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Abstract

We propose a new formulation for integrating over smooth curves and surfaces that
are described by their closest point mappings. Our method is designed for curves and
surfaces that are not defined by any explicit parameterization and is intended to be
used in combination with level set techniques. However, contrary to the common
practice with level set methods, the volume integrals derived from our formulation
coincide exactly with the surface or line integrals that one wishes to compute. We
study various aspects of this formulation and provide a geometric interpretation of this
formulation in terms of the singular values of the Jacobian matrix of the closest point
mapping. Additionally, we extend the formulation—initially derived to integrate over
manifolds of codimension one—to include integration along curves in three
dimensions. Some numerical examples using very simple discretizations are presented
to demonstrate the efficacy of the formulation.

Keywords: Boundary integrals, Closest point mapping, Level set methods

1 Introduction
This paper provides simple formulations for integrating over manifolds of codimensions
one, or two in R

3, when the manifolds are described by functions that map points in R
n

(n = 2, 3) to their closest points on curves or surfaces using the Euclidean distance. The
idea for the present work originated in [10] where the authors proposed a formulation for
computing integrals of the form∫

∂�

v(x(s)) ds, (1)

in the level set framework, namely when the domain � is represented implicitly by the
signed distance function to its boundary ∂�. Typically in a level set method [15,16,21],
to evaluate an integral of the form of (1) where ∂� is the zero level set of a continuous
function ϕ, it is necessary to extend the function v defined on the boundary ∂� to a
neighborhood in R

n. The extension of v, denoted ṽ, is typically a constant extension of v.
The integral is then approximated by an integral involving a regularized Dirac-δ function
concentrated on ∂�, namely∫

∂�

v(x(s))ds ≈
∫
Rn

ṽ(x)δε(ϕ(x))|∇ϕ(x)|dx.
Various numerical approximations of this delta function have been proposed, see e.g.,
[4,5,22,24,27].
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In [10], with the choice of ϕ = d∂� being a signed distance function to ∂�, the integral
(1) is expressed as an average of integrals over nearby level sets of d∂�, where these nearby
level sets continuously sweep a thin tubular neighborhood around the boundary ∂� of
radius ε. Consequently, (1) is equivalent to the volume integral shown on the right hand
side below:∫

∂�

v(x(s))ds =
∫
Rn

v(x∗)J (x; d∂�)δε(d∂�(x))dx, (2)

where δε is an averaging kernel, x∗ is the closest point on ∂� to x and J (x; d∂�) accounts
for the change in curvature between the nearby level sets and the zero level set.
Now suppose that ∂� is a smooth hypersurface in R

3 and assume that x is sufficiently
close to � so that the closest point mapping

x∗ = P∂�(x) = argminy∈∂�|x − y|
is continuously differentiable. Then the restriction of P∂� to ∂�η is a diffeormorphism
between ∂�η and ∂�, where ∂�η := {

x : d∂�(x) = η
}
. As a result, it is possible to write

integrals over ∂� using points on ∂�η as:∫
∂�

v(x)dS =
∫

∂�η

v(x∗)J (x; η)dS,

where J (x, η) comes from the change of variable defined by P∂� restricted on ∂�η. Aver-
aging the above integrals respectively with a kernel, δε , compactly supported in [−ε, ε],
we obtain∫

∂�

v(x)dS =
∫ ε

−ε

δε(η)
∫

∂�η

v(x∗)J (x; η)dS dη.

Formula (2) then follows from the coarea formula [7] applied to the integral on the right
hand side.
In the following section, we show that in three dimensions, the Jacobian J in (2) is the

product of the first two singular values, σ1 and σ2, of the Jacobian matrix of the closest
point mapping P′

	 ; namely,
∫

∂�

v(x(s))ds =
∫
R3

v(P∂�(x))δε(d∂�(x))
2∏

j=1
σj(x)dx. (3)

To motivate the new approach using singular values, we consider Cartesian coordinate
systems with the origin placed on points sufficiently close to the surface, and the z direc-
tion normal to the surface. Thus the partial derivatives of the closest point mapping in
the z direction will yield zero and the partial derivatives in the other two directions nat-
urally correspond to differentiation in the tangential directions. Thus we see that one of
the singular values should be 0 while the other two are related to the surface area ele-
ment. We also derive a similar formula for integration along curves in three dimensions
(codimension 2). The advantages of this new formula include the ease for constructing
higher-order approximations of J via, e.g., simple differencing, even in neighborhoods of
surface boundaries where curvatures become unbounded.
This paper is motivated by the recent success in the closest point methods and the

