⊂ K2, π1, π2 : J \

{j1, j2} −→K1 \ {k1
1, k

1
2}, such that π1(j) 6= π2(j), π3 : J \ {j1, j2, j3} −→K2 \ {k2

1, k
2
2, k

2
3}

Lifted circuit inequalities:

∑
j∈J\{j1,j2}

k1∈K1\{k11 ,k12}

(xi1jk1 + xi2jk1) +
∑

j∈J\{j1,j2,j3}
k12∈K2\{k21 ,k22 ,k23}

(yi1jk2) + yi2j1k22 + yi2j2k21 + yi2j1k21 ≤ 3(n− 2)

where {i1, i2} ⊆ I , {j1, j2, j3} ⊂ J , {k1
1, k

1
2} ⊂ K1, {k2

1, k
2
2, k

2
3} ⊂ K2

The corresponding circuit inequalities for C62,1 depicted in Table 4.2.29 are of the form:

C62,1 :
∑

j∈J\{j1,j2}

(xi1jπ1(j) + xi2jπ2(j)) +
∑

j∈J\{j1,j2}

(yi1jπ3(j)) + yi2j2k21+ ≤ 3(n− 2)

where {i1, i2} ⊆ I , {j1, j2} ⊂ J , {k1
1, k

1
2} ⊂ K1, {k2

1, k
2
2} ⊂ K2, π1, π2 : J \ {j1, j2} −→

K1 \ {k1
1, k

1
2}, such that π1(j) 6= π2(j), π3 : J \ {j1, j2, j3} −→K2 \ {k2

1, k
2
2}

Lifted circuit inequalities:

∑
j∈J\{j1,j2}

k1∈K1\{k11 ,k12}

(xi1jk1 + xi2jk1) +
∑

j∈J\{j1,j2}
k12∈K2\{k21 ,k22}

(yi1jk2) + yi2j2k21 ≤ 3(n− 2)

121

where {i1, i2} ⊆ I , {j1, j2} ⊂ J, {k1
1, k

1
2} ⊂ K1, {k2

1, k
2
2} ⊂ K2

Lifted circuit inequalities of Class 0

Class 0 consists of five types of circuits, C12,0 , C22,0 , C32,0 , C42,0 and C52,0 . The corresponding circuit inequal-
ities for C12,0 are presented in Chapter 5. Here we formulate and lift circuit inequalities for the remaining
subclasses.

The corresponding circuit inequalities for C22,1 depicted in Table 4.2.17 are of the form:

C22,0 : xi1j2k13 +
∑

j∈J\{j1,j2,j3}

(xi1jπ1(j)) + xi2j1k12 + xi2j3k1n +
∑

j∈J\{j1,j2,j3,j4}

(xi2jπ2(j))

+
∑

j∈J\{j1,j2}

(yi1jπ3(j)) + yi2j1k2n +
∑

j∈J\{j1,j2,j3}

(yi2jπ4(j)) ≤ 4n− 9

where {i1, i2} ⊆ I , {j1, j2, j3, j4} ⊂ J , {k1
1, k

1
2, k

1
3, k

1
n} ⊂ K1, {k2

1, k
2
2, k

2
n} ⊂ K2, π1 :

J \ {j1, j2, j3} −→ K1 \ {k1
1, k

1
2, k

1
3}, π2 : J \ {j1, j2, j3, j4} −→ K1 \ {k1

1, k
1
2, k

1
3, k

1
n}, such that

π1(j) 6= π2(j), where j ∈ J \ {j1, j2, j3, j4}, π3 : J \ {j1, j2} −→ K2 \ {k2
1, k

2
2}, π4 : J \

{j1, j2, j3} −→K2 \ {k2
1, k

2
2, k

2
n}, such that π3(j) 6= π4(j), where j ∈ J \ {j1, j2, j3}

The maximally lifted circuit inequality shown below is the only one.

xi1j2k13 +
∑

j∈J\{j1,j2,j3}
k1∈K1\{k11 ,k12 ,k13}

(xi1jk1) + xi2j1k12 + xi2j3k1n +
∑

j∈J\{j1,j2,j3,j4}
k1∈K1\{k11 ,k12 ,k13 ,k1n}

(xi2jk1)

+
∑

j∈J\{j1,j2}
k2∈K2\{k21 ,k22}

(yi1jk2) + yi2j1k2n +
∑

j∈J\{j1,j2,j3}
k2∈K2\{k21 ,k22 ,k2n}

(yi2jk2) ≤ 4n− 9

where {i1, i2} ⊆ I , {j1, j2, j3} ⊂ J , {k1
1, k

1
2, k

1
3, k

1
n} ⊂ K1, {k2

1, k
2
2, k

2
n} ⊂ K2

122

The corresponding circuit inequalities for C32,1 depicted in Table 4.2.18 are of the form:

