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Abstract
The Simpson’s Paradox is the phenomenon that appears in some datasets, where
subgroups with a common trend (say, all negative trend) show the reverse trend when
they are aggregated (say, positive trend). Even if this issue has an elementary
mathematical explanation, it has a deep statistical significance. In this paper, we discuss
basic examples in arithmetic, geometry, linear algebra, statistics, game theory, gender
bias in university admission and election polls, where we describe the appearance or
absence of the Simpson’s Paradox. In the final part, we present our results concerning
the occurrence of the Simpson’s Paradox in Quantum Mechanics with focus on the
Quantum Harmonic Oscillator and the Nonlinear Schrödinger Equation. We discuss
how likely it is to incur in the Simpson’s Paradox and give some concrete numerical
examples. We conclude with some final comments and possible future directions.
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1 Introduction
In 1973, the Associate Dean of the graduate school of the University of California Berkeley
worried that the university might be sued for sex bias in the admission process (Bickel
et al. 1975). In fact, looking at the admission rates broken down by gender (male or
female), we have the following contingency table:

Applicants Admitted Deny
Female 1494 2827
Male 3738 4704

The Chi-square statistics for this test has one degrees of freedom with value χ2 =
111.25 and corresponding p-value basically= 0, while the Chi-square statistics with Yates
continuity correction for this test has a value of χ2 = 110.849 and corresponding p-value
again approximately 0 (precision order 10−26). A naïve conclusion would be that men
were much more successful in admissions than women, which would clear be understood
as a bad episode of gender bias. At that point, Prof. P.J.Bickel from the Department of
Statistics of Berkeley, was asked to analyze the data.
In a famous paper (Bickel et al. 1975) with E.A.Hammel and J.W.O’Connell, P.J.Bickel

studied the problem in detail. Graduate departments have independent admissions pro-
cedures and so they are autonomous for taking decisions in the graduate admission
process. A further division in subgroups does not find a real counterpart in the structure
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of Berkeley’s system. The analysis of the data, performed department by department,
produces the following table:

Dpt Male Male Female Female
applications admissions applications admissions

A 825 62% 108 82%
B 560 63% 25 68%
C 325 37% 593 34%
D 417 33% 375 35%
E 191 28% 393 24%
F 191 28% 393 24%

As Bickel, Hammel and O’Connell say in (Bickel et al. 1975), “The proportion of
women applicants tends to be high in departments that are hard to get into and low
in those that are easy to get into” and it is even more evident in departments with
a large number of applicants. The examination of the aggregate data was showing a
misleading pattern of bias against female applicants. However, if the data are properly
pooled, and taking into consideration the tendency of women to apply to depart-
ments that are more competitive for either genders, there is a small but statistically
significant bias in favour of women. The authors concluded that “Measuring bias is
harder than is usually assumed, and the evidence is sometimes contrary to expecta-
tion” (Bickel et al. 1975). This episode is one of the most celebrated real examples of
what is called Simpson’s Paradox: the trend of aggregated data might be reversed in the
pooled data.
Note that the Simpson’s Paradox is not confined to the discrete case, but it can appear

also in the continuous case. Even if less famous, we want tomention the following example
which has been discussed on the New York Times recently (Norris 2013). Still today, the
Simpson’s Paradox can be a source of confusion and misinterpretation of the data.
An article of the journalist F.Norris (2013) raised the concerns of readers, because of the

following apparently paradoxical result. F.Norris analyzed the variation of the US wage
over time. Accordingly to the statistics, from 2000 to 2013, the median US wage (adjusted
for inflation) has risen of about 1%, if themedian is computed on the full sample. However,
if the same sample is broken down into four educational subgroups, the median wage
(adjusted for inflation) of each subgroup decreased. The percentages of variation for each
subgroup are summarized in the following table:

Group Median change
Total +0.9%
High School Dropouts –7.9%
High School Graduates, No college –4.7%
Some College –7.6%
Bachelor’s or Higher –1.2%

