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Abstract

Inhomogeneous essential boundary conditions must be carefully treated in the
formulation of Reduced Order Models (ROMs) for non-linear problems. In order to
investigate this issue, two methods are analysed: one in which the boundary conditions
are imposed in an strong way, and a second one in which a weak imposition of
boundary conditions is made. The ideas presented in this work apply to the big realm
of a posteriori ROMs. Nevertheless, an a posteriori hyper-reduction method is
specifically considered in order to deal with the cost associated to the non-linearity of
the problems. Applications to nonlinear transient heat conduction problems with
temperature dependent thermophysical properties and time dependent essential
boundary conditions are studied. However, the strategies introduced in this work are of
general application.
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Background
Currently, many engineering problems of practical importance are suffering from the
so-called “curse of dimensionality” [1]. In this context, the need of optimising non-linear
multiphysics problems makes necessary to develop numerical techniques which can effi-
ciently deal with the high computational cost characterising such applications. A wide-
spread strategy is to consider the formulation of Reduced Order Models, which can be
implemented by adopting either the Proper Orthogonal Decomposition (POD) method
[2,3], or the proper generalised decomposition (PGD) technique [4,5]. The discussion
in this paper only considers POD-based ROMs, from now on referred to as ROMs. The
ideas presented here apply to the big realm of a posteriori ROMs, despite the fact that an a
posteriori hyper-reduction method, referred to as Hyper Reduced OrderModel (HROM),
is specifically considered in order to deal with the cost associated to the non-linearity of
the problems.
Inwhat follows, letSh ⊂ S andVh ⊂ V be the trial and test finite dimension subspaces of

the functional spaces S and V used in the definition of a variational problem. Generally, in
the formulation of ROMs, an approximate solution ̂Th to Th ∈ Sh is sought in a subspace
of Sh by defining a new basis X ∈ R

N×k , where N is the number of degrees of freedom
(DOFs) of the High Fidelity (HF) model and k is the dimension of the basis spanning
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the subspace of Sh. If a Bubnov-Galerkin projection is used, approximate versions ŵh ∈
span{X} of the test functions wh are built, and functions Th ∈ Sh are approximated by
affine translations of the test functions ŵh. In POD-based ROMs, the new basis X is built
by computing the singular value decomposition (SVD) [6] of a set of snapshots that are
given by time instances of the spatial distribution of the solution of a training problem
[7]. It is well-known that the vectors comprising this basis inherit the behaviour of the
snapshots [8], hindering the possibility of reproducing non-admissible test functions. That
is why careful attention must be paid on how the snapshots for building X are collected.
This issue is studied in detail in this work.
The concept of consistent snapshots collection procedures for nonlinear problems was

first introduced by Carlberg et al. [9,10]. As they pointed out in [10] “most nonlinear
model reduction techniques reported in the literature employ a POD basis computed
using as snapshots {Tn|n = 1, · · · , nt}1, which do not lead to a consistent projection”.
In the last expression nt is given by the number of time steps comprising the training
problem and Tn are the parameters such that Th

n = NTTn with N given by the shape
functions used for interpolation. The lack of consistency of these formulations is produced
by the fact that when computing the POD basis with time instances of Th, that is by
{Tn|n = 1, . . . , nt}, if non-zero essential boundary conditions are present, span{X} �⊂ Vh

because some elements v ∈ span{X} are not identically zero at the portion of the boundary
with non-homogeneous essential conditions.
Carlberg et al. [10] proposed two alternative procedures to collect snapshots for Th, for

which the following comments applywhen considering the general case of time dependent
essential boundary conditions:

• Snapshots of the form {Tn − Tn−1|n = 1, . . . , nt}. The problem with this strategy is
that the set of snapshots is characterised by a high frequency content, giving a less
compressible SVD spectrum [11] than when using a collection procedure based on
the snapshots of the solution. Another problem of this strategy is the handling of
time dependent essential boundary conditions. In this case, it cannot be guaranteed
that the snapshots will be identically zero at the boundary with essential boundary
conditions.

