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Abstract

Background: Trachoma, caused by Chlamydia trachomatis, remains the world’s leading infectious cause of
blindness. Repeated ocular infection during childhood leads to scarring of the conjunctiva, in-turning of the
eyelashes (trichiasis) and corneal opacity in later life. There is a growing body of evidence to suggest non-chlamydial
bacteria are associated with clinical signs of trachoma, independent of C. trachomatis infection.

Methods: We used deep sequencing of the V1-V3 region of the bacterial 16S rRNA gene to characterize the microbiome
of the conjunctiva of 220 residents of The Gambia, 105 with healthy conjunctivae and 115 with clinical signs of trachoma
in the absence of detectable C. trachomatis infection. Deep sequencing was carried out using the Roche-454 platform.
Sequence data were processed and analyzed through a pipeline developed by the Human Microbiome Project.

Results: The microbiome of healthy participants was influenced by age and season of sample collection with increased
richness and diversity seen in younger participants and in samples collected during the dry season. Decreased diversity
and an increased abundance of Corynebacterium and Streptococcus were seen in participants with conjunctival scarring
compared to normal controls. Abundance of Corynebacterium was higher still in adults with scarring and trichiasis
compared to adults with scarring only.

Conclusions: Our results indicate that changes in the conjunctival microbiome occur in trachomatous disease; whether
these are a cause or a consequence is yet unknown.
Background
Trachoma, caused by the bacterium Chlamydia tracho-
matis, is characterized by recurrent episodes of chronic
follicular conjunctivitis. Repeated infection during child-
hood can lead to scarring of the conjunctiva and the
blinding complications of trachomatous trichiasis (TT)
and corneal opacification in later life. Persistent, severe
inflammation is a contributing factor to progressive scar-
ring yet ocular C. trachomatis infection is rarely detected
in individuals with scarring.
There is increasing evidence to suggest non-chlamydial

pathogens are associated with trachomatous disease. A
cross-sectional survey of trachomatous inflammation-
follicular (TF) in a low endemicity setting in Tanzania
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found that children with clinical signs of the disease were
more likely to have non-chlamydial bacteria in their eyes
than were children without disease; Streptococcus pneumo-
niae and Haemophilus influenzae were strongly associated
with TF [1]. This finding was independently validated in
The Gambia, where S. pneumoniae and H. influenzae were
associated with TF following a mass drug administration
campaign for trachoma control [2]. Case-control studies
in The Gambia and Tanzania have also shown that the
presence of bacterial pathogens in the eye is associated
with trachomatous scarring (TS) and TT, an association
strengthened with increasing disease severity, as measured
by the number of eyelashes touching the eye [3-5]. Non-
chlamydial bacteria in the eye have also been shown to be
independently associated with TT in Ethiopia [6]. It has
been suggested, therefore, that non-chlamydial bacterial
infection contributes to the maintenance of an inflamma-
tory state thereby driving the scarring process [5]. This is
supported by data from longitudinal studies in The
Gambia, which have provided some evidence that non-
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chlamydial bacterial infection, host inflammatory gene
expression and clinical inflammation are associated with
recurrence of TT following surgery [3].
While the above studies give some insight into the

association of non-chlamydial pathogens with trachoma-
tous disease, they are all limited by the identification of
pathogens by bacterial culture, which relies on the ability
to grow bacteria under routine laboratory conditions.
Deep sequencing of the bacterial gene that encodes the
16S ribosomal RNA subunit (rrs or 16S rRNA gene)
enables the study of entire bacterial communities using
DNA isolated directly from clinical samples [7], thereby
offering a more complete picture of the bacterial ecology
of the conjunctiva. Studies utilizing 16S rRNA gene se-
quencing to characterize pathologies at other body sites
have shown that alterations in the composition of the
microbiome are associated with disease [8,9]. This study
aimed to characterize the microbiome of the conjunctiva
of individuals living in a trachoma-endemic community
and to identify changes in the bacterial community
structure, richness and diversity associated with trach-
omatous disease.

Methods
Ethical permission
This study adhered to the tenets of the Declaration of
Helsinki. Approval was obtained from the Gambian
Government/Medical Research Council Unit, The Gambia
Joint Ethics Committee. Written, informed consent was
obtained from all participants at the time of sample collec-
tion. In the case of children, consent was obtained from a
parent or guardian.