C32,0 :
∑

j∈J\{j1,j2}

(xi1jπ1(j)) + xi2j1k1n +
∑

j∈J\{j1,j2,j3}

(xi2jπ2(j))

+
∑

j∈J\{j1,j2}

(yi1jπ3(j)) + yi2j1k2n +
∑

j∈J\{j1,j2,j3}

(yi2jπ4(j)) ≤ 4n− 1

where {i1, i2} ⊆ I , {j1, j2, j3} ⊂ J , {k1
1, k

1
2, k

1
n} ⊂ K1, {k2

1, k
2
2, k

2
n} ⊂ K2, π1 : J \

{j1, j2} −→ K1 \ {k1
1, k

1
2}, π2 : J \ {j1, j2, j3} −→ K1 \ {k1

1, k
1
2, k

1
n}, such that π1(j) 6= π2(j),

where j ∈ J \ {j1, j2, j3}, π3 : J \ {j1, j2} −→ K2 \ {k2
1, k

2
2}, π4 : J \ {j1, j2, j3} −→ K2 \

{k2
1, k

2
2, k

2
n}, such that π3(j) 6= π4(j), where j ∈ J \ {j1, j2, j3}

The maximally lifted circuit inequality shown below is the only one.

∑
j∈J\{j1,j2}

k1∈K1\{k11 ,k12}

(xi1jk1) + xi2j1k1n +
∑

j∈J\{j1,j2,j3}
k1∈K1\{k11 ,k12 ,k1n}

(xi2jk1)

+
∑

j∈J\{j1,j2}
k2∈K2\{k21 ,k22}

(yi1jk2) + yi2j1k2n +
∑

j∈J\{j1,j2,j3}
k2∈K2\{k21 ,k22 ,k2n}

(yi2jk2) ≤ 4n− 1

where {i1, i2} ⊆ I , {j1, j2, j3} ⊂ J , {k1
1, k

1
2, k

1
n} ⊂ K1, {k2

1, k
2
2, k

2
n} ⊂ K2

The corresponding circuit inequalities for C42,0 depicted in Table 4.2.19 are of the form:

C42,0 :
∑

j∈J\{j1,j2,j3}

(xi1jπ1(j)) + xi2j3k1n +
∑

j∈J\{j1,j2,j3,j4}

(xi2jπ2(j))

+
∑

j∈J\{j1,j2}

(yi1jπ3(j) + yi2jπ4(j)) ≤ 4n− 11

where {i1, i2} ⊆ I , {j1, j2, j3, j4} ⊂ J , {k1
1, k

1
2, k

1
3, k

1
n} ⊂ K1, {k2

1, k
2
2} ⊂ K2, π1 :

J \ {j1, j2, j3} −→ K1 \ {k1
1, k

1
2, k

1
3}, π2 : J \ {j1, j2, j3, j4} −→ K1 \ {k1

1, k
1
2, k

1
3, k

1
n}, such that

π1(j) 6= π2(j), where j ∈ J \ {j1, j2, j3, j4}, π3, π4 : J \ {j1, j2} −→ K2 \ {k2
1, k

2
2}, such that

π3(j) 6= π4(j), where j ∈ J \ {j1, j2}

123

The maximally lifted circuit inequality shown below is the only one.

∑
j∈J\{j1,j2,j3}

k1∈K1\{k11 ,k12 ,k13}

(xi1jk1) + xi2j3k1n +
∑

j∈J\{j1,j2,j3,j4}
k1∈K1\{k11 ,k12 ,k13 ,k1n}

(xi2jk1)

+
∑

j∈J\{j1,j2}
k12∈K2\{k21 ,k22}

(yi1jk2 + yi2jk2) ≤ 4n− 11

where {i1, i2} ⊆ I , {j1, j2, j3, j4} ⊂ J , {k1
1, k

1
2, k

1
3, k

1
n} ⊂ K1, {k2

1, k
2
2} ⊂ K2

The corresponding circuit inequalities for C52,0 depicted in Table 4.2.20 are of the form:

C52,0 :
∑

j∈J\{j1,j2,j3}

(xi1jπ1(j) + xi2jπ2(j)) +
∑

j∈J\{j1,j2}

(yi1jπ3(j) + yi2jπ4(j)) ≤ 4(n− 3)

where {i1, i2} ⊆ I , {j1, j2, j3} ⊂ J , {k1
1, k

1
2, k

1
3} ⊂ K1, {k2

1, k
2
2} ⊂ K2, π1, π2 : J \

{j1, j2, j3} −→ K1 \ {k1
1, k

1
2, k

1
3}, such that π1(j) 6= π2(j) π3, π4 : J \ {j1, j2} −→ K2 \ {k2

1, k
2
2},

such that π3(j) 6= π4(j), where j ∈ J \ {j1, j2}

The maximally lifted circuit inequality shown below are the only one.