• Snapshots of the form {Tn − T 0|n = 1, . . . , nt}, where T 0 is the initial condition.
With this strategy it cannot be guaranteed that functions in span{X} will be test
functions, for instance, when essential boundary conditions are different from Th

0 .
Amsallem et al. [12] have observed that this strategy leads to more accurate ROMs
than the previous strategy. As it is discussed in that work, using a different initial
condition T∗

0 in the online stage requires in principle recomputing the snapshots for
reconstructing the POD modes for projection. Several fast alternatives to solve this
problem are proposed in [12].

Gunzburger et al. [13] presented two schemes for handling inhomogeneous essential
boundary conditions in the context of ROMs, without performing any additional treat-
ment to reduce the cost associated to non-linearities. They assumed that the Dirichlet
boundary is divided into a set of P non-overlapping portions where the involved field is

1For the sake of conciseness, in this work we do not consider the objective function Th to depend on a set of analysis
parameters μ. If this were the case, the snapshots collection strategies introduced herein apply directly just by applying
them to each of the training parameters μi .
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imposed as βp(t)gp(x), for p = 1, . . . , P, where gp are given functions and βp are time
dependent parameters. In a first approach, the solution is written in terms of a linear
combination of test functions vanishing in the portion of the boundary with essential
boundary conditions, and in terms of a linear combination of particular solutions of the
steady state version of the problem to be solved. In a second approach, they proposed to
express the solution in terms of a set of POD basis functions not vanishing on the Dirich-
let boundary, and adding a set of equations describing the essential boundary condition.
Then, they use the QR decomposition on the resulting system in order to obtain a set of
test functions vanishing on that boundary. These techniques proved to work well in the
context of ROMs [13]. However, in their work Gunzburger et al. did not consider any
particular treatment for reducing the cost associated to non-linearities. Besides, they did
not propose any methodology for dealing with the inherent computational cost of the
strong imposition of essential boundary conditions.
In the work of González et al. [1], the problem of imposing non-homogeneous essen-

tial boundary conditions in the context of a priori model order reduction methodologies
(PGD) is tackled. They imposed the Dirichlet conditions by constructing a global function
that verifies the essential boundary conditions, using the technique of transfinite interpo-
lation [14].A good example of interpolation functions is given by the inverse distance func-
tion, and as exposed by Rvachev et al. [14], different interpolation functions can be built
based on the theory of R-functions. Although the methodology presented by González et
al. is really appealing and show particular advantages in the PGD context, its use requires
large symbolic algebra computations, leading to very complex algebraic expressions even
in the case of quite simple academic problems that could hinder its application to practical
problems. In the current study, we are looking to develop physically-based techniques that
can be easily applied to domains coming from three-dimensional industrial problems.
In this work we analyse the treatment of time dependent inhomogeneous essential

boundary conditions from a general point of view, taking into consideration the costs
associated to non-linear problems and to the strong imposition of the essential bound-
ary conditions. Alternatives based on the weak imposition of the boundary conditions
are evaluated, combined with a reduction of the number of degrees of freedom at the
boundary. The presented ideas are applied to nonlinear transient heat conduction prob-
lems with temperature dependent thermophysical properties; however, the introduced
strategies are of widely general application.

Methods
This section describes first the problem statement and two variational formulations, one
weakly imposing Dirichlet boundary conditions and the other strongly imposing those
conditions. Then, anHROM that considers strong enforcement of boundary conditions is
presented. Finally, the formulation of two alternative HROMs that weakly impose Dirich-
let conditions is introduced.

Problem statement, variational formulation and finite element discretisation

The physical problem under consideration is a nonlinear transient heat conduction prob-
lem, with temperature dependent thermophysical properties. The problem is described
by the equation
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ρcṪ = Q + ∇ · (k∇T ) ∀ (x, t) ∈ � × (t0,∞) (1)

