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Spectral reconstruction of signals from
periodic nonuniform subsampling based
on a Nyquist folding scheme
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Abstract

Periodic nonuniform sampling occurs in many applications, and the Nyquist folding receiver (NYFR) is an efficient, low
complexity, and broadband spectrum sensing architecture. In this paper, we first derive that the radio frequency (RF)
sample clock function of NYFR is periodic nonuniform. Then, the classical results of periodic nonuniform sampling
are applied to NYFR. We extend the spectral reconstruction algorithm of time series decomposed model to the
subsampling case by using the spectrum characteristics of NYFR. The subsampling case is common for broadband
spectrum surveillance. Finally, we take example for a LFM signal under large bandwidth to verify the proposed
algorithm and compare the spectral reconstruction algorithm with orthogonal matching pursuit (OMP) algorithm.
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1 Introduction
Under the condition of modern information warfare,
reconnaissance receiver faces the gradually complex
electromagnetic environment; accompanied by diversifi-
cation of electromagnetic radiation sources and coexist-
ence of jamming and anti-jamming. The features of
received signals are wide time-frequency-space domain,
waveform complexity, and large dynamic range. So to
speak, the problem is receiving and dealing with the
wideband signals. In recent years, with the rapid devel-
opment of radar technology, the range of the frequency
spectrum is from 5 MHz to 95 GHz and enlarges
gradually [1]. The existing reconnaissance receiver can-
not match the coverage of radar because of the limited
sampling rate and precision of analog-to-digital con-
verter (ADC) [2]. Therefore, how to solve this problem
becomes a focus.
Reconnaissance receiver as a channelized receiver [3, 4],

in general, is based on the Nyquist theorem for design of
the data acquisition of wideband signals [5]. And Nyquist
rate is only a necessary but not sufficient condition for sig-
nals recovered accurately [6]. For another, nonuniform

sampling exists extensively in the practical system of non-
ideal and compressed sensing (CS) theory as a typical
example of nonuniform sampling. The research in analog-
to-information (A2I) conversion is still limited in proto-
type and numerical simulation [7]. And there are some
requirements for the sparse characteristic of the received
signals based on CS [8–11].
Periodic nonuniform sampling introduces enough

nonuniform to differentiate the frequency band of the
received signals, whose randomness of sampling is
between uniform sampling and random sampling. JENQ
presents the detailed Fourier spectrum and digital
spectrum of periodic nonuniformly sampled signals by a
time series decomposed model [12], and its spectral
reconstruction algorithm under the Nyquist theorem
described in the reference [13]. Similarly, the fractional
Fourier spectrum of periodic nonuniformly sampled
signals and the fractional spectral reconstruction are
discussed by Ran Tao [14, 15], for linear frequency
modulation (LFM) signals. However, the spectral recon-
struction of periodic nonuniform subsampling based
on Fourier or fractional Fourier has not been reported
by far.
Nyquist folding receiver (NYFR) [16] is a secondary

sampling scheme as shown in Fig. 1. It modulates
multiple Nyquist zones first by a stream of short pluses.

* Correspondence: jiangkelly@foxmail.com
School of Electronic Engineering, University of Electronic Science and
Technology of China, Qingshuihe Campus, No.2006, Xiyuan Ave, West
Hi-Tech Zone, Chengdu, Sichuan, China

EURASIP Journal on Advances
in Signal Processing

© The Author(s). 2017 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to
the Creative Commons license, and indicate if changes were made.

Jiang et al. EURASIP Journal on Advances in Signal Processing  (2017) 2017:20 
DOI 10.1186/s13634-017-0458-z

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Crossref

https://core.ac.uk/display/194323379?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://crossmark.crossref.org/dialog/?doi=10.1186/s13634-017-0458-z&domain=pdf
http://orcid.org/0000-0003-3478-7916
mailto:jiangkelly@foxmail.com
http://creativecommons.org/licenses/by/4.0/


And we show that the first radio frequency (RF) sampling
of the NYFR is periodic nonuniform. Then, the modulated
signals through a low-pass interpolation filter and
digitized by ADC as the second sampling. The reference
[17] shows the spectral reconstruction of multiple single
frequency signals of NYFR by OMP. And they use re-
stricted isometry property (RIP) constantly to determine
the amount of sparsity needed for signal recovery as
shown in reference [18]. Rather in the reference [19], the
NYFR architecture is analyzed based on the RIP and block
RIP; then, the output signal is recovered by block CS
algorithm. Meanwhile, the signal detection and parameter
estimation algorithms are studied in references [20, 21]. In
this paper, we will give the spectral reconstruction
algorithm of periodic nonuniform subsampling based on
this architecture.