Here, the reason of the reversal is that the relative sizes of the groups changed greatly
over the period considered. In particular, there were more well-educated and so higher
wage people in 2013 than in 2000.
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In both the cases described above (discrete and continuous, respectively), the variables
involved in the paradox are confounded by the presence of another variable (department
and level of education, respectively).
The problem of the occurrence of this paradox was considered already in the 19th cen-

tury. The first author which treated this topic has been Pearson (1899), followed by the
contributions of Yule (Yule 1903; Yule and Kendall 1937) and Simpson (1951).
In his paper (Simpson 1951), Simpson considered a 2 × 2 × 2 contingency table with

attributes A, B, and C and illustrated the paradox using a heuristic example of clinic
patients, divided into a Treatment Group and in a No-Treatment group. The data were
examined by gender and showed that both males and females responded favorably to
the treatment, with respect to who did not receive the treatment. On the other side, the
aggregated data showed an opposite behaviour, since there seemed to not be anymore any
association between the use of the treatment and the survival time (see (Goltz and Smith
2010) for more details).
The name “Simpson’s Paradox” was first used by Blyth (1972). Some authors prefer to

not give full credit to Simpson, since he did not discover this phenomenon and to call it
Amalgamation Paradox or Yule-Simpson’s Effect instead.
In this paper, we outline that the Simpson’s Paradox is not confined to statistical prob-

lems, but it is ubiquitous in science. We give a series of formal definitions in Section 2.
In Section 3, we show the ubiquity of the Simpson’s Paradox in several areas of techni-
cal and social sciences and we also give some examples of its occurrence. In Section 4,
we outline our new result on the occurrence of the paradox in the context of Quantum
Mechanics, with particular attention posed to the Quantum Harmonic Oscillator and to
the Nonlinear Schrödinger Equation. We conclude with a brief discussion on how likely
is the Simpson’s Paradox in Quantum Mechanics (Section 5), with a numerical example
(Section 6) and some final comments (Section 7).
Very few papers in the literature treat the Simpson’s Paradox related to problems

in Quantum Mechanics. At our knowledge, the only ones avaialable are the fast track
communication by Paris (2012), an experimental result by Cialdi and Paris (2015), the
preprint by Shi (2012) and a recent paper by the author (Selvitella 2017), which is the first
paper that connects the Simpson’s Paradox to Partial Differential Equations and Infinite
Dimensional Dynamical Systems.

2 Measures of amalgamation
In this section, we give the definition and some popular examples of Measures of
Amalgamation. For more details, we refer to (Good and Mittal 1987).

2.1 Definitions

First, we define the Process of Amalgamation of contingency tables ti, i = 1, . . . , n.

Definition 1 Let ti = [ai, bi; ci, di], i = 1, . . . , l be 2× 2 contingency tables correspond-
ing to the i-th of l mutually exclusive sub-populations, with aibicidi �= 0. Let Ni = ai+bi+
ci + di denote the sample size for the i-th sub-population and let N = N1 + · · · +Nl be the
total sample size of the population. If the n tables are added together, the process is called
Amalgamation. We obtain a table T :=[A,B;C,D] :=

[
�l

i=1ai,�
l
i=1bi,�

l
i=1ci,�

l
i=1di

]
,

where A + B + C + D = N.
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After having amalgamated a group of contingency tables, we can define theMeasure of
Amalgamation.

Definition 2 A function α : Mp×p → R is calledMeasure of Amalgamation.

Given the definition ofMeasure of Amalgamation, we can formally define the Simpson’s
Paradox.

Definition 3 We say that the Simpson’s Paradox occurs for the Measure of
Amalgamation α if

max
i

α(ti) < α(T)ormin
i

α(ti) > α(T),

with α defined on the set of contingency tables and real valued, as in Definition 2.

We fix some terminology that we are going to use in the list of examples below in
the context of contingency tables (see (Good and Mittal 1987)). Sampling Procedure I,
called also Tetranomial Sampling, is performed when we sample at random from a popu-
lation. Sampling Procedure IIR (respectively IIC), called also Product-Binomial Sampling,
is performed when the row totals (respectively columns) is fixed and we sample until this
marginal totals are reached. Sampling Procedure III controls both row and column totals.

2.2 Examples

Consider the contingency table t = [a, b; c, d], given by

t =
S not S

T a b
not T c d

The following are popular examples of Measures of Amalgamation (see (Good and
Mittal 1987)).

• The Pierce’s measure:

πPearce(t) = a
a + b

− c
c + d

.

Under Tetranomial Sampling and Product-Binomial Sampling with row fixed, this
measure becomes

πPearce = P(S|T) − P(S|T̄).

It compares the probability of an effect S under treatment and the probability of an
effect S without any treatment (row categories are considered to be the “causes” of
the column categories).

• The Yule’s measure is given by the formula:

πYule(t) = ad − bc
N2 .