Study participants
Samples were retrospectively drawn from an archive
built up from individuals recruited in communities
across The Gambia, West Africa. Cases of active or scar-
ring trachoma were identified from screening records,
community ophthalmic nurse referral and opportunistic
rapid screening. Control individuals with normal con-
junctivae were selected by matching for age, sex, ethni-
city and location.

Trachoma grading
Participating individuals were examined for clinical signs
of trachoma in the field and high resolution digital
photographs were taken of each conjunctival surface at
the time of sample collection. An FPC score was then
assigned to each sample by an ophthalmologist who
graded the photographs according to the 1981 WHO
Trachoma Grading System (FPC, for follicles, papillae,
cicatricae) [10]. Any sample for which there was no photo-
graph or for which the photograph could not be accurately
graded was excluded. For analyses, the presence of follicles
was defined as an F score >0. Conjunctival scarring was
defined as a C score >0. Participants with normal, healthy
conjunctivae, as defined by a score of F0P0C0, served as
controls.

Sample collection and processing
Samples were collected between February 2009 and
April 2011. Samples were taken from the upper tarsal
conjunctiva using Dacron swabs and stored in 250 μl
RNAlater (Ambion, Life Technologies, Carlsbad, CA,
USA) on ice blocks in the field. Upon return to the
laboratory, samples were archived at -20°C until process-
ing. Total, genomic DNA was extracted using the Power-
Soil DNA Isolation Kit (Mo Bio Laboratories, Carlsbad,
CA, USA) according to the manufacturer’s instruction.
The presence of C. trachomatis DNA was assayed using
the Amplicor CT/NG assay (Roche Molecular Systems,
Branchburg, NJ, USA) according to modifications previ-
ously described [11].
The V1-V3 region of the 16S rRNA gene was amplified

using primers 27 F (5′-AGAGTTTGATCCTGGCTCA
G-3′) and 534R (5′- ATTACCGCGGCTGCTGG-3′).
Primers also contained an adaptor sequence and one of
96 tags unique to each sample. PCR was performed with
the following conditions: 30 cycles of 95°C 2 minutes;
56°C 0.5 minutes and 72°C 5 minutes. Amplicons were
purified, pooled at equimolar concentrations and se-
quenced by pyrosequencing on the Roche-454 titanium
platform using the protocol developed by the Human
Microbiome Project [12]. Sequence data were submitted
to the Sequence Read Archive (SRA) at the National
Center for Biotechnology Information (NCBI) under
accession number PRJNA248889.
Reagent and non-template controls were extracted and

sequenced according to the same procedure and gener-
ated 63 to 236 reads. The major taxon present in these
controls was Ralstonia.

Sequence data processing
Data processing and quality control (QC) were per-
formed according to standardized protocols developed
by the Human Microbiome Project [12]. Briefly, samples
were demuxed allowing one mismatch in the barcodes.
Reads were filtered to remove those samples with aver-
age quality scores <35 and/or read length less than 200
nucleotides. Chimeric sequences were removed using
Chimera-Slayer [13]. Following initial QC, samples with
a read depth of less than 1,000 were re-sequenced. Reads
passing QC were then classified from phylum to genus
level using the Ribosomal Database Project Naive Bayesian
Classifier (version 2.2, training set 6) [14]. Taxa assigned
with <0.5 confidence threshold were reassigned to the
next higher taxonomic level in which the classification
threshold was >0.5.



Table 1 Demographic characteristics of study participants
with and without trachomatous disease