∑
j∈J\{j1,j2,j3}

k1∈K1\{k11 ,k12 ,k13}

(xi1jk1 + xi2jk1) +
∑

j∈J\{j1,j2}
k12∈K2\{k21 ,k22}

(yi1jk2 + yi2jk2) ≤ 4(n− 3)

where {i1, i2} ⊆ I, {j1, j2, j3} ⊂ J , {k1
1, k

1
2, k

1
3} ⊂ K1, {k2

1, k
2
2} ⊂ K2

124

Appendix C: Circuits in C3 \C2

In Section 6.1 we present seven new circuits, members of C3 \C2 and provide a minimality and exclusion
proof for the circuit depicted in Table 6.1.1. Here we provide such proofs for circuit of Tables 6.1.8 to
6.1.13.

Circuit 2 in C3 \C2

j1 j2 j3
1

1

R1−

j1 j2 j3
K2\{1, 2, 3}
K2\{1, 2, 3}
R2−

j1 j2 j3
K3\{1, 2, 3}
K3\{1, 2, 3}
R3−

Table C.1: Circuit in C3 \C2

We first show that this set of 3 rectangles does not contain a member of C1 . This is easy to see since all
three rectangles are individually completable to Latin rectangles. We next need to show that they do not
contain a member of C2 \C1 . For this, notice in Tables C.2 and C.3 that the combinations of completed Latin
rectangles form orthogonal pairs.

j1 j2 j3
k1 k2 1 ...
k3 1 k4 ...

R1

j1 j2 j3
1 2 3 K2\{1, 2, 3}
3 1 2 K2\{1, 2, 3}

R2 or R3

Table C.2: An OLR2

j1 j2 j3
1 2 3 K2\{1, 2, 3}
3 1 2 K2\{1, 2, 3}

R2

j1 j2 j3
1 2 3 K3\{1, 2, 3}
2 3 1 K3\{1, 2, 3}

R3

Table C.3: An OLR2

We now show that R1− ∪ R2− ∪ R3− contains a member of C3 \C2 and therefore satisfies the exclusion

125

property. For this, notice that up to equivalence, R2− and R3− can be filled in two ways as shown in Table
C.4.

j1 j2 j3
1

1

R1−

j1 j2 j3
1 2 3 K2\{1, 2, 3}

1 or 3 K2\{1, 2, 3}
R2−

j1 j2 j3
1 2 3 K3\{1, 2, 3}

1 or 3 K3\{1, 2, 3}
R3−

Table C.4: Completing rectangles of Table C.1

It is shown in Tables C.5 to C.7 that any selection of value in cell (2, j2) of R2− and R3− will lead to a
repetition of a pair of values in R1− ∪R2− ∪R3−.

j1 j2 j3
1

1

R1−

j1 j2 j3
1 2 3 K2\{1, 2, 3}

1 K2\{1, 2, 3}
R2−

j1 j2 j3
1 2 3 K3\{1, 2, 3}

1 K3\{1, 2, 3}
R3−

Table C.5: Completing rectangles of Table C.1

j1 j2 j3
1

1

R1−

j1 j2 j3
1 2 3 K2\{1, 2, 3}

1 K2\{1, 2, 3}
R2−

j1 j2 j3
1 2 3 K3\{1, 2, 3}

3 K3\{1, 2, 3}
R3−

Table C.6: Completing rectangles of Table C.1

j1 j2 j3
1

1

R1−

j1 j2 j3
1 2 3 K2\{1, 2, 3}

3 K2\{1, 2, 3}
R2−

j1 j2 j3
1 2 3 K3\{1, 2, 3}

3 K3\{1, 2, 3}
R3−

Table C.7: Completing rectangles of Table C.1

It now remains to establish that R1− ∪R2− ∪R3− is minimal. For this it suffices to show that if any cell is
emptied then the triple can be completed to a set of 3 MOLR2 i.e. it becomes a basis of the associated IS.
We give an example in Table C.8 by emptying cell (1, j3) and a similar example can be shown if any other
cell of Table C.7 is emptied.

j1 j2 j3
k1 k2 k3 ...
k4 1 k5 ...

R1

j1 j2 j3
1 2 3 K2\{1, 2, 3}
3 1 2 K2\{1, 2, 3}

R2

j1 j2 j3
1 2 3 K3\{1, 2, 3}
2 3 1 K3\{1, 2, 3}

R3

Table C.8: A set of 3 MOLR2

126

Circuit 3 in C3 \C2

j1 j2 j3
1

1

R1−

j1 j2 j3
K2\{1, 2, 3}
K2\{1, 2, 3}
R2−

j1 j2 j3 jn
K3\{1, 2, 3}

K3\{1, 2, 3}
R3−

Table C.9: Circuit in C3 \C2

We first show that this set of 3 rectangles does not contain a member of C1 . This is easy to see since all
three rectangles are individually completable to Latin rectangles. We next need to show that they do not
contain a member of C2 \C1 . For this, notice in Tables C.10 to C.12 that the combinations of completed
Latin rectangles form orthogonal pairs.

j1 j2 j3
k1 1 k2 ...
1 k3 k4 ...

