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calibration for automotive engines via the
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Abstract

When using the convex hull approach in the boundary modeling process, Model-Based Calibration (MBC) software
suites – such as Model-Based Calibration Toolbox from MathWorks – can be computationally intensive depending on
the amount of data modeled. The reason for this is that the half-space representation of the convex hull is used. We
discuss here another representation of the convex hull, the vertex representation, which proves capable to reduce the
computational cost. Numerical comparisons in this article are executed in MATLAB by using MBC Toolbox commands,
and show that for certain conditions, the vertex representation outperforms the half-space representation.

Keywords: Convex hull, Boundary modeling, Optimization, Model-based calibration, Automotive engine,
MBC toolbox

1 Introduction
Model-Based Calibration (abbr. MBC) is a systematic
approach for more cost-effective and short-term devel-
opment of automotive engines, that enables engineers to
design more efficient automotive engines, e.g., more fuel-
efficient and/or eco-friendly engines. For efficient design
of automotive engines, mathematical models for automo-
tive engines are created in MBC, and statistics and opti-
mization are applied to the model by usingMBC software,
such as [10].
Boundarymodeling is one of the processes inMBC used

to represent/approximate a region where the automotive
engine works normally, e.g., without misfire and knock
of the engine. We call the region the admissible opera-
tion domain (abbr. AOD). In general, as it is assumed that
internal-combustion engines are highly nonlinear sys-
tems, it is impossible to exactly represent the AOD of the
automotive engine from a finite number of acquired data.
Thus one approximates the AOD instead of representing
it exactly. One of the approximations of AOD is to use
the convex hull of a set of data. This is a simple way to
approximate AOD from data and is implemented in MBC
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software, such as [10]. In addition to the convex hull, the
use of support vector machine for the approximation of
AOD is also proposed in [7].
An AOD is used as a constraint in constrained opti-

mization problems. One can assume that some of optimal
solutions will lie on the boundary of the feasible region,
otherwise the constraints would be irrelevant. That is
why a proper handling of AODs is important in engine
optimization problems.
The motivation of this article comes from the comment

in [5] that some of the MBC software suites spend much
computational time constructing a convex hull boundary
model. In general, two representations for the convex hull
of a set of points are possible, the half-space representation
and the vertex representation. The reason for the comment
was that the half-space representation for the convex hull
of a set of points is typically used by software like MBC
Toolbox, instead of the vertex representation.
The contribution of this article is to propose the use

of the convex hull in the vertex representation instead of
the half-space representation. In practice, the former rep-
resentation seems to perform better than the latter. In
fact, the numerical comparison in this article shows that
the vertex representation is less computationally intensive
than the hyperplane representation in the case when the
dimension of inputs for engine models is more than five.
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The organization of this article is as follows: convex
hull modeling theory is discussed in Section 2. Section 3
provides an application of the vertex representation of
the convex hull and numerical experiments. Conclusion
is given in Section 4. Throughout this article, we assume
that the measured engine data was acquired by keeping
the engine under test at steady condition by controlling its
inputs.

2 Preliminaries
We give a brief introduction on boundary modeling via
the convex hull in Section 2.1, and some definitions and
facts on the convex hull for a set of points in Section 2.2.
Refer to [2, 4] for more details regarding the convex hull
mathematical representation.

2.1 Boundary modeling in model-based calibration
The behavior of automotive engines is represented by the
state space representation. One of the simplest formula-
tions is as follows:{ dx

dt = f (x,u),
y = g(x,u),

where t is time, x,u and y are vectors which represent
the state of the automotive engine, the input signals into
the engine and the output signals from the engine, respec-
tively.
Control theory, statistics and optimization are applied

to such mathematical models of automotive engines to
design more fuel-efficient and/or eco-friendly engines.
MBC is a systematic approach for aiding such an efficient
design of automotive engines and consists of some pro-
cesses, such as the design of experiments and the response
surface methodology.
Boundary modeling is a functionality used in MBC, and