It compares a/N with respect to its expected value under independence of rows and
columns. In fact:

πYule(t) = ad − bc
N2 = a

N
− (a + b)(a + c)

N2 = P(S ∩ T) − P(S)P(T),

since N = a + b + c + d.
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• The Odds Ratio is probably the most popular one:

πOdds(t) = ad
bc

.

The Odds Ratio is the ratio between the probability of success and the probability of
failure, given a treatment or a no-treatment. In fact

πOdds(t) =
a
b
c
d

=
a/(a+b)
b/(a+b)
c/(c+d)
d/(c+d)

= P(S|T)/P(S̄|T)

P(S|T̄)/P(S̄|T̄)
.

• The Weight of Evidence is given by:

πWeightC (t) = log
a(b + d)

b(a + c)
.

Under Tetranomial Sampling or column fixed Product-Binomial Sampling, the
Weight of Evidence represents the logarithm of the Bayes factor in favour of S,
knowing that the treatment was T, namely:

πWeightC = log
P(T |S)
P(T |S̄) .

• The Causal Propensity:

πCausal(t) = log
d(a + b)
b(c + d)

,

under Tetranomial Sampling or Product-Binomial Sampling with row fixed,
represents the propensity of T causing S rather than S̄:

πCausal(t) = log
P(S̄|T̄)

P(S̄|T)
.

3 The Simpson’s Paradox appears not just in statistics
In this section, we give very basic examples of the appearance of the Simpson’s Paradox
in fields different from statistics. In particular, we give examples in arithmetic, geometry,
statistics, linear algebra, game theory and election polls.

• Arithmetic: There exist quadruplets a1, b1, c1, d1 > 0 and a2, b2, c2, d2 > 0 such that
a1/b1 > c1/d1 and a2/b2 > c2/d2 but (a1 + a2)/(b1 + b2) < (c1 + c2)/(d1 + d2).
Example: (a1, b1, c1, d1) = (2, 8, 1, 5) and (a2, b2, c2, d2) = (4, 5, 6, 8). In this case, the
Measure of Amalgamation is given by:

π(t) = a
b

− c
d

= ad − bc
bd

.

If we consider the contingency tables

t1 = [a1, b1; c1, d1]

and

t2 = [a2, b2; c2, d2]

and the amalgamated one:

T = [a1 + a2, b1 + b2; c1 + c2, d1 + d2] ,
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we have that:

max
i=1,2

π(ai) < 0 < π(T)

and so we have the Simpson’s Paradox, accordingly to Definition 3.
• Geometry: Even if a vector v1 has a smaller slope than another vector w1, and a

vector v2 has a smaller slope than a vector w2, the sum of the two vectors v1 + v2 can
have a larger slope than the sum of the two vectors w1 + w2. Example: take
w1 = (a1, b1), v1 = (c1, d1), w2 = (a2, b2), v2 = (c2, d2). The same Measure of
Amalgamation of the previous example makes the game here as well.

• Statistics: A positive/negative trend of two separate subgroups might reverse when
the subgroups are combined in one single group. This happens in both the discrete
and continuous case. We gave examples of this in the introduction, with the Berkeley
Gender Bias (discrete) case and the “time vs US wage” case (continuous).

• Linear algebra There exists A1,A2 ∈ Matn×n such that

det(A1) > 0, det(A2) > 0, but det(A1 + A2) < 0.

Consider for example A1 = t1 and A2 = t2, as above.
• Game theory: The Prisoner’s Dilemma shows why two players A and B might

decide to not cooperate, even if it appears that, for both of them, it is more
convenient to cooperate. If both A and B cooperate, they both receive a reward p1. If
B does not cooperate while A cooperates, then B receives p2, while A receives p3.
Similarly, if viceversa. If both A and B do not cooperate, their payoffs are going to be
p4. To get the Simpson’s Paradox, the following must hold:

p4 = a1/b1 > p2 = c1/d1 > p3 = a2/b2 > p1 = c2/d2.