2 Periodic nonuniform sampling
NYFR folds broadband RF inputs to a low-pass
interpolation filter with a steam of short pluses. The
time of the short pluses corresponds to zero-crossing
rising time of the RF sample clock function, and the
modulated phase of the RF sample clock function may
be sinusoid frequency modulation (SFM), linear fre-
quency modulation (LFM), etc. Then, the RF sample
clock function can be assumed as

p tð Þ ¼ sin 2πf st þ θ tð Þð Þ ð1Þ

where fs is the average sampling frequency, and θ(t) is
the phase modulation function.
The following section provides a proof that NYFR is a

periodic nonuniform sampling scheme, which means the
RF sample clock function is periodic nonuniform. In this
paper, we assume θ(t) is a sinusoid function as an
example. Note that the proof is fit for the other phase
modulation function. So the RF sample clock described
in Eq. (1) can be rewritten as follows:

p tð Þ ¼ sin 2πf st þ sin 2πf θtð Þð Þ ð2Þ

where fθ is the frequency of the sinusoid phase modula-
tion function.

2.1 Periodicity
Assuming the stream of short pluses changed periodicity
with T′, then

p t þ T ′ð Þ ¼ sin 2πf s t þ T ′ð Þ þ sin 2πf θ t þ T ′ð Þð Þð Þ
¼ sin 2πf st þ 2πf sT ′ þ sin 2πf θt þ 2πf θT ′ð Þð Þ

ð3Þ

Following reference [16] with fs≫ fθ, assuming fs =
Mfθ (M ∈ Z), it is shown that T′ = 1/fθ and

p t þ T ′ð Þ ¼ sin 2πf st þ 2πf s=f θ þ sin 2πf θt þ 2πð Þð Þ
¼ sin 2πf st þ 2πM þ sin 2πf θt þ 2πð Þð Þ
¼ sin 2πf st þ sin 2πf θtð Þð Þ
¼ p tð Þ

ð4Þ

If fs ≠Mfθ (M ∈ Z), of course, the sampling period is
flcm = lcm{ fs, fθ}, that is to say the least common mul-
tiple (LCM) of { fs, fθ} when fs is not multiple of fθ.
Thus, T′ = 1/flcm = 1/(lsfs) = 1/(lθfθ) and then the p(t +T′)
can be expressed as

p t þ T ′ð Þ ¼ sin 2πf s t þ T ′ð Þ þ sin 2πf θ t þ T ′ð Þð Þð Þ
¼ sin 2πf st þ 2πf s= lsf sð Þ þ sin 2πf θt þ 2πf θ= lθf θð Þð Þð Þ
¼ sin 2πf st þ 2π=ls þ sin 2πf θt þ 2π=lθð Þð Þ

ð5Þ

Besides, considering an extreme case, if fs and fθ are
co-prime, which will introduce much randomization,
whose randomness of sampling is between uniform
sampling and random sampling. Then, the influence of
aliasing will be suppressed, and the original information
of inputs will be more complete at the cost of increased
algorithm complexity.
The focus of this paper is not on how to set the

parameter of NYFR more suitable. However, it is given a
further understanding of NYFR architecture based on
periodic nonuniform sampling.

2.2 Nonuniformity
The zero-crossing rising time tn of the RF sampling
clock function p(t) can be viewed as

Fig. 1 The Nyquist folding receiver architecture
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XN
n¼0

2πδ t−tnð Þ ¼ zcr sin 2πf st þ sin 2πf θtð Þð Þf g ð6Þ

where zcr{⋅} denotes sampling of the zero-crossing rising
time and N is the number of samples. And the phase
can be denoted as

ϕ tð Þ ¼ 2πf st þ sin 2πf θtð Þ: ð7Þ
Figure 2 is the sketch of sinusoid frequency modulated

phase ϕ changes with time t. The sine curve② is
sin(2πfθt) and with a slope is 2πfs = tan(φ)≫ 1, which
means the rotation angle value is φ > 45°. And its projec-
tion along the time axis is nonuniform as shown in
curve of ①. Note that the projection of sinusoid phase
modulation function is uniform when φ = 0° or 45°.
In summary, the stream of short pluses from sinusoid

phase modulation function is periodic nonuniform,
whose average sampling frequency is fs = 1/T as shown
in Fig. 3. Conveniently, choosing fs =Mfθ (M ∈ Z), we
can get the period of the short pluses MT . Then, the
NYFR is periodic nonuniform sampling via the short
pluses directly, and there are M samples in one period.