Dynamic Surface Extension method [23], for evolving interfaces and solving partial dif-
ferential equations on surfaces [11–13,19], by the need to process data sets that contain
unstructured points sampled from some underlying surfaces, and targets applications
where manifolds are not defined by patches of explicit parameterizations and may evolve
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drastically due to some coupled processes; see, e.g., free boundary problems [9]. Our work
provides a convenient way to formulate boundary integral methods in such applications
without conversion to local parameterizations. If the manifolds are defined by explicit
parameterizations, it is natural and typically more accurate to use conventional methods
such asNyströmmethods using quadratures on the parameter space or Boundary Element
Methods with weak formulations, see, e.g., [1]. Additionally, for applications involving
fluid–structure interactions, we mention the immersed boundary method which involves
accurate discretizations of Dirac delta measures [14,17].
Closest pointmappings are easily computed in the context of level setmethods [16] since

there exist fast algorithms for constructing distance functions from level set functions
[2,18,20,25,26]. More precisely,

P∂�(x) = x − d∂�(x)∇d∂�(x).

Our previous work [10] as well as this current paper provide a simple framework for
constructing numerical schemes for boundary integral methods when the interface is
described implicitly by a level set function, and is intended for use in such context.
Finally, closest pointmappings can also be computed easily fromdense and unorganized

point sets that are acquired directly from an imaging device (e.g., LIDAR). This paper lays
the foundation of a numerical scheme for computing integrals over surfaces sampled by
unstructured point clouds.

2 Integration using the closest point mapping
In this section, we relate the Jacobian J in (2) to the singular values of the Jacobian matrix
of the closest point mapping from R

2 or R3 to 	, where 	 denotes the curves or surfaces
on which integrals are defined. We assume that in three dimensions, if 	 is not closed, it
has smooth boundaries. For clarity of the exposition in the rest of the paper, we will now
denote the distance function simply by d.

2.1 Codimension 1

Weconsider aC2 compact curve or surface	 that can either be closed or not. If	 is closed,
then it is the boundary of a domain � so that 	 can be denoted ∂�. If 	 is not closed, we
assume that it has smooth boundaries. We define d : Rn �→ R to be the distance function
to 	 and P	 to be the closest point mapping P	 : Rn �→ 	 (for n = 2, 3) defined as

|P	(x) − x| = min
y∈	

|y − x|. (4)

We let d0 be the distance function to 	 if it is open and ds be the signed distance function
to 	 = ∂� if it is closed. The signed distance function is defined as

ds(x) :=
⎧⎨
⎩
infy∈�c |x − y| if x ∈ �,

− infy∈� |x − y| if x ∈ �̄c.

Then we define d as follows:

d(x) :=
⎧⎨
⎩
d0(x) if 	 is open,

ds(x) if 	 is closed.
(5)

The following lemma provides a concise expression of the Gaussian curvature in terms
of the distance function. This is probably a known result but we include its proof to
preserve the completeness of the paper.
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Lemma 1 Let d be the distance function to	 defined in (5). For |η| sufficiently close to 0, the
Gaussian curvature at a point on the η level set 	η := {

ξ : d(ξ ) = η
}
can be expressed as

Gη = dxxdyy + dxxdzz + dyydzz − d2xy − d2xz − d2yz. (6)

Proof Starting with the definition of the Gaussian curvature G for a surface (see [8]), we
can obtain an expression for the Gaussian curvature of its η-level set in terms of d as

G = 〈∇d, adj(Hess(d))∇d〉
= d2x (dyydzz − d2yz) + d2y (dxxdzz − d2xz) + d2z (dxxdyy − d2xy)

+ 2[dxdy(dxzdyz − dxydzz) + dydz(dxydxz − dyzdxx) + dxdz(dxydyz − dxzdyy)].

(7)

We show that this expression is the same as (6) by rearranging the terms above and using
the fact that close to 	 the distance function satisfies |∇d| = 1. First we rearrange the
terms in G:

G = d2xdyydzz + d2y dxxdzz + d2z dxxdyy − d2xd2yz − d2y d2xz − d2z d2xy
+ 2[dxdy(dxzdyz − dxydzz) + dydz(dxydxz − dyzdxx) + dxdz(dxydyz − dxzdyy)],

and rewrite each of the first six terms in terms of |∇d|2, e.g.,
d2xdyydzz = |∇d|2︸ ︷︷ ︸

=1

dyydzz − d2y dyydzz − d2z dyydzz = dyydzz − d2y dyydzz − d2z dyydzz.