Variable Clinical signs

Cases Controls Total

Age ≤10 years 29 21 50

>10 years 86 84 170

Sex Female 75 72 147

Male 40 33 73

Season Dry 63 63 126

Wet 52 42 94

Region Banjul 1 1 2

Western Division 57 56 113

Lower River Division 35 27 62

Central River Division 6 6 12

Upper River Division 8 7 15

North Bank Division 8 8 16

Ethnicity Wolof 15 13 28

Mandinka 41 38 79

Jola 36 35 71

Fula 11 7 18

Serere 1 0 1

Manjago 3 2 5

Balanta 1 0 1

Bambara 0 1 1

Other/Unknown 7 9 16

Figure 1 Relative abundance of major taxa found in the normal
healthy conjunctiva. (A) Major phyla; (B) major genera. The
abundance of each taxa is represented as a percentage of the
total number of reads obtained from participants with normal
conjunctivae (F0P0C0). Less abundant taxa (<1%) are grouped
together as ‘Others’.
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Analysis
After data processing, a taxonomical matrix was con-
structed (rows as genera and columns as samples) and
then rarefied to 1,000 reads using the Vegan package in
R [15]. Multidimensional scaling (MDS) with the Bray-
Curtis index was used to explore bacterial community
structure. Data were visualized using the MASS package
in R [16]. Permutational multivariate analysis of variance
(PERMANOVA) [17] was used to test whether bacterial
community structure differed between variables using
the Vegan package in R [15]. Metastats was used to
identify genera that contributed to the difference be-
tween two bacterial communities [18]; genera were con-
sidered significantly different if the q value ≤0.1 and if
the mean relative abundance for a given genus was at
least 1% in one group. Wilcoxon rank sum test was used
to test the differences in richness and Shannon diversity
between two groups.

Results
Characteristics of samples and sequencing reads
Upper tarsal conjunctival swabs collected from 260 partic-
ipants (130 case-control pairs), were processed for 16S
rRNA gene sequence analysis. Following post-sequencing
QC measures, 220 samples (84%) were retained for ana-
lysis. Of these, 105 samples were from individuals with
normal healthy conjunctiva (F0P0C0); the remaining 115
participants had clinical signs of trachoma. Three children
with normal conjunctiva, but no children with signs of
trachoma and no adults, had evidence of ocular C. tracho-
matis infection by Amplicor CT/NG PCR. Demographic
characteristics for the 220 samples included in the final
data set are given in Table 1.
The resulting dataset generated 1,690,427 reads with

an average read depth per sample of 7,684 ± 4,909. In
total, 24 phyla, 41 classes, 94 orders, 188 families and
880 genera were identified. At the genus level, 14.2% of
reads were unclassified.

Taxon abundance
Analysis of sequence data from the 105 participants with
normal healthy conjunctivae (F0P0C0) revealed a highly
diversified bacterial community. After rarefying all sam-
ples to 1,000 reads, 610 genera belonging to 22 phyla were
identified. Three dominant phyla, Actinobacteria, Proteo-
bacteria and Firmicutes, accounted for 46%, 24% and 22%
of the total bacterial community, respectively (Figure 1A).
At the genus level, 13 genera were present at more than 1%
relative abundance (Figure 1B). Of these, six were shared by
at least 80% of all samples and together accounted for more
than a third of the entire bacterial community character-
ized: Corynebacterium, Streptococcus, Propionibacterium,
Bacillus, Staphylococcus and Ralsontia. Corynebacterium
was the most abundant genus, representing 16.2% of all
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reads and was found in all samples from healthy
conjunctivae.

Factors influencing the conjunctival microbiome
In an effort to determine factors influencing the con-
junctival microbiome in our sample set, we performed
multivariable analysis using PERMANOVA. The model
included age (≤10 or >10 years), sex, season of sample
collection (dry or wet), geographical location (by region)
and ethnicity. Bacterial community structure (compos-
ition and abundance in one sample or a group of sam-
ples) was compared between groups while controlling
for the other variables. As illustrated in Figure 2A, strati-
fication of subjects with normal conjunctivae (F0P0C0)
by age (≤10 or >10 years) resulted in the formation of
two distinct groups; bacterial community structure bet-
ween the two was significantly different (P = 0.001).
Seasonality was also found to exert a strong influence as
shown in Figure 2B; the bacterial community structure
of normal conjunctivae sampled in the dry versus wet
seasons are significantly different (P = 0.01). This effect
was still apparent when comparing bacterial community
structure of only participants aged >10 years sampled in
the dry versus wet seasons (P = 0.03) (Figure 2C). In
contrast, geographical location, gender and ethnicity did
not have a significant effect (geographical regions, P =
0.18; gender, P = 0.29; ethnicity, P = 0.80) (Additional
files 1, 2 and 3).
We compared richness (absolute number of taxa