Here p3 > p1 and p4 > p2, and p4 > p3 and p2 > p1 imply that it is better to not
cooperate for both A and B both given the fact that the other player does or does not
cooperate (Nash Equilibrium). Note that, if we use these quadruplets for the table of
rewards, we get for the rewards of player A:

Rewards for A B cooperates B does not
A cooperates p1 p3
A does not p2 p4

and for the rewards of player B :

Rewards for B B cooperates B does not
A cooperates p1 p2
A does not p3 p4

Using the values in our examples, we get for the rewards of player A:

Rewards for A B cooperates B does not
A cooperates 0.75 0.8
A does not 0.2 0.25
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and for the rewards of player B :

Rewards for B B cooperates B does not
A cooperates 0.75 0.2
A does not 0.8 0.25

Note that this implies that both players A and B are pushed, for personal
convenience, to not cooperate, independently of what the other player does, but end
up getting a worse reward than if they would have both cooperated. In fact, the
amalgamated contingency table, gives:

Rewards for A+B B cooperates B does not
A cooperates 1.5 1
A does not 1 0.5

that prizes the decision of cooperation. The Measure of Amalgamation considered
here can be thought in the form of an Utility Function, such as:

UA(a, b) = p1ab + p3a(1 − b) + p2b(1 − a) + p4(1 − a)(1 − b)

and

UB(a, b) = p1ab + p2a(1 − b) + p3b(1 − a) + p4(1 − a)(1 − b).

Here a = 1, means that A cooperates, while a = 0means that A does not. Similarly
for B. Note that, under the conditions on p1, p2, p3 and p4 mentioned above, the
Utility is bigger for the choice of not cooperation for both A and B, given any
decision taken by the other player. In fact,

p1 = UA(1, 1) < UA(0, 1) = p2

and

p3 = UA(1, 0) < UA(0, 0) = p4

and analogously for UB. However, when we combine the utilities, we get Utility
Function

UA+B(a, b) = 2p1ab+ (p2+p3)a(1−b)+ (p3+p2)b(1−a)+2p4(1−a)(1−b).

This utility is always bigger for cooperation, if we require 2p4 < p2 + p3 < 2p1, as we
chose in our example. In fact:

2p4 = UA+B(0, 0) < UA+B(1, 0) = p2 + p3 = UA+B(0, 1) < 2p1 = UA+B(1, 1).

In this way, we have restated the Prisoner’s Dilemma in the context of the Simpson’s
Paradox.

• Election polls: Suppose candidates T and C run for elections in two states State1
and State2. Suppose that candidate T and C receive in State1 a percentage of votes:

%votes for T = a
b

> 1 − a
b

= %votes for C

and that candidate T and C receive in State2 a percentage of votes:

%votes for T = 2
d

> 1 − c
d

= %votes for C.
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Is it possible that overall candidate C receives a higher percentage of votes? Clearly,
this is not possible because a

b > 1 − a
b implies a > 0.5b and c

d > 1 − c
d implies

c > 0.5d and so

0.5b + 0.5d < a + c,

which implies
a + c
b + d

> 0.5

and so
a + c
b + d

> 1 − a + c
b + d

.

In this case, we do not have any paradox and this is related to the fact that there is an
extra constraint on the construction of the contingency table. Note that since the set
of real numbers for which these inequalities hold is an open set, the inclusion of a not
strong third candidate will not change the situation. What happens if the third
candidate is as strong as T and C?

4 The Simpson’s Paradox in quantummechanics
In this section, we turn our attention to a novel result of us (Selvitella 2017) concerning
the occurrence of the Simpson’s Paradox in Quantum Mechanics. In particular, we show
howwe can detect an unintuitive behaviour in the interaction between solitary wave solu-
tions in the case of the Quantum Harmonic Oscillator and the Nonlinear Schrödinger
Equation. We start with the Quantum Harmonic Oscillator.

4.1 The quantum harmonic oscillator

We consider the following Linear Schrödinger Equation in the presence of a Harmonic
Potential:

i�
∂

∂t
ψ(t, x) = − �

2

2m
�xψ(t, x) + 1

2
mω2|x|2ψ(t, x). (1)

Here i = √−1 is the complex unit, � is the Planck constant, m represents the mass of a
particle, ω is the angular velocity and (t, x) ∈ (0,+∞) × Rn. There exists a solution of
Eq. (1) in the form

ψ(t, x) = u(x − x(t))ei[x·v(t)+γ (t)+ ωt
2 ] (2)

with the following conditions on u(x), x(t), v(t) and γ (t):

• the profile u(x) for x ∈ Rn satisfies the equation

− �
2

2m
�xu(x) + 1

2
mω2|x|2u(x) + ω

2
u(x) = 0; (3)

• the position vector x(t) and the velocity vector v(t) satisfy the following system of
ODEs: {

ẋ(t) = �

mv(t),
v̇(t) = −m

�
ω2x(t);

(4)

• the complex phase γ (t) is such that

γ̇ (t) = 1
�
L(x(t), ẋ(t);m,ω),
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where L(x(t), ẋ(t);m,ω) := 1
2m|ẋ(t)|2 − 1

2mω2|x(t)|2 is the Lagrangian of the
system of ODEs (4). For why this is true, we refer to (Berezin and Shubin 1991) and
(Selvitella 2017).