Thus we have

d2xdyydzz + d2y dxxdzz + d2z dxxdyy − d2xd
2
yz − d2y d

2
xz − d2z d

2
xy

= dxxdyy + dxxdzz + dyydzz − d2xy − d2xz − d2yz︸ ︷︷ ︸
=Gη

−d2y dyydzz − d2z dyydzz

− d2xdxxdzz − d2z dxxdzz − d2y dxxdyy − d2xdxxdyy
+ d2y d2yz + d2z d2yz + d2xd2xz + d2z d2xz + d2xd2xy + d2y d2xy (8)

Using (8) and rearranging the rest of the terms in (7) we obtain G = Gη. ��
Proposition 2 Consider a C2 compact surface 	 ⊂ R

n (n = 2, 3) of codimension 1 and
let d be defined as in (5). Define the closest point projection map P	 as in (4) for x ∈ R

n.
For |η| sufficiently close to zero, let 	η be the η level set of d

	η := {
x : d(x) = η

}
. (9)

Define the Jacobian Jη as

Jη :=
{
1 + ηκη if n = 2,
1 + 2ηHη + η2Gη if n = 3,

where κη is the signed curvature of 	η in 2D, and Hη and Gη are its Mean curvature and
Gaussian curvature respectively in 3D.
Then if P′

	 is the Jacobian matrix of P	 we have

Jη =
{

σ1, n = 2,
σ1σ2, n = 3,

(10)

where σ1, σ2 are the first two singular values of the Jacobian matrix P′
	 .
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Proof The distance function d satisfies the property d(x) = 0 for x ∈ 	. Also, since 	 is
C2, its distance function d belongs to C2(Rn,R); see, e.g., [3,6]. It follows that the order
of the mixed partial derivatives does not matter. In addition, the normals to a smooth
interface do not focus right away so that the distance function is smooth in a tubular
neighborhood T around 	, and is linear with slope one along the normals. Therefore, we
have

|∇d| = 1 for all x ∈ T. (11)

The third important fact is that the Laplacian of d at a point x gives (up to a constant
related to the dimension) the mean curvature of the isosurface of d passing through x,
namely

�d(x) = (1 − n)H (x), (12)

where H (x) is the Mean curvature of the level set
{
y : d(y) = d(x)

}
. Differentiating (11)

with respect to each variable gives the following equations in three dimensions:

dxdxx + dydxy + dzdxz = 0, (13)

dxdyx + dydyy + dzdyz = 0, (14)

dxdzx + dydzy + dzdzz = 0. (15)

In particular the two-dimensional case can be derived by assuming that the distance
function is constant in z.

Two dimensions. In that case the Jacobian matrix P′
	 of the closest point projection map

is

P′
	 =

(
1 − d2x − ddxx −(dydx + ddyx)
−(dxdy + ddxy) 1 − d2y − ddyy

)
.

Since Schwartz’ Theorem holds, we have dxy = dyx making P′
	 a real symmetric matrix.

It is therefore diagonalizable with eigenvalues 0 and 1 − d�d. Indeed, we have

P′
	∇d =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

dx( 1 − d2x − d2y︸ ︷︷ ︸
=0 by (11) in 2D

) − d( dxdxx + dydyx︸ ︷︷ ︸
=0 by (13) in 2D

)

dy( 1 − d2x − d2y︸ ︷︷ ︸
=0 by (11) in 2D

) − d( dydyy + dxdxy︸ ︷︷ ︸
=0 by (14) in 2D

)

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

= 0,

and for v =
(

−dy
dx

)
,

P′
	v =

(
−dy + dyd2x + dyddxx − d2xdy − ddxdxy

d2y dx + dyddxx − d2y dx − dxddyy

)

=
(

−dy
dx

)
+ d

(
dydxx − dxdxy
dydxy − dxdyy

)



Kublik and Tsai Res Math Sci (2016) 3:3 Page 6 of 17

= v + d

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

−�d(−dy) − (dydyy + dxdxy)︸ ︷︷ ︸
=0 by (14) in 2D

−�d(dx) + dxdxx + dydxy︸ ︷︷ ︸
=0 by (13) in 2D

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

= (1 − d�d)v.

Since ||v|| = 1, v is an eigenvector corresponding to the eigenvalue λ = 1 − d�d. Thus,
for x such that d(x) = η we have that the eigenvalue λ of P′

	 satisfies

λ = 1 − η�d = 1 + ηκη

by (12). Since 1 + ηκη ≥ 0, it follows that λ coincides with the singular value of P′
	 and

hence

σ1 = 1 + ηκη .

Three dimensions. Since for |η| sufficiently close to 0 the distance function is C2, the
Jacobian matrix

P′
	 =

⎛
⎜⎝

1 − d2x − ddxx −(dydx + ddyx) −(dzdx + ddzx)
−(dxdy + ddxy) 1 − d2y − ddyy −(dzdy + ddzy)
−(dxdz + ddxz) −(dydz + ddyz) 1 − d2z − ddzz

⎞
⎟⎠ ,

is a real symmetric matrix which is diagonalizable with one zero eigenvalue and two other
eigenvalues λ1 and λ2. Indeed using (13), (14), (15) and (11) we can show that

P′
	∇d = 0.