present) and Shannon diversity indices (number and
relative abundance of each taxa) as measures of the
complexity of the bacterial communities in the younger
and older age groups. Both richness (P = 0.03) and
Shannon diversity (P = 0.03) were significantly higher in
the children aged ≤10 years with normal conjunctivae
(F0P0C0) than in the older participants (Additional file 4)
Figure 2 Factors influencing bacterial community structure of norma
(A) Stratification of all participants with normal conjunctivae (F0P0C0) by age
filled circles. (B) Stratification of all participants with normal conjunctivae (F0P
season, filled circles represent samples collected during the dry season. (C) Str
(F0P0C0) by season of sample collection: open circles represent samples colle
during the dry season. P-values generated by PERMANOVA.
with children harboring, on average, 20 more genera than
older individuals.
Metastats was used to identify genera present at dif-

fering abundance between the younger and older age
groups with healthy conjunctivae (F0P0C0). Corynebac-
terium, Propionibacterium, Myceligenerans, Paracoccus
and two unclassified genera from the Promicromonos-
poraceae family and Actinomycetales order were more
abundant in the older group (Table 2), with 13.4 times
more Actinomycetales being found in these participants
compared to children aged ≤10 years. The abundances
of five genera (Streptococcus, Kocuria, Staphylococcus,
Micrococcus and Brachybacterium) were significantly
higher in the ≤10 year age group (Table 2) with the
abundance of Streptococcus in children 6.2 times higher
than in older participants.
We characterized differences in the microbiome associ-

ated with seasonal change following stratification by
age. Richness (P = 0.006) and Shannon diversity (P =
0.004) were significantly higher in older participants
(aged >10 years) sampled during the dry season
(Additional file 5). The genera Bacillus and Tumebacillus
were more abundant in the dry season (Table 2). All
samples from the younger age group (≤10 years) were
collected during the wet season therefore, no seasonal
effect could be analyzed in this age group.

Changes in the conjunctival microbiome associated with
trachoma
We first compared changes in the community structure
in children with normal conjunctivae (F0P0C0) versus
those with signs of follicles as defined by an F score >0.
One child with an FPC score of F0P3C0 was also in-
cluded as a case in this analysis. Richness and Shannon
diversity measures did not vary significantly between
groups (richness, P = 0.58; diversity, P = 0.53; Figure 3A,
l conjunctivae as represented by multidimensional scaling.
with those ≤10 years represented by open circles and those >10 years by
0C0) by season: open circles represent samples collected during the wet
atification of only participants aged >10 years with normal conjunctivae
cted during the wet season, filled circles represent samples collected



Table 2 Changes in taxa abundance between groups

Taxanomic classification (phylum, class, order, family, genus) Relative abundance (median (range)) q-value

Group 1 Group2

Group 1 ≤ 10 years; group 2 > 10 years (normal conjunctivae; F0P0C0)

Firmicutes; Bacilli; Lactobacillales; Streptococcaceae; Streptococcus 8.0 (0.1-42.6) 1.3 (0-73.3) 0.012

Actinobacteria; Actinobacteria; Actinomycetales; Micrococcaceae; Kocuria 4.6 (0-23.9) 0.3 (0-23.4) 0.007

Firmicutes; Bacilli; Bacillales; Staphylococcaceae; Staphylococcus 5.7 (1.0-20.3) 2.0 (0-21.4) 0.010

Actinobacteria; Actinobacteria; Actinomycetales; Micrococcaceae; Micrococcus 3 (0-6.3) 0 (0-6.0) 0.003

Actinobacteria; Actinobacteria; Actinomycetales; Dermabacteraceae; Brachybacterium 0.9 (0-6.4) 0.2 (0-4.0) 0.027

Actinobacteria; Actinobacteria; Actinomycetales; Corynebacteriaceae; Corynebacterium 9.1 (1.0-29.3) 13.5 (0.4-67.6) 0.016

Actinobacteria; Actinobacteria; Actinomycetales; Promicromonosporaceae; unclassified 0 0.8 (0-5.8) 0.001

Proteobacteria; Alphaproteobacteria; Rhodobacterales; Rhodobacteraceae; Paracoccus 0.7 (0-1.6) 1.6 (0-10.6) 0.001