3 Spectral reconstruction of NYFR
In the abovementioned that the RF sample clock
function of NYFR is periodic nonuniform, the RF inputs
s(tn) are sampled in NYFR that can be represented as

s tnð Þ ¼ s tm þ lMTð Þ ð8Þ

where m ∈ {0, 1, 2,…,M − 1} is the index of sample time
in one period, l ∈ {0, 1,…, ceil(N/M) − 1} is the index of
period, and ceil(⋅) denotes round up. And tm =mT − rmT
as shown in reference [12].
As we know that the sample time tm can be taken as

the phase ϕ(t) crosses multiple of 2π, we have

2πf stm þ sin 2πf θtmð Þ ¼ 2πm ð9Þ

and then

tm ¼ 2πm− sin 2πf θtmð Þ
2πf s

ð10Þ

Substituting (10) and tm =mT − rmT into the Eq. (6) by
reference [13], we have

~A lð Þ ¼ 1
M

XM−1

m¼0

e−jlrm
2π
Me−jlm

2π
M ¼ 1

M

XM−1

m¼0
e−jl2πf θtm

¼ 1
M

XM−1

m¼0

e
−jl2πf θ

2πm− sin 2πf θtmð Þ
2πf s

� �

¼
XM−1

m¼0

1
M

eþj
l
M

sin 2πf θtmð Þ
 !

e−jl
2π
M

m

ð11Þ

Eq. (11) means that Ã(l) is the Fourier transform of
the sinusoid modulation function. To simplify Ã(l), we
use Eq. (7) as shown in reference [16]. In the equation,
p(t) is a pulse model, and k represents the index of
Nyquist zone (NZ) from zero to κ, where κ denotes the
number of NZ by NYFR covered. So k can be obtained
from l, that is to say k = ⌊(l +M/2)/M⌋ ∈ Z and ⌊ ⋅ ⌋
denotes floor.

As signal modulation theory’s point of view, 2πf sX
k
ejk 2πf stþθ tð Þ½ � can modulate the RF inputs again with-

out convolution with p(t). So the expression of Ã(l) can
be simplified to

~A lð Þ ¼
XM−1

m¼0

1
M

eþjk sin 2πf θtmð Þ
� �

e−jl
2π
Mm ð12Þ

when −M/2 + 1 ≤ l <M/2, the index of NZ is k = ⌊(l +
M/2)/M⌋ = 0; likewise, when M/2 + 1 ≤ l < 3M/2 corre-
sponds to k = ⌊(l +M/2)/M⌋ = 1, et al. And the analysis
object turns from a point into a zone.

Using the Jacobi identity
Fig. 2 The sinusoid frequency modulation phase changes with time
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exp jυ sinβð Þ ¼
Xþ∞

ν¼−∞

Jν υð Þ exp jνβð Þ ð13Þ

we can get

~p tð Þ ¼ 2πf s
Xκ
k¼0

Xþ∞

ν¼−∞

Jν kð Þ exp j2πf skt þ j2πf θνtð Þ

ð14Þ

Finally, we can obtain some important properties of
the spectrum of ~p tð Þ . The spectrum is centered on the
multiple of the average sampling rate fs, and the edge
frequencies separated by the amount of fθ. The ampli-
tudes of its edge frequencies satisfy Bessel’s function.
Moreover, each NZ of the spectrum comprises M lines
spaced on the frequency axis f uniformly, and the
maximum magnitude is related with the index number
of NZ as shown in Fig. 4 below.
Based on such a feature, we will extend the spectral

reconstruction algorithm of JENQ which is based on
time series decomposed model to subsampling. Now, let
us consider an arbitrary input frequency ω0, which
limited to ((−1 + 2kH)πfs, (1 + 2kH)πf] where kH = round
(fc/fs) is the index of NZ of the input, and the reduction
of the summation range which as the Eq. (7) proposed

in reference [13] relates to the number of NZ by the
band-limited input covered. So the matrix form (8) in
the same reference can be changed as

~S ω0ð Þ ¼ ASa ω0ð Þ=T ð15Þ
where the vector ~S ω0ð Þ is the digital spectrum of
periodic nonuniformly subsampled signals, and it is
expressed as

~S ω0ð Þ ¼
"
~S ω0ð Þ; ~S ω0 þ 2π

MT

� �
; ~S ω0 þ 2

2π
MT

� �
;…;