is applied to define an AOD for a mathematical engine
model. Input signals for automotive engines under devel-
opment have specific operating ranges and dynamics.
In addition, automotive engines may not behave nor-
mally when some specific input signals are used, lead-
ing to undesirable events such as misfire and knock
of the engine. In boundary modeling, one approxi-
mates/represents a region of input signals where auto-
motive engines behave normally, e.g., without misfire and
knock of the engine.
One of the approximations of the AOD is the convex

hull of a set of a finite number of input signals by which the
automotive engine behaves normally. This approximation
may be too rough, but is a simple way to define an AOD in
practice. In fact, it is implemented in someMBC software,
such as [10]. Figure 1 displays examples of the approxima-
tion of the AOD by the convex hull. In Fig. 1, black circles
are input signals by which the automotive engine behaves
normally, and red circles indicates input signals by which

Fig. 1 Examples of the approximation of the AOD by the convex hull

the automotive engine does not behave normally. The blue
region is the approximation of the AOD via the convex
hull.
Note that as we mentioned, the approximation of the

AOD by the convex hull may be rough. In fact, it does not
always represent the region where the automotive engine
behave normally. For instance, the approximation at the
right of Fig. 1 contains red circles, which means that the
automotive engine does not behave normally around the
circle.
The approximation of the AOD is used in other pro-

cesses in MBC as follows:

(P1) Problem of determining whether a new point is in
the approximated AOD or not. This is mainly used
in design of experiment of MBC and mathematically
formulated as the problem of determining

v̂ ∈ P or v̂ �∈ P,

where v̂ is a new point and P is an approximation of
the AOD.

(P2) Optimization of some objective functions over the
approximated AOD or a subset of the AOD for
more realistic situation in response surface
methodology. This is mathematically formulated as

min
v∈Rn

{
f (v) : gj(v) ≥ 0 (j = 1, . . . , k), v ∈ P

}
,

where f (v) is the objective function and gj(v) ≥ 0 is
an engine operating constraint.

2.2 Convex hull for a set of points inR
n

Let V = {v1, . . . , vm} be a finite set of distinct points in
R
n. A point

x =
m∑
i=1

αivi, where
m∑
i=1

αi = 1,αi ≥ 0 for i = 1, . . . ,m,

is called a convex combination of v1, . . . , vm. In particular,
the set {αa + (1 − α)b : 0 ≤ α ≤ 1} is called the line
segment with the endpoints a and b and denoted by [a,b].
A set K ⊆ R

n is convex if for every a,b ∈ K , the line
segment [a,b] is contained in K. We define the empty set
∅ as a convex set. Figure 2 displays an example of convex
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Fig. 2 Convex set (left) and nonconvex set (right)

and nonconvex sets. In fact, for the set at the left of Fig. 2,
we see that for every a,b in the set, the line segment [a, b]
is contained in the set, which implies that the set is convex.
In contrast, the line segment [a,b] is not contained in the
set at the right of Fig. 2.
Let K ⊆ R

n be a convex set. A point x ∈ K is an extreme
point or vertex of K if y, z ∈ K , 0 < α < 1 and x = αy +
(1−α)z imply x = y = z. In other words, an extreme point
of K is not a convex combination of other points in K . For
instance, at the set of the left in Fig. 2, the black circles at
the corners indicate an extreme point of the convex set.
We denote the set of extreme points in K by ext(K).
The convex hull conv(A) of a subset A ⊆ R

n is the set of
all convex combination of points from A.
For a set V = {v1, . . . , vm} of distinct points in

R
n, conv(V ) is formulated mathematically as

conv(V ) =
{
v ∈ R

n : v =
m∑
i=1

αivi for some

m∑
i=1

αi = 1,αi ≥ 0 (i = 1, . . . ,m)

}
.