R1−

j1 j2 j3
1 2 3 K2\{1, 2, 3}
3 1 2 K2\{1, 2, 3}

R2

Table C.10: An OLR2

j1 j2 j3
k1 1 k2 ...
1 k3 k4 ...

R1−

j1 j2 j3 jn
1 2 K3\{1, 2, 3} 3

3 1 2 K3\{1, 2, 3}
R3−

Table C.11: An OLR2

j1 j2 j3
1 2 3 K2\{1, 2, 3}
2 3 1 K2\{1, 2, 3}

R2

j1 j2 j3 jn
1 2 K3\{1, 2, 3} 3

3 1 2 K3\{1, 2, 3}
R3−

Table C.12: An OLR2

We now show that R1− ∪ R2− ∪ R3− contains a member of C3 \C2 and therefore satisfies the exclusion
property. For this, notice that up to equivalence, R2− can be filled in two ways as shown in Table C.13.

j1 j2 j3
1

1

R1−

j1 j2 j3
1 2 3 K2\{1, 2, 3}

1 or 3 K2\{1, 2, 3}
R2−

j1 j2 j3 jn
K3\{1, 2, 3}

K3\{1, 2, 3}
R3−

Table C.13: Completing rectangles of Table C.9

127

It is shown in Tables C.14 to C.16 that any selection of value in cell (2, j2) of R2− will lead to a repetition
of a pair of values in R1− ∪R2− ∪R3−.

j1 j2 j3
1

1

R1−

j1 j2 j3
1 2 3 K2\{1, 2, 3}
2 3 1 K2\{1, 2, 3}

R2

j1 j2 j3 jn
1 2 K3\{1, 2, 3} 3

2 3 1 K3\{1, 2, 3}
R3

Table C.14: Completing rectangles of Table C.9

j1 j2 j3
1

1

R1−

j1 j2 j3
1 2 3 K2\{1, 2, 3}
3 1 2 K2\{1, 2, 3}

R2−

j1 j2 j3 jn
1 2 K3\{1, 2, 3} 3

2 3 1 K3\{1, 2, 3}
R3

Table C.15: Completing rectangles of Table C.9

j1 j2 j3
1

1

R1−

j1 j2 j3
1 2 3 K2\{1, 2, 3}
3 1 2 K2\{1, 2, 3}

R2−

j1 j2 j3 jn
1 2 K3\{1, 2, 3} 3

3 1 2 K3\{1, 2, 3}
R3−

Table C.16: Completing rectangles of Table C.9

It now remains to establish that R1− ∪R2− ∪R3− is minimal. For this it suffices to show that if any cell is
emptied then the triple can be completed to a set of 3 MOLR2 i.e. it becomes a basis of the associated IS.
We give an example in Table C.17 by emptying cell (1, j2) of R1− and a similar example can be shown if
any other cell of Table C.9 is emptied.

j1 j2 j3
k1 k2 k3 ...
1 k4 k5 ...

R1

j1 j2 j3
1 2 3 K2\{1, 2, 3}
3 1 2 K2\{1, 2, 3}

R2

j1 j2 j3 jn
1 2 K3\{1, 2, 3} 3

2 3 1 K3\{1, 2, 3}
R3

Table C.17: A set of 3 MOLR2

Circuit 4 in C3 \C2

j1 j2 j3
1

1

R1−

j1 j2 j3 jn
K2\{1, 2, 3}

K2\{1, 2, 3}
R2−

j1 j2 j3 jn
K3\{1, 2, 3}

K3\{1, 2, 3}
R3−

Table C.18: Circuit in C3 \C2

128

We first show that this set of 3 rectangles does not contain a member of C1 . This is easy to see since all three
rectangles are individually completable to Latin rectangles. We next need to show that they do not contain
a member of C2 \C1 . Notice in Tables C.19 and C.20 that the combinations of completed Latin rectangles
form orthogonal pairs.

j1 j2 j3
k1 1 k2 ...
1 k3 k4 ...