~S ω0 þ M−1ð Þ 2π
MT

� �#
M�1

T

ð16Þ
The amplitude matrix A is

A ¼

A
M
2
þ kHM

� �
A

M
2
þ kHM−1

� �
⋯ A −

M
2
þ kHM þ 1

� �

A
M
2
þ kHM þ 1

� �
A

M
2
þ kHM

� �
⋯ A −

M
2
þ kHM þ 2

� �
⋮ ⋮ ⋱ ⋮

A
M
2
þ kHM þM−1

� �
A

M
2
þ kHM þM−2

� �
⋯ A

M
2
þ kHM

� �

2
666666664

3
777777775
M�M

ð17Þ
The vector Sa(ω0) is the Fourier spectrum of the

original input signals, and it is expressed as

Fig. 4 The spectral of a stream of periodic nonuniformly short pluses

Fig. 3 The RF sampling clock function with sinusoid phase modulated and the stream of short pluses

Jiang et al. EURASIP Journal on Advances in Signal Processing  (2017) 2017:20 Page 4 of 7



Sa ω0ð Þ ¼

Sa ω0−
M
2
þ kHM

� �
2π
MT

� �

Sa ω0−
M
2
þ kHM−1

� �
2π
MT

� �
⋮

Sa ω0− −
M
2
þ kHM þ 1

� �
2π
MT

� �

2
666666664

3
777777775
M�1

ð18Þ

Then, the original signal spectrum can be obtained by
the following equation:

Sa ω0ð Þ ¼ TA−1~S ω0ð Þ ð19Þ

It is noted that the matrix A is column orthogonality,
and then, the matrix A− 1 exists certainly. However, we
need to reevaluate the matrix for each different index
value of NZ. Finally, by choosing different value of ω0,
we can get enough uniformly sampled points of the

original signal spectrum. And by scanning kH from zero
to κ, we can reconstruct the spectrum of NYFR.

4 Simulation results and discussion
We take an example for a LFM signal under large band-
width to show the validity of the proposed method. And
the simulation settings are listed in the Table 1.
It is assumed that NYFR covers ten Nyquist zones,

then the coverage of NYFR spectrum surveillance is
from −5GHz to 5GHz. The spectrum of the LFM signal
and its OMP reconstruction is shown in Fig. 5. We can
see that the signal is not sparse in frequency domain,
and the accurate reconstruction cannot be implemented
by the existing CS algorithms.
In Fig. 6, the Fourier spectrum of the received LFM

signal which limited to only one NZ is shown in (a); and
for the index of NZ of this signal is kH = 4, the digital
spectrum of periodic nonuniform subsampling is shown
in (b); and the figure (c) proved that the proposed spec-
tral reconstruction algorithm is useful. Then, calculating
the reconstruction error by 100 times of Monte Carlo
experiment is 0.0084, where root-mean-square is used to
define the reconstruction error as follows:

ε ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXN−1

n¼0

Sa ωnð Þ−~S ωnð Þ�� ��2 !
=N

vuut ð20Þ

(a)Fourier spectrum of uniform sampling

Fig. 5 The NYFR spectrum surveillance and its reconstruction

Table 1 The simulation settings table

Average sampling frequency fs 1 GHz

Sinusoid modulation frequency fθ 10 MHz

Simulation points N 1000 points

Amplitude of LFM A0 1

Initial phase of LFM φ0 0

Initial frequency of LFM f0 3.52 GHz

Bandwidth of LFM B0 0.95 GHz

Modulation rate of LFM k0 9.5e6 GHz
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(b)Digital spectrum of periodic nonuniform subsampling
(c)Spectral reconstruction

5 Conclusions
NYFR is an efficient A2I conversion model, and its
spectral reconstruction can use the traditional CS
recovery algorithms. However, if the signal is not
sparse in frequency domain as shown in simulation,
the existing CS algorithms as OMP cannot recon-
struct the received signal accurately. In this paper, we
first derive that the RF sample clock function of
NYFR is periodic nonuniform. Then, the classical
results of periodic nonuniform sampling are applied
to NYFR. We extend the spectral reconstruction
algorithm of time series decomposed model to the
subsampling case by using the spectrum characteris-
tics of NYFR. And finally, we take an example for a
LFM signal under large bandwidth to verify the
proposed algorithm and compare the spectral recon-
struction algorithm with OMP algorithm. But for the
influence of noise, the parameter estimation of wide-
band LFM signals will be more difficult. In the future
work, we will study the fractional spectrum recon-
struction of periodic nonuniform subsampling and
their applications.
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