Since some points in V are extreme points of
the convex hull, this representation of conv(V ) is
called the vertex representation (abbr. V-representation).
Figure 3 displays an example of the convex hull of
V = {(0, 0), (2, 0), (3, 2), (1, 1), (0, 1)}. Since all points
except for (1, 1) are extreme points, ext(conv(V )) =
{(0, 0), (2, 0), (3, 2), (0, 1)}. In fact, (1, 1) is not the extreme
point of the convex hull because (1, 1) can be represented
by a convex combination with (2, 0), (3, 2) and (0, 1). In
addition, we see conv(V ) = conv(ext(V )) in Fig. 3.

Fig. 3 Convex hull of V = {(0, 0), (2, 0), (3, 2), (1, 1), (0, 1)}

A bounded convex set K ⊆ R
n is a polytope if ext(K)

is a finite set. Clearly the convex hull of a set of a finite
numbers of points inR

n is a polytope. A half-space is a set
which is defined as {x ∈ R

n : aTx ≤ b}, with suitable a ∈
R
n and b ∈ R. A set P is called polyhedron if P is formed

as the intersection of finitely many half-spaces, i.e., there
exist a1, . . . , ak ∈ R

n and b1, . . . , bk ∈ R such that P ={
x ∈ R

n : aTi x ≤ bi (i = 1, . . . , k)
}
.

Minkowski-Weyl’s theorem ensures that every poly-
tope can be reformulated as a polyhedron. This implies
that one can describe the convex hull of a set of points
by some half-spaces in addition to the V-representation,
which is called the half-space representation (abbr. H-
representation).

Theorem 2.1 (Minkowski-Weyl) Every polytope is poly-
hedron, i.e., for a given polytope P, there exist a1, . . . , ak ∈
R
n and b1, . . . , bk ∈ R such that P = {x ∈ R

n : aTi x ≤
bi (i = 1, . . . , k)}. Moreover, every bounded polyhedron
is also polytope, i.e., for a given polyhedron P, there exist
v1, . . . , vm ∈ P such that P = conv(V ), where V =
{v1, . . . , vm}.
We give two examples of the V- and H-representations.

We see from these examples that one needs to choose
a suitable representation of the convex hull from the
viewpoint of computation.

Example 2.2 (n-dimensional unit cube) Let P = {x ∈
R
n : 0 ≤ xi ≤ 1 (i = 1, . . . , n)}. P is called

the n-dimensional unit cube. Figure 4 displays an exam-
ple of 3-dimensional unit cube. This is already the H-
representation. In fact, we define ai ∈ R

n, bi ∈ R (i =
1, . . . , 2n) as follows:

ai =
{

ei (i = 1, . . . , n),
−ei (i = n + 1, . . . , 2n),

and bi =
{
1 (i = 1, . . . , n),
0 (i = n + 1, . . . , 2n),

where ei is the ith n-dimensional standard unit vector.
Then P can be reformulated by {x ∈ R

n : aTi x ≤ bi (i =
1, . . . , 2n)}. On the other hand, for ext(P) = {x ∈ R

n : xi =
0or1}, the V-representation of P is

Fig. 4 3-dimensional unit cube (left) and cross-polytope (right)
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P = conv({(0, 0, . . . , 0), (1, 0, . . . , 0),
(0, 1, . . . , 0), . . . , (1, 1, . . . , 1)}).

We remark that the V-representation of P needs 2n
extreme points in ext(P), whereas the H-representation
needs only 2n half-spaces.

Example 2.3 (Cross-polytope) Let P = {x ∈ R
n :

|x1| + · · · + |xn| ≤ 1}. P is called the n-dimensional
cross-polytope. Figure 4 displays an example of the 3-
dimensional cross-polytope. The H-representation of P is

P =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩
x ∈ R

n :

x1 + x2 + · · · + xn ≤ 1
−x1 + x2 + · · · + xn ≤ 1
x1 − x2 + · · · + xn ≤ 1
−x1 − x2 + · · · + xn ≤ 1

...
−x1 − x2 − · · · − xn ≤ 1

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭
.