Now consider x such that d(x) = η. Then, the characteristic polynomial χ (λ) of P′
	 is

χ (λ) = −λ
(
λ2 − (2 − η�d)λ − Q

)
,

where Q = −Gηη
2 + η�d − 1 with Gη defined in (6). Since the other two eigenvalues of

P′
	 are the solutions of the quadratic equation λ2 − (2 − η�d)λ − Q = 0, it follows

that

λ1λ2 = −Q = 1 − η�d + η2Gη = 1 + 2ηHη + η2Gη .

Since 1 + 2ηHη + η2Gη ≥ 0, it follows that

σ1σ2 = 1 + 2ηHη + η2Gη ,

where σ1 and σ2 are singular values of P′
	 . ��

This leads to the following proposition:

Theorem 3 Consider 	 a curve in 2Dor surface in 3DwithC2 boundaries if it is not closed,
and define d : Rn �→ R (n = 2, 3) to be the distance function to 	 with P	 : Rn �→ 	 the
closest point mapping to 	. Then for ε maxx∈	 |κ(x)| < 1 for any κ(x) principal curvatures
of 	 at x, we have∫

	

v(x)dx =
∫
Rn

v(P	(x)δε(d(x))�(x)dx, (16)
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where δε is an averaging kernel and �(x)is defined as

�(x) =
{

σ1(x), n = 2,
σ1(x)σ2(x), n = 3,

where σj(x) , j = 1, 2, is the j-th singular value of the Jacobian matrix P′
	 evaluated at x.

Proof If 	 is closed we combine Eq. (2) with the result J (x) = �(x) from Eq. (10) of
Proposition 2.
If 	 is open there is a little more to show since Eq. (2) was only derived for closed

manifolds. Before we state the result, it is necessary to understand how 	η defined in (9)
(an η−level set of d) looks like for an open curve in two dimensions and for a surface with
boundaries in three dimensions.
In two dimensions, 	η consists of a flat tubular part on either side of the curve and two

semi-circles at the two ends of the curve. See Fig. 1.
In three dimensions 	 is in general made up of three distinct parts: the interior part,

the edges of the boundary and the corners. If we assume that 	 has N edges then we
can write 	 = 	o ∪ (∪N

i=1Ei) ∪ (∪N
i=1Ci), where 	o is the interior of 	, Ei is the i-th

edge of the boundary of 	 and Ci is its i-th corner. In that setting we can write 	η =
Iη ∪ (∪N

i=1T
η

i )∪ (∪N
i=1S

η

i ), where Iη is the inside portion of 	η, T η

i is the cylindrical part of
	η representing the set of points located at a distance η from the i-th edge Ei, and finally
Sη

i is the spherical part of 	η representing the set of points located at a distance η from
the i-th corner Ci. See Fig. 2.
In both cases, we need to integrate over 	η and then subtract the two semi-circles at the

two end points of the curve (in two dimensions) or subtract the portions of sphere at the
corners of the surface and the portions of cylinders at the edges of the surface (in three
dimensions). However, it turns out that the subtraction is unnecessary since �(x) = 0 on
each of the subtracted pieces as shown below.

Two dimensions. On the semi-circle around the end point of a curve, the closest point
mapping is constant since all points on the semi-circle 	η map to the end point. As a
result, the singular values of the Jacobian matrix of the closest point mapping are all zeros
and thus �(x) = 0 on the semi-circles around the end points of a curve.

Fig. 1 Level set of a 2D open curve. An example of an open curve 	 (black curve) and its η-level set 	η (red
curve). 	η consists of a tubular part and two semi-circles at the two ends
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Fig. 2 Level set of a 3D surface with boundaries. An example of a surface with boundaries viewed from
different angles and its corresponding η-level set 	η viewed from the same angles. The figure at the bottom
right corner shows the surface and 	η

Three dimensions. As in two dimensions, on the portions of sphere around a corner point
of a surface, the closest point mapping is constant and thus �(x) = 0. On the portion of
cylinders, the closest point mapping is constant along the radial dimension (one of the
principal directions or singular vector) resulting of the singular value along that direction
to be zero. Since �(x) is the product of the singular values, it follows that �(x) = 0 on
the portion of cylinders as well. Consequently, Eq. (16) holds for any C2 curve or surface
with C2 boundaries of codimension 1. ��

2.2 Codimension 2

Weconsider aC2 curve inR3 denoted by	 and let γ (s) be a parameterization by arclength
of 	. We denote by d : R3 �→ R

+ ∪ {0} the distance function to 	 and let P	 : R3 �→ 	

be the closest point mapping to 	. We consider a parameterization of the tubular part of
the level surface for η ∈ [0, ε] defined as

x(s, θ , η) : γ (s) + η cos θ �N(s) + η sin θ �B(s),
where �T = dγ

ds , �N and �B constitute the Frenet frame for γ as illustrated in Fig. 3.
If we project a point x on the tubular part of the level surface 	η defined in (9), we have