Actinobacteria; Actinobacteria; Actinomycetales; Propionibacteriaceae; Propionibacterium 0.5 (0-3.6) 1.7 (0-40.3) 0.001

Actinobacteria; Actinobacteria; Actinomycetales; Promicromonosporaceae; Myceligenerans 0 (0-0.1) 3.0 (0-17.5) 0.001

Actinobacteria; Actinobacteria; Actinomycetales; unclassified 0.8 (0-2.5) 10.7 (0-40.2) 0.001

Group 1, dry season; group 2, wet season (normal conjunctivae; F0P0C0)

Firmicutes; Bacilli; Bacillales; Bacillaceae; Bacillus 3.7 (0-16.3) 0.3 (0-2.8) 0.005

Firmicutes; Bacilli; Bacillales; Bacillaceae; Tumebacillus 0.6 (0-11.4) 0 (0-1.7) 0.007

Group 1, F > 0; group 2 F0P0C0 (wet season)

No significant differences

Group 1, all C > 0; group 2, C = 0 (dry season)

Actinobacteria; Actinobacteria; Actinomycetales; Corynebacteriaceae; Corynebacterium 18.0 (0-88.0) 11.1 (0.4-60.1) 0.034

Firmicutes; Bacilli; Lactobacillales; Aerococcaceae; Globicatella 0 (0-3.9) 0.5 (0-6.2) 0.043

Firmicutes; Bacilli; Lactobacillales; Streptococcaceae; Streptococcus 2.2 (0-90.6) 1.4 (0-24.5) 0.040

Group 1, all C > 0; group 2, C = 0 (wet season)

No significant differences

Group 1, C > 0; group 2, C > 0 + TT (dry season)

Actinobacteria; Actinobacteria; Actinomycetales; Corynebacteriaceae; Corynebacterium 12.2 (0.1-78.4) 26.8 (0-88.0) 0.043

Actinobacteria; Actinobacteria; Actinomycetales; Micrococcaceae; Kocuria 0 (0-6.8) 0.2 (2-2.2) 0.047

Actinobacteria; Actinobacteria; Actinomycetales; Promicromonosporaceae; Myceligenerans 2.2 (0-10.5) 0 (0-12.1) 0.048

Actinobacteria; Actinobacteria; Actinomycetales; Promicromonosporaceae; unclassified 0.8 (0-3.2) 0 (0-4.6) 0.047

Actinobacteria; Actinobacteria; Actinomycetales; unclassified 6.9 (0-32.3) 1.2 (0-31.5) 0.006

Proteobacteria; Alphaproteobacteria; Rhodobacterales; Rhodobacteraceae; Paracoccus 1.4 (0-8.4) 0.1 (0-7.5) 0.026

Group 1, C > 0; group 2, C > 0 + TT (wet season)

No significant differences
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B) nor was bacterial community structure significantly
different as shown by MDS (Figure 3C) and PERMA-
NOVA analysis P = 0.13). Haemophilus was present in
higher abundance in children with trachoma than in
normal controls (P = 0.023); however, this finding was
not significant when corrected for multiple comparisons
(q = 0.291). Indeed, the increased abundance in cases
was largely driven by one child with intense inflamma-
tion (F2P3C0) and a relative abundance of Haemophilus
of 60%.
Community structure was compared between partici-

pants aged >10 years with normal conjunctivae (F0P0C0)
and those with clinical signs of conjunctival scarring (C >
0 with and without TT) following stratification by season.
Higher diveristy was found in participants with normal
healthy conjunctivae during the dry season (P = 0.005;
Figure 4A) but not during the wet season (P = 0.34;
Figure 4B). MDS and PERMANOVA analysis indicated
the community structure was significantly different be-
tween all participants with conjunctival scarring and
normal controls in the dry (P = 0.003; Figure 4C) but not
the wet season (P = 0.09; Figure 4D). In the dry season, the
abundance of Corynebacterium and Streptococcus were
higher in the participants with conjunctival scarring than