R1

j1 j2 j3 jn
1 2 K3\{1, 2, 3} 3

3 1 2 K3\{1, 2, 3}
R2 or R1

Table C.19: An OLR2

j1 j2 j3 jn
1 2 K3\{1, 2, 3} 3

3 1 2 K3\{1, 2, 3}
R2

j1 j2 j3 jn
1 2 K3\{1, 2, 3} 3

2 3 1 K3\{1, 2, 3}
R3

Table C.20: An OLR2

We now show that R1− ∪ R2− ∪ R3− contains a member of C3 \C2 and therefore satisfies the exclusion
property. For this, notice that up to equivalence, R2− and R3− can be filled in two ways as shown in Table
C.21.

j1 j2 j3
1

1

R1−

j1 j2 j3 jn
1 2 K2\{1, 2, 3} 3

1 or 3 K2\{1, 2, 3}
R2−

j1 j2 j3 jn
1 2 K2\{1, 2, 3} 3

1 or 3 K3\{1, 2, 3}
R3−

Table C.21: Completing rectangles of Table C.18

It is shown in Tables C.22 to C.24 that any selection of value in cell (2, j2) of R2− and R3− will lead to at
least one repetition of a pair of values in R1− ∪R2− ∪R3−.

j1 j2 j3
1

1

R1−

j1 j2 j3 jn
1 2 K2\{1, 2, 3} 3

2 3 1 K2\{1, 2, 3}
R2−

j1 j2 j3 jn
1 2 K3\{1, 2, 3} 3

2 3 1 K3\{1, 2, 3}
R3−

Table C.22: Completing rectangles of Table C.18

j1 j2 j3
1

1

R1−

j1 j2 j3 jn
1 2 K2\{1, 2, 3} 3

2 3 1 K2\{1, 2, 3}
R2−

j1 j2 j3 jn
1 2 K3\{1, 2, 3} 3

3 1 2 K3\{1, 2, 3}
R3−

Table C.23: Completing rectangles of Table C.18

129

j1 j2 j3
1

1

R1−

j1 j2 j3 jn
1 2 K2\{1, 2, 3} 3

3 1 2 K2\{1, 2, 3}
R2−

j1 j2 j3 jn
1 2 K3\{1, 2, 3} 3

3 1 2 K3\{1, 2, 3}
R3−

Table C.24: Completing rectangles of Table C.18

It now remains to establish that R1− ∪R2− ∪R3− is minimal. For this it suffices to show that if any cell is
emptied then the triple can be completed to a set of 3 MOLR2 i.e. it becomes a basis of the associated IS.
We give an example in Table C.25 by emptying cell (1, j2) of R1− and a similar example can be shown if
any other cell of Table C.18 is emptied.

j1 j2 j3
k1 k2 k3 ...
1 k4 k5 ...

R1

j1 j2 j3 jn
1 2 K2\{1, 2, 3} 3

2 3 1 K2\{1, 2, 3}
R2

j1 j2 j3 jn
1 2 K3\{1, 2, 3} 3

3 1 2 K3\{1, 2, 3}
R3

Table C.25: A set of 3 MOLR2

Circuit 5 in C3 \C2

j1 j2 j3
1

1

R1−

j1 j2 j3
1

1

R2−

j1 j2 j3
K3\{1, 2, 3}
K3\{1, 2, 3}
R3−

Table C.26: Circuit in C3 \C2

We first show that this set of 3 rectangles does not contain a member of C1 . This is easy to see since all three
rectangles are individually completable to Latin rectangles. We next need to show that they do not contain a
member of C2 \C1 . Notice in Tables C.27 to C.29 that the combinations of completed Latin rectangles form
orthogonal pairs.

j1 j2 j3
k1 1 k2 ...
1 k3 k4 ...

R1

j1 j2 j3
1 k5 k6 ...
k7 1 k8 ..

R2

Table C.27: An OLR2

130

j1 j2 j3
k1 1 k2 ...
1 k3 k4 ...

R1

j1 j2 j3
1 2 3 K3\{1, 2, 3}
3 1 2 K3\{1, 2, 3}

R3

Table C.28: An OLR2

j1 j2 j3
1 k5 k6 ...
k7 1 k8 ..

R2

j1 j2 j3
1 2 3 K3\{1, 2, 3}
2 3 1 K3\{1, 2, 3}

R3

Table C.29: An OLR2

We now show that R1− ∪ R2− ∪ R3− contains a member of C3 \C2 and therefore satisfies the exclusion
property. For this, notice that up to equivalence, R3− can be filled in two ways as shown in Table C.30.

j1 j2 j3
1

1

R1−

j1 j2 j3
1

1

R2−

j1 j2 j3
1 2 3 K3\{1, 2, 3}

1 or 3 K3\{1, 2, 3}
R3−

Table C.30: Completing rectangles of Table C.26

It is shown in Tables C.31 and C.32 that any selection of value in cell (2, j2) of R3− will lead to a repetition
of a pair of values in R1− ∪R2− ∪R3−.

j1 j2 j3
1

1

R1−

j1 j2 j3
1

1

R2−

j1 j2 j3
1 2 3 K3\{1, 2, 3}
2 3 1 K3\{1, 2, 3}

R3

Table C.31: Completing rectangles of Table C.26

j1 j2 j3
1

1

R1−

j1 j2 j3
1

1

R2−

j1 j2 j3
1 2 3 K3\{1, 2, 3}
3 1 2 K3\{1, 2, 3}

R3−

Table C.32: Completing rectangles of Table C.26

It now remains to establish that R1− ∪R2− ∪R3− is minimal. For this it suffices to show that if any cell is
emptied then the triple can be completed to a set of 3 MOLR2 i.e. it becomes a basis of the associated IS.
We give an example in Table C.33 by emptying cell (1, j2) and a similar example can be shown if any other
cell of Table C.26 is emptied.