Here the H-representation is the intersection of 2n half-
spaces. In contrast, the V-representation of P can be for-
mulated by 2n points in R

n. In fact, since both ei and
−ei are extreme points in P, the V-representation of P is
P = conv({±e1, . . . ,±en}).

A more compact representation of the convex hull
is often useful from the viewpoint of computation. For
instance, the V-representation in Example 2.2 and the
H-representation in Example 2.3 require more computer
memory even for small n, whereas the H-representation in
Example 2.2 and the V-representation in Example 2.3 need
less memory even for large n. Hence the H-representation
in Example 2.2 and the V-representation in Example 2.3
are more suitable to deal with in actual computers when
the dimension n is large.

3 Application of the V-representation tomodel
based calibration for automotive engines

We propose a way to handle the V-representation of the
convex hull of a set of points without conversion into the
H-representation in Sections 3.2 and 3.3. This way uses
the results in [11]. Beforementioning them, we discuss the
computational difficulty in using some MBC software in
Section 3.1.

3.1 Computational difficulty due to the H-representation
As we have already mentioned in Section 2.1, the convex
hull of a set of input signals which make the automotive
engine behave normally is one of the approximation of
the AOD of the engine. Let V = {v1, . . . , vm} be a set of
input signals v1, . . . , vm ∈ R

n. Then the approximation
via the convex hull is formulated as conv(V ) and is the V-
representation. On the other hand, for both (P1) and (P2)

in Section 2.1, it is converted into P = {v ∈ R
n : Av ≤ b}

for some A ∈ R
k×n and b ∈ R

k in some MBC software,
such as [10]. This corresponds to the conversion of the
V-representation of the convex hull conv(V ) into the H-
representation, and after this conversion, (P1) and (P2) are
respectively equivalent to

(P1)’ Problem of determining whether Av̂ ≤ b or Av̂ �≤ b,
and

(P2)’ Solution of
minv∈Rn

{
f (v) : gj(v) ≥ 0 (j = 1, . . . , k),Av ≤ b

}
.

In general, the conversion is computationally costly and
generates too many half-spaces to be handled efficiently
by actual computers available RAM memory although
some practical algorithms, such as polymake in [1] are
proposed for efficient computation of convex hulls. This
is the main computational difficulty in using the approx-
imation of the AOD via the convex hull implemented in
some MBC software. Table 1 displays the computation
time and the number of generated half-spaces for the con-
version of the V-representation into the H-representation.
In this numerical experiment1, we generated a set V of
m points in [−1, 1]n randomly and used vert2lcon.m
in [9], which calls the built-in function convexhulln
in MATLAB based on Qhull [12]. “–” in Table 1 indi-
cates that we do not compute the conversion because it
spends more than 1000 sec. We observe from Table 1 that
when n is not so large, the conversion is not so com-
putationally intensive and is rather fast. However, when
n is larger (typically more than 10), generating the con-
vex hull in the H-representation becomes computationally
intensive. Moreover, since it generates many half-spaces,
we can expect that the optimization in (P2)’ will also be
computationally intensive.

Table 1 Numerical results on the conversion of the
V-representation into the H-representation : computation time
[sec] (upper) and the number of generated half-spaces (lower)

n

m 5 7 9 11 13 15

50 0.34 0.15 1.23 11.25 72.05 391.27

566 5084 42,430 279,804 1,517,292 6,898,066

100 0.04 0.42 8.41 107.85 1506.60 –

1326 16,382 229,218 2,399,099 25,526,149 –

200 0.06 1.20 32.88 699.06 – –

1970 42,918 851,321 13,002,403 – –

1000 0.15 7.44 394.21 – – –

6724 238,486 8,053,847 – – –

2000 0.24 13.87 980.61 – – –

9262 427,048 17,550,631 – – –
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3.2 Application of the V-representation to (P1) : to
determine whether a new point is in the convex hull
or not