Figure 3 Differences in richness, diversity and community structure associated with follicles in children. (A,B) Boxplots indicate the
distribution of richness (A) and Shannon diversity measures (B) in children with follicles (F > 0) compared with those with normal conjunctivae
(F0P0C0); P-values calculated using Wilcoxon rank sum test. (C) Differences in bacterial community structure between children with follicles
(F > 0, filled circles) and children with normal conjunctivae (F0P0C0, open circles) visualized by MDS; P-value was generated by PERMANOVA.
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in normal controls (Table 2). Abundance of Corynebacter-
ium was also higher in samples with conjunctival scarring
collected during the wet season but this did not reach
statistical significance (P = 0.037, q = 0.170).
We compared the bacterial community structure in par-

ticipants with conjunctival scarring (C > 0) versus those
Figure 4 Differences in richness, diversity and community structure a
distribution of richness and Shannon diversity measures in participants age
conjunctivae (F0P0C0) sampled in the dry (A) and wet (B) seasons; P-value
visualize differences in community structure between all participants aged
conjunctivae (F0P0C0, open circles) sampled during the dry season (C) and
circles) versus those with normal conjunctivae (F0P0C0, open circles) samp
with scarring and TT (C > 0 + TT). Data were further
stratified by season. There was no difference in the
number of genera detected in conjunctivae with scar-
ring versus scarring and TT in either the dry (P = 0.28)
or wet (P = 0.42) seasons (Figure 5A,B) yet Shannon
diversity was significantly higher in conjunctivae with
ssociated with conjunctival scarring. (A,B) Boxplots indicate
d >10 years with conjunctival scarring (C > 0) versus those with normal
s calculated using Wilcoxon rank sum test. (C,D) MDS was used to
>10 years with scarring (C > 0, filled circles) versus those with normal
all participants aged >10 years with conjunctival scarring (C > 0, filled

led during the wet season (D); P-values generated by PERMANOVA.



Figure 5 Differences in richness, diversity and community structure associated with trichiasis. (A,B) Boxplots indicate distribution of
richness and Shannon diversity measures in participants aged >10 years with conjunctival scarring only versus those with scarring and TT
sampled in the dry (A) and wet (B) seasons; P-values calculated using Wilcoxon rank sum test. (C,D) MDS was used to visualize differences in
community structure between participants aged >10 years of age with scarring only (C > 0, filled circles) versus those with scarring and TT
(C > 0 + TT, open circles) sampled during the dry season (C) and participants aged >10 years with scarring only (C > 0, filled circles) versus
those with scarring and TT (C > 0 + TT, open circles) sampled during the wet season (D); P-values generated by PERMANOVA.
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scarring in the dry season (P = 0.03; Figure 5A). Bac-
terial community structure was different between the
two groups during the dry season as indicated by MDS
plots (Figure 5C) and PERMANOVA analysis (P = 0.005)
but not during the wet season (Figure 5D; P = 0.16). Dur-
ing the dry season, Corynebacterium was found at higher
abundance in participants with scarring and TT (Table 2).

Discussion
The data-set described here represents the largest
description of the conjunctival microbiome, defined by
deep-sequencing of the 16S rRNA gene, to date. Inter-
variation of a given genera was high, which is consistent
with observations from other body sites [12]. We identi-
fied over 600 genera, the vast majority of which were
found at <1% relative abundance considering all sequen-
cing reads obtained from normal healthy conjunctivae.
Of those genera found at ≥1% abundance, only six were
found in at least 80% of participants with normal conjunc-
tivae, Corynebacterium, Streptococcus, Propionibacterium,
Staphylococcus, Bacillus and Ralstonia.
As Ralstonia was the major taxon found in our nega-

tive controls, we cannot confirm it is a constituent of
the ocular flora in this population, although it has been
reported in healthy and infected eyes in other settings
[19,20]. The presence of the remaining five genera found
in the majority of our samples is consistent with descrip-
tions of the ocular microbiota determined by bacterial
culture techniques, which have recently been reviewed
[21]. Staphylococci are most commonly isolated from
ocular swabs followed by Propionobacterium sp. and
diphtheroid bacteria (including Corynebacterium sp.).
Streptococcus and Bacillus species are less frequently
isolated [21]. Only one other independent study has char-
acterized the ocular microbiome using the 16S deep-
sequencing approach and comparison with our data sug-
gests greater variation in the ocular microbiome may exist
between populations than is indicated by bacterial
culture; a study of four American volunteers has re-
ported, in addition to Propionobacterium and Coryne-
bacterium, high relative abundance of Pseudomonas
(18%), Bradyrhizobium (12%), and Acinetobacter (9%)
[19]. These genera that were not a significant compo-
nent of the microbiome of our sample set each ac-
counting for less than 1% relative abundance. The
higher level of diversity seen in our sample set, in
comparison with other populations, may suggest many
of the bacteria found on the conjunctiva of Gambians
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are not indigenous to this niche but introduced
through interaction with the local environment.
With respect to the similarity of the ocular micro-