P	(x(s, θ , η)) = γ (s). If L is the length of the curve it follows that
∫ 2π

0

∫ L

0
g(P	(x(s, θ , η)))|xs × xθ |dsdθ =

∫ 2π

0

∫ L

0
g(γ (s))η(1 − ηκ(s) cos θ )dsdθ ,

= η

∫ L

0
g(γ (s))

∫ 2π

0
(1 − ηκ cos θ )dθds,

= 2πη

∫
g(γ (s))ds. (17)

Note that the tubular part of the level surface 	η does not contain the two hemispheres
of 	η which are located at the two end points of the curve 	. Thus,∫

	η\{C1∪C2}
g(P	(x))dSx = 2πη

∫
	

gds, (18)
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Fig. 3 Level set of an open curve in 3D. Three dimensional curve with its η-level surface 	η in green and the
Frenet frame at a point on 	η

where C1 and C2 are the two hemispheres of the level surface 	η located at the two end
points of the curve 	. Consequently, for sufficiently small ε and by the coarea formula we
obtain∫

	

g(γ (s))ds = 1
2π

∫ ε

0

(
1
η

∫
	η\{C1∪C2}

g(P	(x))
)
Kε(η)dη,

= 1
2π

∫
R3

g(P	(x))
Kε(d)
d

χ(C1∪C2)c (x)dx,

where Kε is a C1 averaging kernel supported in [0, ε] and χ(C1∪C2)c (x) is the characteristic
function of the set (C1∪C2)c. Because of the term Kε (d)

d in the above equation and for better
accuracy, we choose a kernel Kε that satisfies the condition K ′

ε(0) = 0. In our numerical
simulations we consider the kernel

K 1,1
ε (η) = 1

ε

(
1 − cos

(
2π

η

ε

))
χ[0,ε](η). (19)

Since the formulation above does not use the two hemispheres located at both end points
of the curve, to integrate over the tubular part of 	η only, it is necessary to subtract the
integration over each of the hemispheres C1 and C2 . The result can be summarized in
the following proposition:

Proposition 4 Consider a single C2 curve 	 in R
3 parameterized by γ (s) where s is the

arclength parameter, and let d be the distance function to 	. We define Kε to be a C1

averaging kernel compactly supported in [0, ε] and P	 : R3 �→ 	 to be the closest point
mapping to 	.
If g is a continuous function defined on 	 then for sufficiently small ε > 0 we have

∫
	

g(γ (s))ds = 1
2π

∫
R3

g(P	(x))
Kε(d(x))
d(x)

dx − 2
∫ ε

0
g(xη)ηKε(η)dη, (20)

where xη is a point on a sphere of radius η.

Note that for the computation of the length of a curve, the correction terms given by
integrating over both C1 and C2 is

∫ ε

0

Kε(η)
η

|S1|dη =
∫ ε

0

Kε(η)
η

4πη2dη = 2πε.
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This simple correction is, however, not suitable for more general cases that contain mul-
tiple curve segments and several integrands. We shall derive a more elegant and seamless
way to perform such correction in the following section.
Now if we consider a C2 curve in three dimensions and let P	 be its closest point

mapping, we have the following proposition:

Theorem 5 Let σ (x) be the nonzero singular value of P′
	 and let g be a continuous function

defined on 	. If γ (s) is the arclength parameterization of 	 and if ε maxx∈	 |κ(x)| < 1,
where κ(x) is the curvature of the curve at x, we have

∫
	

g(γ (s))ds = 1
2π

∫
R3

g(P	(x))
Kε(d)
d

σ (x)dx, (21)

where d is the distance function to 	.

Proof Since Kε is compactly supported in [0, ε] it is sufficient to consider points in the
tubular neighborhood of the curve	. Thus, for x in the tubular neighborhood, there exists
0 ≤ η ≤ ε such that x ∈ 	η.

Case 1: x is on the spherical part of 	η corresponding to the η-distance to either of the
two end points of the curve 	. WLOG we assume that x is at a distance η from the first
end point C1 parameterized by γ (0). The result is the same if x is on the other sphere, i.e.,
at a distance η from the other end point C2. In that case, P	(x) = γ (0) for all x on the
spherical part so that the Jacobian matrix P′

	 = 0. Therefore, for x on the spherical part
of 	η, all singular values of the Jacobian matrix are zero.

Case 2: x is on the tubular part of 	η. In that case, if we use the Frenet frame centered at
the point x = x(s, θ , η) ∈ 	η , we can write x in the new coordinate system (�T, �N, �B) as

x = γ (s) + v �N + w�B, (22)

where u = 0 is the coordinate of x along �T, v is the coordinate along �N and w is the
coordinate along �B. Since the projection P	(x) = γ (s) does not depend on v nor w (since
the plane ( �N, �B) is normal to the curve 	) it follows that

∂P	(x)
∂v

= ∂P	(x)
∂w

= 0.