Let V = {v1, . . . , vm} be a set of points in R
n. For (P1)

in Section 2.1, i.e., the problem of determining whether
v̂ ∈ conv(V ) or v̂ �∈ conv(V ), we have two approaches via
H-representation and V-representation. In the approach
via H-representation, after converting conv(V ) to the lin-
ear inequalitiesAv ≤ b, we need to check whetherAv̂ ≤ b
or not. It is relatively easy to check Av̂ ≤ b, while the
conversion is computationally intensive for not so largem
and/or n as in Table 1. On the other hand, in the approach
via V-representation, the linear programming (abbr. LP)
method is available. At the end of this subsection, we
will show that the approach via V-representation is much
faster than the H-representation.
Fundamentally, LP can be regarded as an optimization

problem, i.e., the problem of minimization or maximiza-
tion of a linear objective function over a polyhedron. The
simplex method and interior-point method are efficient
algorithms to solve a LP problem or detect the infeasibil-
ity of the problem. In addition, linprog implemented in
Optimization Toolbox offered by MathWorks and [6], are
available as commercial software to solve LP problems.
Refer to [3, 8], for more details on LP.
One can determine whether a new point v̂ is in conv(V )

or not by solving the following LP problem:

min
α1,...,αm

{ m∑
i=1

ciαi :
m∑
i=1

αivi = v̂,
m∑
i=1

αi = 1,αi ≥ 0 (i = 1, . . . ,m)

}
,

(1)

where c ∈ R
m is fixed arbitrarily. Since any convex com-

bination of v̂ with v1, . . . , vm is feasible in (1), we see
that

• if the optimal value of (1) is finite, then v̂ is in
conv(V ), and,

• otherwise (1) is infeasible, i.e., the feasible region is
empty, and thus v̂ is not in conv(V ).

Hence one can determine whether a new point v̂ is in P
or not by solving (1) instead of constructing Av ≤ b for
the H-representation of conv(V ).
Table 2 displays the computation time for the same

sets V of m points in R
n as Table 1. Here we generate

v̂ ∈ [−1, 1]n randomly. We used linprog to solve all
LP problems. Comparing Table 2 with Table 1, we see
that the determination of v̂ ∈ conv(V ) via LP method
is much faster in computation time than the conversion
into the H-representation of conv(V ). This implies that
the H-representation for (P1) will require more time to
compute than the V-representation. For instance, in the
case (m, n) = (1000, 9), the same V is used in Tables 1
and 2, and it spends 394.21 seconds to construct the H-
representation of conv(V ), whereas it spends only 0.09

Table 2 Computation time [sec] to determine whether a new
point is in the convex hull or not by using LP method

n

m 5 7 9 11 13 15

50 0.26 0.02 0.01 0.02 0.02 0.04

100 0.03 0.01 0.01 0.01 0.02 –

200 0.02 0.01 0.02 0.13 – –

1000 0.02 0.03 0.09 – – –

2000 0.03 0.04 0.12 – – –

seconds to determine whether v̂ ∈ conv(V ) or not. Since
we need to check Av̂ ≤ b for the determination of v̂ ∈
conv(V ) via the H-representation, whereA and b are con-
structed by the H-representation of conv(V ), the total
amount of computation time via the H-representation is
more than 394.21 seconds. Therefore, we can conclude
from Tables 1 and 2 that the V-representation is less
computationally intensive than H-representation.

3.3 Application of the V-representation to (P2) : an
optimization problem in the frame of MBC response
surface methodology

As we have already mentioned in (P2) of Section 2.1, the
following optimization problems are typically solved by
using MBC models obtained using the response surface
methodology:

min
v∈Rn

{
f (v) : gj(v) ≥ 0 (j = 1, . . . , k), v ∈ P

}
, (2)

where P is the approximation of AOD by the convex hull
for a set V = {v1, . . . , vm} of points in R

n, i.e. P =
conv(V ). Since any v ∈ conv(V ) can be represented by
a convex combination of v1, . . . , vm, the optimization (2)
can be equivalently reformulated as

min
α1,...,αm∈R

{
f̃ (α1, . . . ,αm) : g̃j(α1, . . . ,αm) ≥ 0 (j = 1, . . . , k),∑m

i=1 αi = 1,αi ≥ 0 (i = 1, . . . ,m)