4.2 The nonlinear Schrödinger Equation

In the rescaled variablesm = 1 and � = 1
2 , the Nonlinear Schrödinger Equation takes the

following form:
{
i ∂
∂tψ(t, x) = −�xψ(t, x) − |ψ(t, x)|p−1ψ(t, x),

ψ(0, x) = ψ0(x),

Here, n ≥ 1 and 1 < p < 1 + 4
n is the L2-subcritical exponent. There exist solutions,

called solitons, of the form ψ(t, x) = eiωtQω(x) with ω > 0 and where Qω ∈ H1(Rn) is a
solution of

�Qω + Qp
ω = ωQω, Qω > 0. (5)

These solutions Qω can be computed explicitly in dimension n = 1 and take the form

Qω(x) = ω
1

p−1

⎛
⎝ p + 1

2 cosh2
(
p−1
2 ω

1
2 x

)
⎞
⎠

p−1

.

In any dimension n ≥ 1, the solitons which minimize the so called Energy Functional

E[Qω] := 1
2

∫

Rn
dx|∇Qω|2 + ω

2

∫

Rn
dx|Qω|2 − 1

p + 1

∫

Rn
dx|Qω|p+1

are called ground states. These solutions are radially symmetric for n > 1 (in fact, they
are even for n = 1), exponentially decaying and unique up to symmetries (see (Berestycki
and Lions 1983; Berestycki et al. 1981; Gidas et al. 1979; Kwong 1989)).

4.3 The main theorems

In Quantum Mechanics and in the context of the Schrödinger Equation, there is a very
naturalMeasure of Amalgamation, given by the L2(Rn) inner product.

Definition 4 Consider two solutions ψ(t, x) and φ(t, x) of Eq. (1). The Measure of
Amalgamation between ψ(t, x) and φ(t, x) is given by the L2(Rn) inner product:

Cov(ψ(t, ·),φ(t, ·)) :=< ψ(t, ·),φ(t, ·)) >L2(Rn) .

Using the L2(Rn) inner product, we can show that, for the Quantum Harmonic
Oscillator, there exist quadruplets of solitons, which exhibit the Simpson’s Paradox.

Theorem 1 [Existence of the Simpson’s Paradox] Consider Eq. (1) for every spatial
dimension n ≥ 1. Then, for every m > 0 and ω > 0, there exists a set of parameters
(xi(t), γi(t), vi(t)) with i = 1, . . . , 4, such that the following is true. If we consider an initial
datum of the form ψ(0, x) = �4

i=1ψi(0, x) with ψi(0, x) such that

ψi(t, x) =
(mω

π�

)1/4
ei[x·vi(t)+γi(t)+ ωt

2 ]e−
mω
2� |x−xi(t)|2 ,



Selvitella Journal of Statistical Distributions and Applications  (2017) 4:2 Page 10 of 16

then the Simpson’s Paradox occurs in the following cases.

• In the stationary case, namely when vi(t) = 0 and xi(t) = xi for every t; both when
γi = γj for every 1 ≤ i, j ≤ 4 and when γi �= γj 1 ≤ i, j ≤ 4, i �= j.

• In the non-stationary case: if there exists t0 ∈ R such that the Simpson’s Paradox
occurs at t0, then the Simpson’s Paradox occurs at any t1 with t1 �= t0.

Remark 1 As we can see from Theorem 1, the occurrence of the Simpson’s Paradox in the
case of the Quantum Harmonic Oscillator is determined by the initial datum and so we
can say that it is persistent under the flow of the Quantum Harmonic Oscillator.

Once we have proved the existence, we want to address the question of how robust this
phenomenon is, namely if nearby a quadruplet of solitons, we can find plenty of quadru-
plets of solitons for which the paradox occurs. We have that the set of parameters for
which the paradox occurs contains open sets.