On the other hand, we have
∂P	(x)

∂u
= ∂γ (s)

∂u
= ∂s

∂u
∂γ (s)
∂s

= ∂s
∂u

�T,
where ∂s

∂u is the variation of the arclength parameter s with respect to u when the point x
is moving on 	η along the tangential direction �T. Since u is the arclength parameter along
the tangential direction �T, it follows that we have a unit speed parameterization along �T
giving the identity

∂x
∂u

· �T = 1.

In addition,

∂x
∂s

= ∂γ (s)
∂s

+ v
∂ �N
∂s

+ w
∂ �B
∂s

= �T − κv �T + τv�B − τw �N
= (1 − κv) �T − τw �N + τv�B,
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where κ is the curvature of 	 at γ (s) and τ is the torsion of the curve 	 at the point γ (s).
Since the level surface	η is a tube of radius η, its intersection with the normal plane ( �N, �B)
is a circle of radius η. Hence if we use polar coordinates on the normal plane, we obtain
v = η cos θ and w = η sin θ . It follows that

∂x
∂s

· �T = 1 − κη cos θ .

Consequently we have

∂x
∂u

· �T = 1 = ∂s
∂u

∂x
∂s

· �T = ∂s
∂u

(1 − κη cos θ ),

and
∂s
∂u

= 1
1 − κη cos θ

.

Therefore, in the Frenet frame, the Jacobian matrix of the closest point projection map
can be written as

P′
	 =

⎛
⎜⎝

1
1−κη cos θ

0 0
0 0 0
0 0 0

⎞
⎟⎠ ,

where 1
1−κη cos θ

is the nonzero eigenvalue of the Jacobian of the closest point mapping.
Based on the hypothesis on the size of ε related to the geometry of the curve 	, the term

1
1−κη cos θ

is strictly positive and therefore is also the singular value σ (x) of the Jacobian of
the closest point mapping.
Therefore we have

σ (x) =
⎧⎨
⎩
0 if x is on the spherical part of 	η ,

1
1−κη cos θ

if x is on the tubular part of 	η .
(23)

Now using (17) and (18) we obtain
∫

	η

g(P	(x))σ (x)dSx =
∫

	η\{C1
⋃

C2}
g(P	(x))σ (x)dSx

=
∫ 2π

0

∫ L

0
g(P	(x))σ (x)|xs × xθ |dsdθ

=
∫ 2π

0

∫ L

0
g(γ (s))η

1 − ηκ(s) cos θ

1 − ηκ(s) cos θ
dsdθ

= 2πη

∫ L

0
g(γ (s))ds.

It follows that for Kε a C1 averaging kernel compactly supported in [0, ε], for sufficiently
small ε and by the coarea formula, we have

∫
	

gds = 1
2π

∫ ε

0

1
η

∫
	η

g(P	(x))σ (x)Kε(η)dη

= 1
2π

∫
R3

g(P	(x))
Kε(d)
d

σ (x)dx.

��
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3 Numerical simulations
In this section, we investigate the convergence of our numerical integration using simple
Riemann sums over uniform Cartesian grids. Unless stated otherwise, the singular values
are computed from the matrix, the elements of which are computed by the standard
central difference approximations of the Jacobian matrix P′

	 . In other words, the Jacobian
matrix P′

	 is computed by using finite differences to evaluate the partial derivatives of each
component of P	(x); more precisely, if P	(x) = (p1(x), p2(x), p3(x)), and x = (x1, x2, x3)
we use finite difference to approximate ∂pj

∂xk for 1 ≤ j, k ≤ 3. We do not evaluate the
expressions that involve the partial derivatives of the distance function.
In our computations we use the cosine kernel

Kcos
ε (η) = χ[−ε,ε](η)

1
2ε

(
1 + cos

(πη

ε

))
(24)

for integration on surfaces of codimension 1, and the kernel K 1,1
ε defined in (19) for

codimension 2. With these compactly supported kernels, formulas (16) and (21) can be
considered integration of functions defined on suitable hypercubes, periodically extended.
In such settings, simple Riemann sums on Cartesian grids are equivalent to sums using
Trapezoidal rule, and if all the terms are known analytically, the order of accuracy will be
related in general to the smoothness of the integrands; exception can be found when the
normals of the surfaces are rationally dependent on the step sizes used in the Cartesian
grids.