}
,

(3)

where f̃ (α1, . . . ,αm) = f
(∑m

i=1 αivi
)
and g̃j is defined in a

similar manner to f̃ .
Before showing numerical comparison of (3) with (2),

we mention some advantages and disadvantages of the
formulation (3):

(I) One can skip the process of constructing the
H-representation of conv(V ). As we have already
seen in Table 1, the conversion is computationally
intensive, and thus one can greatly reduce the
computational cost.

(II) Since one does not apply the conversion of the
V-representation of conv(V ) into the H-
representation, the number of inequality constraints
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in (3) is much lower than (2) formulated by the
H-representation. Consequently, the feasibility
check of a generated solution in algorithms of
optimization for (3) is much easier than (2).

(III) In contrast, the number of variables in (3) increases.
In fact, it is m, while for (2) is n, and thus the
computational cost increases in one evaluation of a
function value at a given solution. This is the
disadvantage of the formulation (3). For instance, we
will see in Table 3 that (2) formulated by the
H-representation is more efficient than (3) for n = 4.

To compare (3) with (2) formulated by the H-
representation, we use a diesel engine data set. This
data set consists of 875 observations and each mea-
sured observation consists of following nine engine mea-
surements, i.e., Start of main injection event MAINSOI
[degCA], Common rail fuel-pressure FUELPRESS [MPa],
Variable-geometry turbo charger [VGT], vane posi-
tion VGTPOS [mm], Exhaust gas recirculation (EGR)
valve opening position EGRPOS [ratio], Amount of
injected fuel mass during main injection event MAIN-
FUEL[mg/stroke], Mass-flow ratio of recirculated exhaust
gas EGRMF [ratio], Air-Fuel ratio AFR [ratio], VGT rota-
tional speed VGTSPEED [rpm], and in-cylinder peak
pressure PEAKPRESS [MPa]. The measurements were
performed at seven specific engine operating points,
expressed as (Engine Speed SPEED [rpm], Brake Torque
BTQ [Nm]) pairs.
Next, we generated point-by-point response surface

models, i.e., seven models, for the Brake-specific Fuel
Consumption BSFC [g/kWh], by using the following three
types of inputs from this diesel engine data set:
(A type) BSFCp(MAINSOI, FUELPRESS, VGTPOS,

EGRPOS),
(B type) BSFCp(MAINSOI, FUELPRESS, VGTPOS,

EGRPOS, MAINFUEL, EGRMF, AFR), and
(C type) BSFCp(MAINSOI, FUELPRESS, VGTPOS,

EGRPOS, MAINFUEL, EGRMF, AFR,
VGTSPEED, PEAKPRESS),

where p = 1, . . . , 7.

Table 3 Comparison of (3) with (2) formulated by the
H-representation of P in computation time [sec]

H-representation Optimization

(2) (A type) 0.06 5.33

(B type) 7.72 15.05

(C type) 285.31 66.65

(3) (A type) – 45.52

(B type) – 26.06

(C type) – 37.94

The dimension n of these data sets is 4, 7 and 9, respec-
tively. We considered different n in order to investigate
the scalability of our proposed approach and to compare
the computational cost with the H-representation of the
convex hull.
Next, for each data set, we have solved the follow-

ing seven optimization problems, one for each operating
point set:

min
v∈Rn

{
fp(v) : v ∈ P

}
(p = 1, . . . , 7),

where P = conv(V ), and V consists of a subset of the
initial 875 n-dimensional vectors, since the approach we
adopted is a point-by-point one. The measured points in
each subset are unique. As an indication, each local model
consisted of 125 of such measurements, and for each local
model a corresponding convex hull was generated. Next,
an optimization problemwas considered. For this, we gen-
erate seven objective functions fp (for example using BSFC
as the objective to be minimized) and do not use any extra
constraint gj(v) ≥ 0 in this numerical experiment, except
for the boundary model constraint itself. In particular, the
objective functions fp are smooth but nonconvex, and thus
it is a nonlinear optimization problem without the con-
vexity. In conclusion, we have performed a point-by-point
minimization problem for BSFC.
Table 3 displays numerical comparison of (3) with (2)