biome to other body sites, comparisons are limited as
the majority of data describing the human microbiome
have come from Western populations. Nevertheless, the
high abundance of Corynebacterium and Propionibacter-
ium in our samples suggests the conjunctival micro-
biome more closely resembles that of the skin than any
other body site [22,23]. While Actinobacteria was the
dominant phylum in our sample set, representatives of
the phyla Proteobacteria and Firmicutes both accounted
for approximately one quarter of all reads from healthy
conjunctiva. The high abundance of Streptococcus and
Staphylococcus (phylum Firmicutes) in our samples is
also characteristic of the skin flora [19,20]. The proteo-
bacteria Simonsiella accounted for 6% of the reads from
healthy conjunctivae; while high abundance of this genus
is a characteristic of the oral cavity and associated sites,
these are dominated by representatives of the phylum
Firmicutes [22,24,25].
In our sample set, children aged ≤10 years had greater

richness and diversity in the bacterial communities of
the conjunctiva than older participants. The abundance
of Streptococcus, in particular, was markedly different be-
tween the age groups with significantly higher levels
seen in younger participants, which is consistent with
the very high prevalence of nasopharyngeal S. pneumo-
niae carriage in Gambian children [26]. A number of
factors, including differences in hygiene behaviors, close
contact between children and decreased immunity, may
explain some of the increased diversity seen in the young
age group. However, our ability to draw definitive con-
clusions with respect to the effect of age on the conjunc-
tival microbiome is limited by the case/control study
design as environmental factors associated with trach-
omatous disease may be over-represented in our control
group. While our data suggest differences in the micro-
biome between children and adults, these should be con-
firmed in a population-based survey.
The seasonal effect on the microbiome was character-

ized by higher abundance of the soil-born genera Bacillus
and Tumebacillus in adults during the dry season. These
findings suggest that during the dusty conditions typical of
The Gambia’s dry season, increased numbers of bacteria
are introduced onto the ocular surface through environ-
mental exposure. No children were sampled during the
dry season, preventing us from examining the seasonal
effect on the younger age group.
As the prevalence of active trachoma has fallen in The

Gambia over recent years, so too has the severity of
clinical signs with fewer children with large numbers of
follicles being seen [27]. In the current study, half of the
children diagnosed in the field as having trachoma were
judged to have an F score of 1 with little or no inflam-
mation (P < 3) when the photographs of their eyelids
were viewed by an ophthalmologist. We therefore chose
to analyze potential changes in the microbiome of children
with follicles (F score >0) versus those with normal eyes.
When comparing these groups, no genus was found at in-
creased abundance in the cases when data were corrected
for multiple testing. One child with unusually high abun-
dance of Haemophilus had signs of severe inflammation,
which is consistent with the hypothesis that inflammation
caused by non-chlamydial bacterial infection exacerbates
clinical signs of disease. Alternatively, this may indicate
that inflammation of the conjunctiva as a result of trach-
oma makes the eye more susceptible to secondary bacter-
ial infection. However, our relatively small group sizes
preclude us from examining changes in the microbiome
as a function of increasing severity of inflammation.
Streptococcus pneumoniae has been found more often

in conjunctivae with TF than in normal controls [1,2]
yet we did not identify this genus as being significantly
different between children with an F score >0 and nor-
mal controls. The 16S rRNA gene sequencing method
that we have used however, prevents resolution to the
species level. Even if increased numbers of S. pneumo-
niae are present in cases compared with controls, a high
abundance of non-pneumococcal Streptococcus in both
groups may mask this association. This explanation is
supported by a study in Tanzania that found prevalence
of viridans streptococci in ocular samples of children
was three-fold higher than that of pneumococci [1].
It has been suggested that in-turned or mis-directed