where ρ is the density, k is the thermal conductivity, c the heat capacity, T is the tem-
perature, Q is the external heat source per unit volume, and � is the space domain. The
temperature field should verify the initial condition T (x, t = 0) = T0 ∀ x ∈ �, where
T0 is the given initial temperature field. Additionally, the following set of conditions
must be verified at the disjoint portions �d,�q,�c of the external boundary: T |�d = Td ,
k∇T ·n|�q = qw and k∇T ·n|�c = hf (Tf −T ), where �d ∪�q ∪�c = ∂�, and where Td is
the imposed temperature at the boundary �d , qw is the external heat flow at the boundary
�q , hf is the heat convection coefficient,Tf is the external fluid temperature at the portion
the boundary �c and n is the outward normal to the boundary under consideration.
In what follows, we briefly present the variational formulation of the problem and

its finite element discretisation. Essential boundary conditions can be enforced strongly
or weakly. In order to strongly enforce Dirichlet boundary conditions, let S = {T ∈
H1(�) / T |�d = Td} be the space of trial solutions and V = {v ∈ H1(�) / v|�d = 0} be
the space of weighting or test functions, whereH1 is the first order Sobolev space. Then,
the variational formulation is given as follows: Find T ∈ S such that ∀w ∈ V

∫

�

w
[

ρc
∂T
∂t

− Q
]

d� +
∫

�

∇w · (k∇T ) d�

+
∫

�c
whf (T − Tf ) d� −

∫

�q
wqw d� = 0, for t > 0; (2)

∫

�

wT d� =
∫

�

wT0 d�, for t = 0.

Let Sh ⊂ S and Vh ⊂ V be subspaces of the trial and test functional spaces. Then,
in matrix notation, Th ∈ Sh is given by Th(x, tn) = NTTn, where N denotes the finite
element basis and Tn ∈ R

N denotes the FEM degrees of freedom, with N the dimension
of the FEM space. Then, using a Bubnov-Galerkin projection and a modified Backward-
Euler scheme for time integration, the residual of the nonlinear thermal problem in its
discrete expression reads [11]

Πn = H c
n − H c

n−1
�t

+ Gk
n + Fn − Qn = 0, (3)

where

Gk
n =

(∫

�

∇Nkn∇NT� +
∫

�c
hfnNNT d�

)

Tn, (4)

Fn = −
∫

�q
Nqwn d� −

∫

�c
hfnNTfn d�, (5)

Qn =
∫

�

NQn d�, (6)

H c
n =

∫

�

ρcnNNT d� Tn. (7)

In order toweakly imposeDirichlet boundary conditions, the use of Lagrangemultipliers
is adopted.The idea is to remove from the trial and test function spaces, the constraint over
the portion of the boundary corresponding to essential boundary conditions. Accordingly,
let V = {v ∈ H1(�)} be the space of trial and test functions for the temperature, and let
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Q = {q ∈ L2(�)} be the space of trial and test functions for the Lagrange multipliers.
Then, the variational formulation is given as follows: Find (T, λ) ∈ V × Q such that
∀(w, q) ∈ V × Q

∫

�

w
[

ρc
∂T
∂t

− Q
]

d� +
∫

�

∇w · (k∇T ) d� +
∫

�c
whf (T − Tf ) d�

−
∫

�q
wqw d� +

∫

�d

wλ d� +
∫

�d

q(T − Td) d� = 0, for t > 0; (8)
∫

�

wT d� =
∫

�

wT0 d�, for t = 0. (9)

As it was similarly done before, let Vh ⊂ V andQh ⊂ Q. Therefore, in matrix notation,
Th ∈ Vh and λh ∈ Qh are given by Th(x, tn) = NTTn and λh(x, tn) = N̄T

λn where N
denotes the finite element basis for the temperature field, and Tn ∈ R

N denotes the FEM
nodal degrees of freedom. Similarly, N̄ denotes the finite element basis for the Lagrange
multipliers, and λn ∈ R

Nλ denotes the parameters corresponding to the Lagrange multi-
pliers. Then, the residual characterising the FEM discretisation can be written as

Πn =
[

ΠTn

Πλn

]

=
⎡

⎣

H c
n − H c

n−1
�t

+ Gk
n + Fn + Bλ

n − Qn

BTd
n

⎤

⎦ = 0, (10)

where the new terms with respect to the previous formulation are given by

Bλ
n = Bλ(λn, tn) =

∫

�d

NN̄T d� λn (11)