Theorem 2 [Stability of the Simpson’s Paradox] Suppose that there exists a set of
parameters (xi(t), γi(t), vi(t)) for i = 1, . . . , 4 such that the Simpson’s Paradox occurs in
the stationary case. Then, there exists r > 0 such that, for every (x̃i(t), γ̃i(t), ṽi(t)) for
i = 1, . . . , 4 inside Br((xi(t), γi(t), vi(t)), i = 1, . . . , 4), the Simpson’s Paradox still occurs
for initial data as above. Moreover, if the Simpson’s Paradox occurs for a ψ(t, x) at a cer-
tain time t = t̃, then there exists an open ball in � := L2(Rn, dx) ∩ L2(Rn, |x|2dx) such
that the Simpson’s Paradox still occurs for any ψ̄(t, x) = ψ(t, x) + w(t, x) with w(t, ·) ∈ �

and the same time t = t̃.

Now, we can discuss the nonlinear case.

Theorem 3 [Nonlinear case] Consider the nonlinear Schrödinger Equation in dimen-
sion n = 1, with 1 < p < 5 (L2-subcritical exponent). Then, there exist an initial datum
ψ0(x), in the form of a superposition of solitons (see (Martel and Merle 2006)), for which
there exists t = t̃1 � 1 where the Simpson’s Paradox occurs and t = t̃2 � 1 where the
Simpson’s Paradox does not occur.

Remark 2 In striking contrast with the Quantum harmonic Oscillator, for the Non-
linear Schrödinger Equation, the Simpson’s Paradox is not anymore persistent, but it
is intermittent. In fact, we can detect it for large times but it appears and disappears
indefinitely.

Proof For the complete proofs of these theorems, we refer to (Selvitella 2017), while for
a brief sketch of the proof of Theorem 1 in the stationary case, we refer to the upcoming
Section 5.

5 How likely is the Simpson’s Paradox in quantummechanics?
An important question is: “How likely is the Simpson’s Paradox?”. It is in fact interesting
to quantify, in some way, the chances that one has to run into the paradox.
In the case of 2 × 2 × l contingency tables with l ≥ 2, Pavlides and Perlman (2009)

address the problem and, among the other things, they prove the following.
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Suppose that a contingency table consists of a factor A with two levels, a factor B with
other 2 levels and a third factor C with l ≥ 2-levels. Then, the array of cell probabilities p
lies on the Simplex

S4l :=
{
p| pi ≥ 0, ∀i = 1, . . . , 4l; �4l

i=1pi = 1
}
.

Endow S4l with the Dirichlet Distribution on S4l, denoted by D4l(α) and denote with
πl(α) the probability of having the Simpson’s Paradox underD4l(α). Pavlides and Perlman
proved in (Pavlides and Perlman 2009) that π2(1) = 1

60 and conjectured that for every
α > 0, there exists h(α) > 0 such that

πl(α)  π2(α) × e−h(α)
(
l
2−1

)
, l = 2, 3, . . . .

A similar question can be asked in the case of the Quantum Harmonic Oscillator and
the Nonlinear Schrödinger Equation. In the constructions developed in (Selvitella 2017),
we aimed just at finding one single choice of the parameters which gives the Simpson’s
Paradox and we did it mainly with a perturbative method. But how large is (and in which
sense it is large) the set of parameters which gives the Simpson’s Paradox?
To investigate a little bit further this issue, we briefly sketch the proof of Theorem 1, at

least in the stationary case and deduce from it a preliminary result on the likelihood of
occurrence of the Simpson’s Paradox.
Consider twomoving solitons of the form:

ψi(t, x) =
(mω

π�

)1/4
ei[x·vi(t)+γi(t)+ ωt

2 ]e−
mω
2� |x−xi(t)|2 ,

and

ψj(t, x) =
(mω

π�

)1/4
ei[x·vj(t)+γj(t)+ ωt

2 ]e−
mω
2� |x−xj(t)|2 ,

for 1 ≤ i ≤ j ≤ 4 and with x(t), v(t) and γ (t) as in Subsection 4.1.
Consider the case in which, for every t ∈ R, one has that xk(t) = xk , for every

k = 1, . . . ,N independent of time. It has been proven in (Selvitella 2017) (Proposition 3.3)
that the Covariance between any of these two solitons is given by:

Cov(ψi(t, x),ψj(t, x)) = 1
2
cos(γi − γj)

[
�

mω
− 1

2
|xi − xj|2

]
e−

mω
4� |xi−xj|2 (6)

Therefore, the proof of Theorem 1 in the stationary case reduces to the problem of
finding parameters such that the Simpson’s Paradox occurs, namely such that