131

j1 j2 j3
k1 k2 k3 ...
1 k4 k5 ...

R1

j1 j2 j3
1 k6 k7 ...
k8 1 k9 ...

R2

j1 j2 j3
1 2 3 K3\{1, 2, 3}
2 3 1 K3\{1, 2, 3}

R3

Table C.33: A set of 3 MOLR2

Circuit 6 in C3 \C2

j1 j2 j3
1

1

R1−

j1 j2 j3
1

1

R2−

j1 j2 j3
K3\{1, 2, 3}

1

R3−

Table C.34: Circuit in C3 \C2

This case is very similar to the previous one. The only difference now is that cell (1, j2) of R3− can take
two possible values: 2 or 3. The remaining elements of the proof are the same.

Circuit 7 in C3 \C2

j1 j2 j3 j4
K1\{1, 2, 3, 4}
K1\{1, 2, 3, 4}
R1−

j1 j2 j3
K2\{1, 2, 3}
K2\{1, 2, 3}
R2−

j1 j2 j3
K3\{1, 2, 3}
K3\{1, 2, 3}
R3−

Table C.35: Circuit in C3 \C2

We first show that this set of 3 rectangles does not contain a member of C1 . This is easy to see since all three
rectangles are individually completable to Latin rectangles. We next need to show that they do not contain
a member of C2 \C1 . Notice in Tables C.36 and C.37 that the combinations of completed Latin rectangles
form orthogonal pairs.

j1 j2 j3 j4
1 2 3 4 K1\{1, 2, 3, 4}
2 3 4 1 K1\{1, 2, 3, 4}

R1

j1 j2 j3
1 2 3 K2\{1, 2, 3}
3 1 2 K2\{1, 2, 3}

R1 or R3

Table C.36: An OLR2

132

j1 j2 j3
1 2 3 K2\{1, 2, 3}
3 2 1 K2\{1, 2, 3}

R2

j1 j2 j3
1 2 3 K3\{1, 2, 3}
2 3 1 K3\{1, 2, 3}

R3

Table C.37: An OLR2

We now show that R1− ∪ R2− ∪ R3− contains a member of C3 \C2 and therefore satisfies the exclusion
property. For this, notice that up to equivalence, R2− and R3− can be filled in two ways as shown in Table
C.38.

j1 j2 j3 j4
1 2 3 4 K1\{1, 2, 3, 4}
2 3 4 1 K1\{1, 2, 3, 4}

R1

j1 j2 j3
1 2 3 K2\{1, 2, 3}

1 or 3 K2\{1, 2, 3}
R2−

j1 j2 j3
1 2 3 K3\{1, 2, 3}

1 or 3 K3\{1, 2, 3}
R3−

Table C.38: An OLR2

It is easy to see that a pair will always be repeated either in cells (1, j1), (2, j2) or (1, j3), (2, j2). Similarly
to the previous cases, it can be shown that Table C.35 is completable to a set of 3 MOLR2 if any of the cells
are emptied.

133

Bibliography

[1] M. H. Alsuwaiyel. Algorithms: Design Techniques and Analysis. World Scientific, Singapore, 1999.

[2] G. Appa, D. Magos, and I. Mourtos. A branch & cut algorithm for a four-index assignment problem.
Journal of Operational Research Society, 55:298–307, 2004.

[3] G. Appa, D. Magos, and I. Mourtos. An lp-based proof for the non-existence of a pair of orthogonal
latin squares of order 6. Operations Research Letters, 32:336–344, 2004.

[4] G. Appa, D. Magos, and I. Mourtos. The wheels of the orthogonal latin squares polytope: Classification
and valid inequalities. Journal of Combinatorial Optimization, 10:365–389, 2005.

[5] G. Appa, D. Magos, and I. Mourtos. Searching for mutually orthogonal latin squares via integer and
constraint programming. European Journal of Operational Research, 173:519–530, 2006.

[6] G. Appa, D. Magos, I. Mourtos, and J. C. M. Janssen. On the orthogonal latin squares polytope.
Discrete Mathematics, 306(2):171–187, 2006.

[7] G. Appa, D. Magos, I. Mourtos, and L. Pitsoulis. Handbook on Modeling for Discrete Optimization,
International Series in Operations Research and Management Science, chapter Formulations of the
mutually orthogonal Latin squares problem. Springer, Berlin, 2006.

[8] K. R. Apt. Principles of Constraint Programming. Cambridge University Press, Cambridge, UK,
2003.