BTd
n = BTd (Tn, tn) =

∫

�d

N̄NT d� Tn −
∫

�d

N̄Td d�. (12)

HROM formulation by strongly enforcing boundary conditions

The HROM associated to the formulation given by Eq. (3) is here introduced. Each non-
linear contribution toΠn is hyper-reduced separately as done byCosimo et al. [11]. There-
fore, each of these terms has associated a particular POD basisΦi for its gappy data recon-
struction [15–17]. In what follows, suffices i ∈ {c, k, f, q} are used to identify each term.We
emphasise that the sampling is performed independently for each term, but the number
of sampling points ns and the number of gappy modes ng are always the same for all of
them. Inwhat follows,̂ · denotes the vector of ns components sampled from the associated
complete term. To compute the POD modes Φi, snapshots are taken for each individual
contribution at each time step, after convergence of the Newton-Raphson scheme.
To obtain the hyper-reduced residual Π

p
n we project the gappy approximation to Πn

with the basis X , which leads to

Π
p
n = Ac

̂H c
n − ̂H c

n−1
�t

+ Ak̂G
k
n + Af ̂Fn − Aq̂Qn, (13)

where Ai = XTΦi(̂Φ
T
i ̂Φi)−1

̂Φ
T
i , with i ∈ {c, k, f, q}. Note that matrices Ai are computed

in the off-line stage.
In what follows, a consistent snapshot collection strategy for X taking into account

general essential boundary conditions is introduced.When solving the variational problem
givenbyEq. (2) in afinite dimensional space, an approximate solutionTh ∈ Sh is described
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as Th = Th
d + vh, where vh ∈ Vh and Th

d is the finite dimensional version of Td . Then, the
trial solutions Th and the test functions wh are given by

Th = Th
d + vh = N I,TT I

n + NB,TTB
n , (14)

wh = N I,Tη, (15)

where η are the parameters associated to the test functions and the DOFsTn are discrimi-
nated in terms of parameters describing the boundarywithDirichlet boundary conditions,
TB, and the DOFs T I that are not part of that boundary. Functions N I and NB are the
FEM shape functions associated to the internal and boundary DOFs, respectively.
Functions with global support are used in the context of ROMs, in contrast to FEMbasis

functions whose support is local. Therefore, the notion of internal/boundary degrees of
freedom is lost in ROMs, making it necessary to express Th and wh as

Th 
 ̂Th = Th
d + NTXan, (16)

wh 
 ŵh = NTXwn, (17)

where an and wn are the amplitudes associated to the modes X .
In order to get admissible test functions ŵh, the restriction ŵh|�d = 0 must be satisfied.

That is why, for the design of a consistent snapshot collection strategy, the snapshots
must be of the form T − Td . Then, the problem resides in the correct description of Th

d .
A possible solution is to describe it as in standard FEM, i.e., Th

d = NB,TTB
n , but this could

lead to a snapshots set with a very high frequency content, decreasing the compressibility
of the signal [11].
In order to avoid this inconvenience, we propose to compute a set of static modes that

describe the behaviour of the portion of the boundary with essential boundary conditions.
The procedure is similar to that followed by the Craig–Bampton or by the Guyan–Irons
methods [18–21]. Since we want to build a set of static modes to describe the boundary,
we consider only the term Gk in Eq. (3). Simplifying notation, this term at time instant tn
is given by Gk = KT , where K is any linearisation of the stiffness matrix and T ≡ Tn.
We can neglect non-linearities at this point because we are only interested in finding a
basis for expressing the essential boundary conditions. Then, by partitioning in internal
and boundary DOFs, we write:

Gk = KT =
[

K II K IB
K BI K BB

] [

T I

TB

]

= 0, (18)

from which we get by static condensation T I = −K−1
II K IBTB. In this case T I can be

regarded as the response to an imposed temperature TB in the portion of the boundary
where only the termGk is considered. Then, the staticmodes, which describe the response
to unit temperatures imposed at �d , are given by

ΦB =
[

−K−1
II K IB
I

]