Cov(ψ1(t, x),ψ2(t, x)) > 0,

Cov(ψ3(t, x),ψ4(t, x)) > 0

but

Cov(ψ1(t, x) + ψ3(t, x),ψ2(t, x) + ψ4(t, x)) < 0

or viceversa,

Cov(ψ1(t, x),ψ2(t, x)) < 0,

Cov(ψ3(t, x),ψ4(t, x)) < 0

but

Cov(ψ1(t, x) + ψ3(t, x),ψ2(t, x) + ψ4(t, x)) > 0.
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Now, we define

L2ij :=
mω

2�
|xi − xj|2

so that Cov(ψi(t, x),ψj(t, x)) can be rewritten in the following way:

Cov(ψi(t, x),ψj(t, x)) = �

2mω
cos(γi − γj)

[
1 − L2ij

]
e−

1
2L

2
ij .

In the following discussion, we treat only the case γi = γj, for every i, j = 1, . . . , 4.
We can restate our hypotheses and thesis in the following way: we suppose that

0 < L12 < 1 and 0 < L34 < 1 and we want to quantify “how many” admissible choices of
0 < L12 < 1 and 0 < L34 < 1, L23 and L14 there are such that

[
1 − L212

]
e−

1
2L

2
12 + [

1 − L223
]
e−

1
2L

2
23 + [

1 − L234
]
e−

1
2L

2
34 + [

1 − L214
]
e−

1
2L

2
14 < 0.

Remark 3 Note that the defining condition for the occurrence of the Simpson’s Paradox
are all inequalities which is a hint of the fact that the Simpson’s Paradox occurs in a open
set of the correct topology (see Theorem 2 and (Selvitella 2017)).

Since we are in dimension n = 1, we can choose x1 < x2 < x3 < x4. This implies that
L14 = L12 + L23 + L34 and so that we have to find an admissible choice of 0 < L12 < 1
and 0 < L34 < 1 and L23 such that

[
1 − L212

]
e−

1
2L

2
12 + [

1 − L223
]
e−

1
2L

2
23 +

+ [
1 − L234

]
e−

1
2L

2
34 + [

1 − (L12 + L23 + L34)2
]
e−

1
2 (L12+L23+L34)2 < 0.

Now, if we define X := L12, Y := L34 and Z := L23, we get that the Simpson’s Paradox
occurs when the following are satisfied:
⎧⎪⎨
⎪⎩

0 < X < 1
0 < Y < 1[
1−X2] e− 1

2X
2+[

1 − Y 2] e− 1
2Y

2+[
1−Z2] e− 1

2Z
2+[

1−(X + Y + Z)2
]
e− 1

2 (X+Y+Z)2 < 0.

Figure 1 focuses on a small region of the parameters’ space with 0 < X,Y < 1 and
represents the surface which discriminates between where the paradox occurs and when
it does not.
Note that, when one of the coordinates (for example Z) becomes larger and larger, the

paradox occurs more and more rarely. In fact, the condition
[
1 − X2] e− 1

2X
2+[

1 − Y 2] e− 1
2Y

2+[
1 − Z2] e− 1

2Z
2+[

1 − (X + Y + Z)2
]
e−

1
2 (X+Y+Z)2 < 0

for big Z reduces to
[
1 − X2] e− 1

2X
2 + [

1 − Y 2] e− 1
2Y

2
< 0

which is incompatible with

0 < X < 1, and 0 < Y < 1.

Figure 2 explains this last sentence visually.
We have decided to test the inequality f (X,Y ,Z) < 0 over a grid of n × n × n values

with n = 1000 in the parallelepiped (X,Y ,Z) ∈ [0, 1]× [0, 1]× [0, 4] and we discovered
that about 1.2 ∗ 10−4 of the times (0.012%) the inequality is satisfied. Note that the choice
of the uniform distribution on [0, 1]×[0, 1]×[0, 4] has been made because for Z > 4 the
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Fig. 1 Surface discriminating between the region of parameters where the Simpson’s Paradox occurs and
does not occur

Simpson’s Paradox’s region is almost null (Fig. 2) and because already 0 < X,Y < 1. This
result deserves further investigation. For reproducibility purposes, we give the Matlab
Code that we used for the analysis:

syms X Y Z

fun=@(X,Y,Z)((1-X.^2).*exp(-X.^2/2)+(1-Y.^2).*exp(-Y.^2/2)

+(1-Z.^2).*exp(-Z.^2/2)+(1-(X+Y+Z).^2).*exp(-(X+Y+Z).^2/2));

n=1000;

S=zeros(n);

m=zeros(n);

x=0:1/n:1;

y=0:1/n:1;