3.1 Integration of codimension one surfaces

We tested our numerical integration on two different portions of circle, a torus, a quarter
sphere and a three quarter sphere. We computed their respective lengths or surface areas
by integrating the constant 1 over the curve or surface. Each of these tests were designed
to exhibit the convergence rate of our formulations on cases with varying difficulty. In
particular, the convergence rate of our formulation depends on the smoothness of the
closest point mapping inside the tubular neighborhood of the curve or surface.
The results for the portions of circle are given in Tables 1 and 2. In the first convergence

studies (Table 1), the line where the closest point mapping has a jump discontinuity
is parallel to the grid lines. In this case, we see a second-order convergence rate using
central differencing to compute the Jacobian matrix P′

	 . In the second test case, however,
the portion of circle is chosen so that the line where the closest point mapping has a
jump discontinuity is not parallel to the grid lines. In that case, the normal to the curve

Table 1 Errors for a portion of circle

n Relative error Order

64 2.7994 × 10−4 –

128 7.0665 × 10−5 1.99

256 1.7187 × 10−5 2.04

512 4.2719 × 10−6 2.01

1024 1.0636 × 10−6 2.01

2048 2.6567 × 10−7 2.00

4096 6.6045 × 10−8 2.01

8192 1.6513 × 10−8 2.00

Relative errors in the numerical approximation of the length of a planar curve, which is a portion of circle of radius R = 0.75
centered at 0. The width for the tubular neighborhood of the curve is ε = 0.2. In this computation, the closest point
mapping has a jump discontinuity along a straight-line which is arranged to be parallel to the grid lines.
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Table 2 Errors for a tilted portion of circle

n Relative error Order

64 3.7159 × 10−5 –

128 2.5786 × 10−7 7.17

256 4.2361 × 10−6 −4.04

512 3.2246 × 10−6 0.39

1024 1.8876 × 10−6 0.77

2048 1.0132 × 10−7 0.90

4096 5.2372 × 10−7 0.95

8192 2.6615 × 10−7 0.98

Relative errors in the numerical approximation of the length of a planar curve, which is a portion of circle of radius R = 0.75
centered at 0. The width for the tubular neighborhood of the curve is ε = 0.2. In this computation, the jump discontinuity of
the closest point mapping is not parallel to the grid lines.

is rationally dependent on the step size of the Cartesian grid and the convergence rate
reduces to first order even though we used central differencing to compute P′

	 . We note
that in these two tests, we chose ε (the half width of the tubular neighborhood around the
curve) small enough so that the line where the closest point mapping is discontinuous is
outside of it.
In three dimensions, we first tested our method on a torus (closed smooth surface). The

results for the torus are reported in Table 3. In this case the closest point mapping is very
smooth andwe see third-order convergencewhenusing the exact signed distance function
and a third-order difference scheme to approximate P′

	 (see RE∞ in Table 3). We also
tested our method with a computed signed distance function. We constructed the signed
distance function using the algorithm described in [2], and compared the performance
of our method with a fourth-order accurate signed distance function and a first order
accurate signed distance function (see RE4 and RE1 in Table 3.) With the fourth-order
accurate signed distance function we used a third-order accurate difference scheme to
approximate P′

	 , and with the first-order accurate signed distance function we used a
second-order accurate difference scheme to approximate P′

	 .
For surfaces with boundaries, we tested the method on a quarter sphere and a three

quarter sphere. The three quarter sphere case is illustrated in Fig. 4. The reason for
choosing these two cases is because the closest point mapping has a different degree of
smoothness for each of these surfaces. For the quarter sphere, the closest point mapping
is smooth enough, but for the three quarter sphere, the tubular neighborhood around the

Table 3 Errors for a torus

n RE∞ Order RE4 Order RE1 Order

32 6.2030 × 10−3 − 1.1699 × 10−2 − 5.8000 × 10−2 −
64 1.8073 × 10−4 5.10 1.0169 × 10−3 3.52 1.4456 × 10−2 2.00

128 6.6838 × 10−6 4.76 1.3568 × 10−5 6.23 3.9830 × 10−3 1.86

256 4.1530 × 10−7 4.01 7.1567 × 10−7 4.24 1.4391 × 10−3 1.47

512 5.0379 × 10−8 3.04 6.1982 × 10−8 3.53 5.1463 × 10−4 1.48

Relative errors in the numerical approximation of the surface area of a torus centered at 0. The distance from the center to
the tube that form the torus is R = 0.75 and the radius of the tube is r = 0.25. In this computation, we summed up grid
points that are within ε = 0.2 distance from the surface for RE∞ and RE4 , and ε = 0.03 for RE1 . RE∞ , RE4 and RE1 are the
relative error using the exact signed distance function, the relative error using a fourth-order accurate signed distance
function and the relative error using a first-order accurate signed distance function respectively. The Jacobian matrix P′

	 is
approximated by a standard third-order accurate differencing except for RE1 where we used a second-order accurate
differencing to approximate P′

	 .
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Fig. 4 Three quarter sphere. The three quarter sphere and its corresponding η-level set 	η

surface contains the line where the closest point mapping has a jump discontinuity. In
that latter case, it is therefore necessary to use an adequate one-sided discretization to
compute P′

	 accurately. The one-sided discretization that we used is reported in Sect. 3.3.
The test for the quarter sphere still uses central differencing to compute P′

	 . The results
for the portions of sphere are reported in Tables 4 and 5.