formulated by the H-representation of P. In this numeri-
cal experiment2, we use MBC Toolbox [10] and compare
computation time of (3) with (2). The third and fourth
columns in Table 3 are the computation time of the con-
version of P into the H-representation and the total of
computation time for seven types of optimization, respec-
tively.We do not describe the time in (3), but “–” in Table 3
because we do not convert P into the H-representation.
We used fmincon with interior-point algorithm imple-
mented in Optimization toolbox of MATLAB to solve
both (2) and (3). The optimization settings that were used
to obtain the solution are listed in Table 4. For the settings
not listed in Table 4 the defaults settings were used.
We observe the following from Table 3.

Table 4 Optimization options used by fmincon

Maximum number of function evaluations 5000 for H-rep.

20000 for V-rep.

Maximum number of iterations 500

Maximum change in variables for finite-difference
gradients

0.1

Minimum change in variables for finite-difference
gradients

10−8

Step tolerance for free variables 10−6

Constraint violation tolerance 10−6

Objective function tolerance 10−6
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(i) In (A type) and (B type), i.e., n = 4 and n = 7, (2)
formulated by the conversion of H-representation is
faster than (3), whereas in (C type), (3) is
approximately 2 times faster than (2). In fact, as we
can expect form Table 1, the number of linear
inequalities in (2) considerably increases.
Consequently, the evaluation of computed solutions
at each iteration becomes computationally intensive.

(ii) The computation time of converting conv(V ) into
the H-representation considerably increases as n
increases. This can be also expected from Table 1.
As (3) can skip this conversion, we can expect that
(3) is more efficient than (2) for n ≥ 9.

4 Conclusion
We propose a way to reduce the computational cost
in the approximation of the AOD via the convex hull.
The H-representation of the convex hull is identified as
the main bottleneck. We focus on the two processes
in MBC and observe that the computational cost is
greatly reduced when using the V-representation of a
set of points instead of the H-representation. More pre-
cisely, when the dimension n of the space in which
a set V of points lies is less than seven, the H-
representation is not so computationally intensive. Other-
wise it becomes more computationally intensive than the
V-representation.
Enumeration of all the extreme points in conv(V ) may

be useful when the V-representation is applied to (P1)
and (P2) described in Section 3. In fact, this is ensured
by Krein-Milman’s theorem that for every bounded closed
convex set A, conv(A) = conv(ext(A)) holds. A simple
way to enumerate all extreme points of conv(V ) is to solve
the following LP problem for every vk ∈ V :

min
αi (i�=k)

⎧⎨
⎩

m∑
i�=k

ciαi :
m∑
i�=k

αivi = vk ,
m∑
i�=k

αi = 1,αi ≥ 0 (i �= k)

⎫⎬
⎭ . (4)

If the optimal value is finite, then vk is not an extreme
point in conv(V ) because vk is a convex combination with
other vi except for vk . Otherwise (4) is infeasible, and
thus vk is an extreme point. This way is used as a pre-
processing for (P1) and (P2). If conv(V ) consists a few
extreme points in comparison to the set V, then we can
expect the improvement of performance for (P1) and (P2).
See [11] for a much faster algorithm of the enumeration of
all extreme points.

Endnotes
1 The specification on the used computer is as fol-

lows: OS is Ubuntu 14.04, the CPU is Intel® Xeon® with
3.10GHz, and the memory is 128GB and version of MAT-
LAB is R2015b.

2The specification on the used computer is as follows:
OS is Windows 7, the cpu is Intel® Core™ i7 with 3.60GHz,
and the memory is 32GB and version of MATLAB is
R2015b.
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