[9] J. Beasley and B. Cao. A dynamic programming based algorithm for the crew scheduling problem.
Computers and Operations Research, 53:567–582, 1998.

[10] N. Beldiceanu and E. Contejean. Introducing global constraints in chip. Journal of Mathematical and
Computer Modelling, 20:97–123, 1994.

[11] K. P. Bogart and J. Q. Longyear. Counting 3 by n latin rectangles. Proceedings of the American
Mathematical Society, 54:463–467, 1976.

[12] J. A. Bondi and U. S. R. Murty. Graph Theory. Gruaduate Texts in Mathematics. Springer, 2008.

[13] R. Burkard, M. Dell’Amico, and S. Martello. Assignment Problems. SIAM, 2009.

134

[14] A. Caprara, P. Toth, D. Vigo, and M. Fischetti. Modeling and solving the crew rostering problem.
Operations Research, 46:820–830, 1998.

[15] P. Carraresi and G. Gallo. A multi-level bottleneck assignment approach to the bus drivers rostering
problem. European Journal of Operational Research, 16:163–173, 1984.

[16] B. M. W. Cheng, K. M. F. Choi, J. H. M. Lee, and J. C. K. Wu. Increasing constraint propagation by
redundant modeling: an experience report. CONSTRAINTS, 4:167–192, 1999.

[17] E. Coffman and M. Yannakakis. Permuting elements within columns of a matrix in order to minimize
maximum row sum. Mathematics of Operations Research, 9:384–390, 1984.

[18] C. J. Colbourn. The complexity of completing partial latin squares. Discrete Applied Mathematics,
8:25–30, 1984.

[19] G. Dantzig. Linear programming and extensions. Princeton University Press, 1963.

[20] D. de Werra. Some comments on a note about time-tabling. Information Systems and Operational
Research, 16:90–92, 1978.

[21] E. Delisle. The search for a triple of mutually orthogonal latin squares of order ten: Looking through
pairs of dimension thirty-five and less, Msc Thesis, University of Victoria, 2010.

[22] J. Dénes and A. D. Keedwell. Latin Squares and their applications. Academic Press, North Holland,
1975.

[23] J. Dénes and A. D. Keedwell. Latin Squares: New developments in Theory and Applications. Annals
of Discrete Mathematics, 1991.

[24] R. Diestel. Graph Theory. Gruaduate Texts in Mathematics. Springer, 2000.

[25] I. B. Djordjevic and B. Vasic. Combinatorial constructions of optical orthogonal codes for ocdma
systems. IEEE Communications Letters, 8(6):391–393, 2004.

[26] T. Dokka, A. Kouvela, and F. C. R. Spieksma. Approximating the multi-level bottleneck assignment
problem. Operations Research Letters, 40:282–286, 2012.

[27] S. T. Dougherty. A coding theoretic solution to the 36 officer problem. Designs, Codes and Cryptog-
raphy, 4:123–128, 1994.

[28] P. G. Doyle. The number of latin rectangles. GNU FDL.

[29] R. Euler. On the completability of incomplete latin squares. European Journal of Combinatorics,
31(2):535–552, 2010.

[30] R. Euler, R. E. Burkard, and R. Grommes. On latin squares and the facial structure of related polytopes.
Discrete Mathematics, pages 155–181, 1986.

135

[31] R. Euler and P. Oleksik. When is an incomplete 3xn latin rectangle completable? Discussiones
Mathematicae Graph Theory, 33:57–69, 2013.

[32] R. A. Fisher and F. Yates. The 6x6 latin squares. Proceedings of the Cambridge Philosophical Society,
30:492–507, 1934.

[33] M. Garey and D. Johnson. Computers and intractability, a guide to the theory of NP-completeness.
W.H. Freeman and Company, New York, 1979.

[34] I. M. Gessel. Counting three-line latin rectangles. Combinatoire Énumérative, Lecture Notes in Math-
ematics, 1234:106–111, 1986.

[35] I. M. Gessel. Counting latin rectangles. Bulletin of the American Mathematical Society, 16:79–82,
1987.

[36] M. Hall. An existence theorem for latin squares. Bulletin of the American Mathematical Society,
51:387–388, 1945.

[37] P. Hall. On representatives of subsets. Journal of the London Mathematical Society, 10:26–30, 1935.

[38] B. Hayes-Roth and R. Korf, editors. Proceedings of the National Conference on Artificial Intelligence,
volume AAAI94, Seattle, Washington, 1994.

[39] J. N. Hooker. Ten Years of CPAIOR, chapter Hybrid Modelling. Springer, (forthcoming).

[40] L. Howard. Nets of Order 4m + 2: Linear Dependence and Dimensions of Codes. PhD thesis,
University of Victoria, 2009.

[41] W.-L. Hsu. Approximation algorithms for the assembly line balancing crew scheduling problem. Math-
ematics of Operations Research, 9:376–383, 1984.