eyelashes may provide a conduit for increased introduc-
tion of bacteria into the eye [1,6]. Our results, however,
do not support this hypothesis as the number of genera
detected in individuals with conjunctival scarring versus
scarring and TT was not significantly different. Scarring
and TT was associated with a decrease in diversity in
the dry season, largely driven by an increase in the abun-
dance of Corynebacterium in those with TT versus those
with scarring alone. This is not the first time Corynebac-
terium has been documented in trachomatous eyes. A
study in Ethiopia comparing the bacterial flora of con-
junctivae with TS with those with TT reported a higher
prevalence of carriage of Corynebacterium in TT [6]
while a study in Tanzania found a higher prevalence of
carriage in TS compared with normal controls [5]. In
both of these studies however, Corynebacterium was
considered a commensal organism. Clearly the genus
Corynebacterium is a significant component of the nor-
mal flora of the eye in many populations. However, the
presence of ‘normal’ flora may not be indicative of a
healthy state. The most common example of this is bac-
terial vaginosis, where imbalance in the normal flora
leads to changes in pH and the overgrowth of particular
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constituents of the normal flora [28]. While it is possible
that a similar dysbiosis of the ocular flora is involved in
conjunctival scarring, further study will be needed to de-
termine whether this is a cause or an effect of the disease.
This might include longitudinal follow-up of participants
and characterization of host immune responses known to
be associated with the scarring process.
During the dry season, Streptococcus was found at

higher abundance in adults with scarring than in con-
trols, but not during the wet season, possibly reflec-
ting the lower number of individuals sampled (43 in
the wet season versus 126 in the dry). The abundance
of Streptococcus was not significantly different bet-
ween only scarring versus scarring and TT cases,
despite evidence that suggests S. pneumoniae in the
eye may be associated with increasing clinical severity,
as measured by the number of eyelashes touching the
eye [4]. However, this association may be obscured by
a high abundance of non-pneumococcal Streptococcus.
The potential for contamination of the samples from

environmental sources is a limitation of this study. The
presence of many soil-borne bacteria, in particular, may
be a reflection of environmental contamination during
the sampling process. However, the ocular surface is
continually exposed to the external environment and
while these organisms may not actively colonize the
conjunctival surface, it is reasonable to expect they are
continually introduced into the eye, particularly in a
resource-poor setting such as The Gambia where housing
standards, access to sanitation, use of water and public
health awareness are low. This is supported by a recent
study characterizing the bacterial communities present
on the hands of Tanzanian women, which found the
bacterial communities were dominated by soil-borne
bacteria, including members of the Rhodobacteraceae,
Nocardioidaceae, Bacillaceae, Bradyrhizobiaceae and
Rhizobiaceae families [29]. In order to minimize the im-
pact of potential environmental contaminants on the mea-
sured diversity of our samples, we rarefied all samples to
1,000 reads. We also removed all taxa found at less than
1% relative abundance after rarefaction to further mini-
mize the effect of potential contamination on the commu-
nity comparisons between groups. Future longitudinal
study and bacterial community transcriptomics may help
distinguish bacteria that actively colonize, or replicate, on
the conjunctival surface from those that are transiently
introduced.
Conclusions
Changes in the bacterial community structure and re-
duced diversity are associated with trachomatous dis-
ease. Further work is needed to determine whether these
changes contribute to the scarring process.
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community structure as represented by multidimensional scaling
(MDS). Bacterial community structure visualized by MDS. Participants
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indicated. P-values generated by PERMANOVA.
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structure as represented by multidimensional scaling (MDS).
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generated by PERMANOVA.

Additional file 4: Effect of age on bacterial community richness and
diversity. Boxplots indicate the distribution of (A) richness and (B)
Shannon diversity measures in younger (≤10 years) and older (>10 years)
participants with normal conjunctivae (F0P0C0). P-values calculated using
Wilcoxon rank sum test.

Additional file 5: Effect of season on bacterial community richness
and diversity. Boxplots indicate the distribution of (A) richness and (B)
Shannon diversity measures in participants >10 years of age with normal
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calculated using Wilcoxon rank sum test.
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