, (19)

and the function Th
d used to denote the essential boundary conditions is assumed to

lie in span{ΦB}. We remark that this procedure is similar to the method proposed by
Gunzburger et al. [13] that considers particular solutions derived from the steady state
version of the system of equations, but interpreted from a different perspective.
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Then, the approximation ̂Th is given by ̂Th = NTΦBTB
n +NTXan 
 Th. Note that the

static modes ΦB have the property to be interpolatory at the boundary �d , thus TB
n has

the physical interpretation to be the value of the field at the nodes lying on �d .
From this equation the following snapshots collection procedure arises: once the static

modes were computed, take snapshots of the form Sp = {Tn −ΦBTB
n |n = 1, . . . , nt}. This

strategy has the following advantages:

• The snapshots given by Sp tend to preserve the compressibility posed by the field Th.
• General essential boundary conditions can be represented by ΦB, while keeping sim-

ple theprocess of imposing essential boundary conditions because of the interpolatory
property of ΦB at �d .

• Using different initial conditions in the online stage does not require recomputing
the snapshots for X or considering another alternative.

It should be observed that the computational cost increases with the number of static
modes. This is because, on eachNewton iteration, the temperature fieldmust be computed
at least on thenodes involvedby the gappydataprocedure.That is, the cost of theoperation
ΦBTB

n can be very high if a large number of staticmodes is used. In theworst case scenario,
the number of staticmodes is given by the number of DOFs at the portion of the boundary
with essential boundary conditions. In some cases, additional assumptions can be adopted
to reduce the number of static modes. For instance, if the shape of the essential boundary
condition does not change in time in some portion �θ

d of �d , a new static mode � can
be built by summing up all the static modes with support on �d times the considered
shape factor. A more general alternative is to describe the behaviour of the boundary by
additionally approximating the boundary parameters TB

n by TB
n = �Bdψ

n , where �B are
POD modes computed from a set of snapshots representative of the behaviour of the
boundary, and dψ

n are the associated parameters. It should be noted that this kind of idea
was already applied in substructuring of linear problems [22,23].

Remark 1 In the examples section, all the static modes associated to the portion of the
boundary with essential boundary conditions are retained, and no other approximation is
applied to the boundary DOFs.

HROM formulation by weakly enforcing boundary conditions

Two alternative HROMs associated to the formulation given by Eq. (10) are now intro-
duced, aimed at reducing the temperature DOFs Tn and Lagrange multipliers λn. In the
first one, [Tn;λn] is reduced as a unit like [Tn;λn] = Xccn, where the POD modes Xc

are built from a set of snapshots composed by the temperature field and the Lagrange
multipliers, and cn denote the associated parameters. A second alternative is to reduce
each physical quantity separately like Tn = Xan and λn = Ybn, where X and an are the
PODmodes and the parameters associated to the temperature field, and Y and bn are the
POD modes and the parameters associated to the Lagrange multipliers. From a general
point of view, weakly enforcing boundary conditions has the following advantages with
respect to the use of static modes to represent essential boundary conditions:

• Test functions for the temperature field are not required to meet the constraint
T |�d = 0.
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• Aspreviously introduced, the cost of computing theproductΦBTB
n canbe apenalising

factor when a large number of staticmodes is required. By using Lagrangemultipliers,
this problem can be avoided.

When adopting the first option, the residual Πn given by Eq. (10) is projected to the
space spanned by Xc and each term is separately hyper-reduced as done in [11], and the
expression is quite similar to the one given by Eq. (13) but taking into account the terms
involving the restriction over the Dirichlet boundary.
In the second approach proposed in this section, each term of the residual Πn from Eq.

(10) is projected separately according to
[

Π
p
Tn

Π
p
λn

]

=
[

XTΠTn

Y TΠλn

]

(20)

Then, again, each contribution is separately hyper-reduced following the work of Cosimo
et al. [11]. It should be observed that this option is more difficult to implement than the
process of reducing [Tn;λn] as a unit: the DOFs must be partitioned into temperature
DOFs and Lagrange multipliers, which complicates the implementation of the gappy data
procedure as these two different unknowns are represented by two different vectors.