[42] D. S. Johnson, M. Yannakakis, and C. H. Papadimitriou. On generating all maximal independent sets.
Information Processing Letters, 27:119–216, 1988.

[43] A. D. Keedwell. Concerning the existence of triples of pairwise almost orthogonal 10x10 latin squares.
Ars Combinatoria, 9:3–10, 1980.

[44] L. Khachiyan, E. Boros, K. Elbassioni, and V. Gurvich. A global parallel algorithm for the hypergraph
transversal problem. Inform. Information Processing Letters, 101:148–155, 2007.

[45] Y. Kou, S. Lin, and M. Fossorier. Low-density parity-check codes based on finite geometries: A
rediscovery and new results. IEEE Transactions on Information Theory, 47:2711– 2736, 2001.

[46] E. Kurtas, B. Vasic, and A. Kuznetsov. Wiley Encyclopedia of Telecommunications, chapter Design and
Analysis of Low-Density Parity-Check Codes for Applications to Perpendicular Recording Channels.
J. Wiley & Sons, New York, 2003.

136

[47] E. L. Lawler, J. K. Lenstra, and A. H. G. R. Kan. Generating all maximal independent sets: Np-
hardness and polynomial-time algorithms. SIAM Journal on Computing, 9:558–565, 1980.

[48] C. F. Laywine and G. L. Mullen. Discrete Mathematics using Latin Squares. Wiley, New York, 1998.

[49] H. B. Mann. On orthogonal latin squares. Bulletin of the American Mathematical Society, 50(249-257),
1944.

[50] B. D. McKay, A. Meynert, and W. Myrvold. Small latin squares, quasigroups and loops. Journal of
Combinatorial Designs, 15:98–119, 2007.

[51] B. D. McKay and I. M. Wanless. On the number of latin squares. Annals of Combinatorics, 9:335–326,
2005.

[52] M. W. Padberg. On the facial structure of set packing polyhedra. Mathematical Programming, 5:199–
215, 1973.

[53] E. T. Parker. Computer investigation of orthogonal latin squares of order ten. Proceedings of Symposia
in Pure Mathematics, 15:73–81, 1963.

[54] P. Popovski and H. Yomo. The antipackets can increase the achievable throughput of a wireless multi-
hop network. IEEE International Conference on Communications, 2006.

[55] J. Riordan. Three-line latin rectangles. American Mathematics Monthly, 51:450–452, 1944.

[56] F. Rossi, P. Beek, and T. Walsh. Handbook of Constraint Programming. Elsevier, The Netherlands.,
2006.

[57] H. J. Ryser. Combinatorial Mathematics. Mathematical Association of America, Washington, D. C.,
1963.

[58] J. A. Salehi. Code division multiple-access techniques in optical fiber networks. i. fundamental prin-
ciples. IEEE Transactions on Communications, 37:824–833, 1989.

[59] B. Smith. Principles and Practice of Constraint Programming, volume 2239 of Lecture Notes in
Computer Science, chapter Dual Models of Permutation Problems, pages 615–619. 2001.

[60] D. R. Stinson. A short proof of the non-existence of a pair of orthogonal latin squares of order 6.
Journal of Combinatorial Theory, series A, 36:373–376, 1984.

[61] F. Stork and M. Uetz. On the generation of circuits and minimal forbiden sets. Mathematical Pro-
gramming, 102:185–203, 2005.

[62] G. Tarry. Le problème des 36 officiers. C. R. Assoc. Franc. Av. Sci., 29:170–203, 1900.

[63] B. Vasic, E. M. Kurtas, and A. V. Kuznetsov. Ldpc codes based on mutually orthogonal latin rectangles
and their application in ldpc codes based on mutually orthogonal latin rectangles and their application
in perpendicular magnetic recording. IEEE Transactions on Magnetics, 38(5):2346–2348, 2002.

137

[64] T. M. Vijayvaradharaj and B. S. Rajan. Wireless network coding for mimo two-way relaying using
latin rectangles. Preprint, arXiv:1201.4477, 2012.

[65] H. Williams and J. Wilson. Connections between integer linear programming and constraint logic pro-
gramming - an overview and introduction to the cluster of articles. INFORMS Journal on Computing,
10:261–264, 1998.

[66] D. P. Williamson and D. B. Shmoys. The Design of Approximation Algorithms. Cambridge University
Press, 2010.

[67] L. A. Wolsey. Integer Programming. J. Wiley & Sons, New York, 1998.

[68] K. Yamamoto. Euler squares and incomplete euler squares of even degrees. Mem. Fac. Sci. Kyushu
Univ, Series A 8, pages 161–180, 1954.

[69] S. Zhang, S. C. Liew, and P. P. Lam. Hot topic: Physical-layer network coding. The Annual Interna-
tional Conference on Mobile Computing and Networking, pages 358–365, 2006.

138