%since the max of this function is 4

z=0:1/n:4;

SP=0;

%syms t

%[X,Y]=meshgrid(0:0.1:1,0:0.1:1);

for i= 1:n+1

for j=1:n+1

for k=1:n+1

if fun(x(i),y(j),z(k))<0

SP=SP+1;

else

SP=SP+0;

end

end

end
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Fig. 2 The likelihood of occurrence of the Simpson’s Paradox decreases to zero as one of the distances
between the particles increases indefinitely

SP # Number of occasions in which the Simpson’s Paradox occurs

SP/(n+1)^3 # Percentage of of occasions in which the Simpson’s

Paradox occurs

6 Some numerical examples
For illustration purposes, we give some numerical examples of cases in which the
Simpson’s Paradox occurs and on which it does not. We find interesting to give to each
parameters their true physical value.
Consider the Planck Constant

� = h
2π

= 1
2π

∗ 6.62607004 ∗ 10−34m2kg/s = 1.0545718 ∗ 10−34m2kg/s,

theMass of an Electron

m = 9.10938356 ∗ 10−31kg

with frequency of revolution

f = 6.6 ∗ 1015s−1

and angular velocity

ω = 2π f = 4.1469023 ∗ 1016s−1.
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Note that the quantity

L2ij :=
mω

2�
|xi − xj|2

that we defined and used in Section 5 for the sketch of the proof of the stationary case of
Theorem 1, is dimensionless and it is a fundamental quantity.
We choose L212, L

2
34 and L223 which are all around 1. Note that this implies the following

about the distance between the particles:

1  L2ij = mω

2�
|xi − xj|2

= 9.10938356 ∗ 10−31 ∗ 4.1469023 ∗ 1016

1.0545718 ∗ 10−34 |xi − xj|2  3.582091 ∗ 1020|xi − xj|2.
This implies that

|xi − xj|  5.2836213 ∗ 10−11m.

Recall that the Bohr Radius, which represents approximately themost probable distance
between the center of a nuclide and the electron in a hydrogen atom in its ground state, is

rBohr = 5.2917721067 ∗ 10−11m

We choose L212 = 1 − ε21 , L234 = 1 − ε22 and L223 = 1 + δ2 with ε1 � 1, ε2 � 1. The
following R code produces and example of the paradox in our case:

x=1-10^(-10); #L_{12}^2<1--> Positive Correlation

y=1-10^(-10); #L_{34}^2<1--> Positive Correlation

z=1+10^(-5); #L_{23}^2

(1-x^2)*exp(-x^2/2)+(1-y^2)*exp(-y^2/2)+(1-z^2)*exp(-z^2/2)

+(1-(x+y+z)^2)*exp(-(x+y+z)^2/2)

#Reversal Condition <--> Negative Correlation

[1] -0.0888821

Of course, there are cases in which the Simpson’s Paradox does not occur, like

x=1-10^(-1); #L_{12}^2<1--> Positive Correlation

y=1-10^(-1); #L_{34}^2<1--> Positive Correlation

z=1+10^(-5); #L_{23}^2

(1-x^2)*exp(-x^2/2)+(1-y^2)*exp(-y^2/2)+(1-z^2)*exp(-z^2/2)

+(1-(x+y+z)^2)*exp(-(x+y+z)^2/2)

#Reversal Condition not satisfied <--> Positive Correlation

[1] 0.1177287

7 Discussion
In this paper, we discussed the Simpson’s Paradox in several settings. In particular, we
gave basic examples in arithmetic, geometry, linear algebra, statistics, game theory, gen-
der bias in university admission and election polls, where we described the appearance
or absence of the Simpson’s Paradox. Then, we moved to the presentation of our recent
results on the occurrence of the Simpson’s Paradox in QuantumMechanics with focus on
the Quantum Harmonic Oscillator and the Nonlinear Schrödinger Equation (Selvitella
2017). We discussed the likelihood of the occurrence of the Simpson’s Paradox and we
gave some numerical examples in which the Simpson’s Paradox occurs and some numer-
ical examples in which the Simpson’s Paradox does not occur. This depends on in which
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parameter regions we are. Several problems remain to be addressed. An extended inves-
tigation of the question “How likely is the Simpson’s Paradox in Quantum Mechanics?”
is appropriate. In particular, it would be interesting to construct and put a more suitable
probability measure on the set of parameters and quantify the likelihood of the Simpson’s
Paradox even further.
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