Remark 2 The techniques presented here apply to higher order problems as well. For
instance, let us consider a fourth order one-dimensional problem in which Hermite poly-
nomials are used in the FEMdiscretisation. In the case of imposing the essential boundary
conditions strongly, the procedure for computing static modes is applied exactly in the
same way as described before, with static modes obtained by imposing unit displacements
and unit rotations at the boundary. In the case of imposing weakly the essential boundary
conditions, the only difference with the thermal case is that we will have independent
Lagrange multipliers fields for each degree of freedom. We note finally that an extension
to fourth order problems of the techniques presented in [1] in the context of the a priori
reduced order method PGD, was proposed by Quesada et al. [24].

Results and discussion
We will show the application of the proposed snapshot collection strategies to two non-
linear transient heat conduction problems with time dependent essential boundary con-
ditions. To assess the performance and robustness of the proposedmethods, we study the
relative error introduced by the HROM. The relative error ε characterising the HROM
as a function of time is measured as ‖TR−TH‖

max
t

‖TH‖ , where TR is the solution obtained with the

HROM, TH is the High Fidelity solution for same problem and ‖ · ‖ denotes the L2 norm.
Tri-linear hexahedral elements are used in the examples to interpolate the temperature
field. The Lagrange multipliers field is interpolated with bi-linear quadrilateral elements.
In what follows, np is used to denote the number of PODmodes for Tn, and nλ is used to
denote the number of POD modes for λn.

Example 1

This example has been presented by Gunzburger et al. [13]. It consists of a linear transient
heat conduction problem with ρ = k = c = 1 and with a non-linear heat source equal
to Q(T ) = −T 2. The domain to be analysed is a 1 × 1 × 0.1428 cuboid. It is discretised
using tri-linear hexahedral elements with a total of 675 degrees of freedom. A time step
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�t = 0.01 is used for the time interval [0, 1]. The body is initially at temperature T0 = 0.
A time dependent essential boundary condition, Td(x, t), is imposed, given by

Td(x, t) ≡ Td(x, y, z, t) =

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

2t4x(1 − x) if y = 1 ∧ 0 ≤ t < 0.5,

2(1 − t)4x(1 − x) if y = 1 ∧ 0.5 ≤ t ≤ 1,

4(t − t2)4x(1 − x) if y = 0 ∧ 0 ≤ t ≤ 1,

| sin(2π t)|4y(1 − y) if x = 0 ∧ 0 ≤ t ≤ 1,

| sin(4π t)|4y(1 − y) if x = 1 ∧ 0 ≤ t ≤ 1.

The sides z = 0 and z = 0.1428 of the domain are insulated. Different time instants of the
High Fidelity solution of the problem can be observed in Fig. 1. A total of 20 gappy points
and 20 gappy modes were used in all cases.
The error obtained using static modes to represent the essential boundary condition

can be observed in Fig. 2, where different numbers of projection modes were considered.

Fig. 1 High fidelity solution of Example 1
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Fig. 2 Relative error for Tn when using static boundary modes, for various numbers of POD modes
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As it can be seen, good results are obtained. Additionally, the results are comparable to
the ones obtained by Gunzburger et al.
We have two alternatives for weakly imposing the essential boundary conditions.When

reducing Tn and λn as a unit, the error behaves as shown in Fig. 3. Although the obtained
results seem to be quite good, we remark that convergence is not achieved for the cases
np < 7, np = 10 and np = 11. Monotone convergence, for any number of projection
modes, is achieved only when using 12 ormoremodes. This behaviour is related to the fact
that the temperature field must have enough freedom to be able to meet the restrictions
imposed by the Lagrange multipliers.
The error obtained when reducing Tn and λn separately can be observed in Fig. 4.