3.2 Integrating along curves in three dimensions

In codimension 2, we tested our numerical integration on a coil wrapped around the helix
defined parametrically as

x(t) = (r cos(t), r sin(t), bt) ,

with r = 0.75 and b = 0.25. The coil is then wrapped around the helix at a distance of
0.2 from the helix. See Fig. 5. As our test case, we computed the length of the coil by
integrating 1 along the curve. The results are reported in Table 6.

Table 4 Errors for a quarter sphere

n Relative error Order

32 9.2825 × 10−3 −
64 1.8365 × 10−3 2.34

128 2.7726 × 10−4 2.73

256 7.1886 × 10−5 1.95

512 1.4811 × 10−5 2.30

Relative errors in the numerical approximation of the surface area of a quarter sphere with radius R = 0.75 centered at 0. In
this computation, we summed up grid points that are within ε = 0.2 distance from the surface. We used the standard
central difference scheme to compute each entry of the Jacobian matrix P′

	 .

Table 5 Errors for a three quarter sphere

n Relative error Order

32 1.1726 × 10−2 −
64 1.1733 × 10−3 3.32

128 9.1325 × 10−4 0.36

256 3.8238 × 10−4 1.26

512 7.8308 × 10−5 2.29

Relative errors in the numerical approximation of the surface area of a three quarter sphere with radius R = 0.75 centered at
0 (this is the portion of a sphere that misses half of a hemisphere). In this computation, we summed up grid points that are
within ε = 0.2 distance from the surface. Due to this setup, the closest point mapping has a discontinuity that stems out
from the boundary of the surface. We used the discretization described in Section 3.3 to compute each entry of the Jacobian
matrix P′

	 .



Kublik and Tsai Res Math Sci (2016) 3:3 Page 15 of 17

Fig. 5 Coil and one of its level sets. The coil and one of the level sets of the distance function to the coil used
in the reported numerical simulations

Table 6 Errors for a coil

n Relative Error Order

60 5.5078 × 10−3 −
120 1.1476 × 10−3 2.63

240 2.3409 × 10−4 2.29

480 3.7166 × 10−5 2.66

Relative errors in the numerical approximation of a coil wrapped around a helix. In this computation, we used a constant
width for the tubular neighborhood ε = 0.1 and took the averaging kernels to be K 1,1

ε defined in (19).

3.3 One-sided discretization of the Jacobian matrix

Here for completeness, we describe the one-sided discretization used in computing results
reported in Table 5. For simplicity we provide the explanation in R

2. The discretization
generalizes easily to 3D.
Wewill describe the one-sided discretization for a uniformCartesian grid inR2, namely

for P	(xi,j) = (Ui,j , Vi,j) with xi,j = (ih, jh), i, j ∈ Z and h > 0 being the step size. The
Jacobian matrix will be approximated by simple finite differences defined below:

P′
	(xi,j) ≈

(
(Ux)i,j (Uy)i,j
(Vx)i,j (Vy)i,j

)
.

The discretization of U and V have to be defined together because the two functions are
not independent of each other. With

(U±
x )i,j := ± 1

2h
(−3Ui,j + 4Ui±1,j − Ui±2,j

)
,

and the smoothness indicator

S±
i,j = S±(Ui,j) := �+�−Ui±1,j

we define

(Ux)i,j :=
⎧⎨
⎩
(U+

x )i,j , if |S+
i,j | ≤ |S−

i,j |,
(U−

x )i,j , otherwise,
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and (Vx)i,j is defined according to the choice of stencil based on S±(Ui,j)

(Vx)i,j :=
⎧⎨
⎩
(V+

x )i,j , if |S+
i,j | ≤ |S−

i,j |,
(V−

x )i,j , otherwise.

The discretization ofUy and Vy is defined similarly with the choice of the stencil based on
S±(Vi,j).

4 Summary
In this paper, we presented a new approach for computing integrals along curves and
surfaces that are defined either implicitly by the distance function to these manifolds or
by the closest point mappings. We are motivated by the abundance of discrete point sets
sampled from surfaces using devices such as LIDAR, the need to compute functionals
defined over the underlying surfaces, as well as many applications involving the level set
method or the use of closest point methods.
Contrary to most other existing approximations using either smeared out Dirac delta

functions or locally obtained parameterized patches, we derive a volume integral in the
embedding Euclidean space which is equivalent to the desired surface or line integrals.
This allows for easy construction of higher-order numerical approximations of these
integrals. The key components of this new approach include the use of singular values of
the Jacobian matrix of the closest point mapping, which can be computed easily to high
order even by simple finite differences.
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