In these tests, we took nλ = 4. It should be kept in mind that np should be greater
than nλ, otherwise Tn will not have enough freedom to satisfy the restrictions. In this
case, convergence can be achieved for np ≥ 4, but a good approximation error to the
temperature field is observed for np ≥ 7. We remark that when nλ > 4 in this numerical
experiment, a bad conditioning of the reduced iteration matrix was obtained. A pivoting
strategy was used to get convergence, with elimination of the equations associated to zero
pivots, and it was observed that most of the time the constraint equations corresponding
to modes higher than four were eliminated.
When comparing the three different alternatives, it is observed that the lowest error

option is when using static modes. Nevertheless, the cost is higher than in the strategies
that impose the Dirichlet boundary conditions weakly. Concerning the two latter alter-
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Fig. 3 Relative error for Tn and λn multipliers when reducing them as a unit
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Fig. 4 Relative error for Tn and λn multipliers when reducing them separately
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natives, it is observed that the strategy of reducing Tn and λn as a unit leads to the lowest
errors, for the same number of reduced DOFs. For example, when using that alternative
with np = 12 the error for the temperature field is O(10−4), but when reducing Tn and
λn separately with np = 8 and nλ = 4, the error is O(10−3). The approximation error to
λn is always lower when reducing Tn and λn as a unit. However, as seen in the numerical
experiments, the number of POD modes needed to describe Tn and λn as a unit must
be fairly large in order to provide enough freedom to the temperature field to satisfy the
restrictions imposed by the Lagrange multipliers.

Example 2

Weconsider next a non-linear transient heat conduction problem,where the heat capacity
is c = 0.1792 T + 495.20 and the thermal conductivity is k = 0.25 T + 70. The material
density is ρ = 1. The domain to be analysed is a π × π × 0.4487 cuboid. It is discretised
using tri-linear hexahedral elements with a total of 675 degrees of freedom. A time step
�t = 1 is used for the time interval [0, 600]. Thebody is initially at temperatureT0 = 1200.
A time dependent essential boundary condition is imposed on side x = 0. The other sides
of the domain are insulated. The essential boundary condition Td(x, t) is given by

Td(x, t) = T0
e−t/600 − 1
e−1 − 1

cos
(

γτ

2
+ π t

300

)

cos(πγτ ) + T0, γτ = 26π t
600

+ y
2
.

Different time instants of the High Fidelity solution of the problem can be observed in
Fig. 5. A total of 60 gappy points and 60 gappy modes were used in all cases, except for the
equations corresponding to the Lagrangemultipliers when reducingTn and λn separately,
where five gappy points and modes were used.
The results obtained for the different schemes can be observed in Figs. 6, 7 and 8. Similar

comments as in the previous example apply in this case. We remark that the scheme that
weakly imposes the Dirichlet boundary conditions and that reduces Tn and λn as unit,
begins to converge for np ≥ 13.

Fig. 5 High Fidelity solution of Example 2
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Fig. 6 Relative error for Tn when using static modes
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Fig. 7 Relative error for Tn and λn multipliers when reducing them as a unit
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Fig. 8 Relative error for Tn and λn multipliers when reducing them separately

Conclusion
Several alternatives for building Hyper-Reduced Order Models to solve nonlinear ther-
mal problems with time dependent inhomogeneous essential boundary conditions were
analysed and compared.
One strategy considers the use of static modes for strongly imposing the boundary

conditions. This approach is similar to the method presented by Gunzburger et al. [13]
who proposed to use particular solutions instead of static modes. A good behaviour was
obtained by using static modes and the results were comparable to the ones obtained by
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Gunzburger et al. Even though thismethod proved to be a robust technique for describing
essential boundary conditions, the associated computational cost is high for models that
require a large number of static modes.
In order to work out the disadvantages of the static modes approach, two other alter-

natives that are based on a weak imposition of the essential boundary conditions were
studied. One alternative consists in reducing the primal and the secondary fields as a unit,
while the other consists in reducing them separately. It was observed that, for the same
number of reduced DOFs, the former approach led to the lowest errors for the primal
(temperature) field. The performed numerical experiments also made evident that the
number of POD modes used for describing the primal and the secondary fields as a unit,
must be large enough in order to provide enough freedom to the primal (temperature)
field to satisfy the restrictions imposed by the Lagrange multipliers.
In a future work, the case with time dependent variation of the support of the essential

boundary conditions will be studied.
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