
Zhang et al. Advances in Difference Equations  (2017) 2017:76 
DOI 10.1186/s13662-017-1118-1

R E S E A R C H Open Access

Dynamical analysis of the
permanent-magnet synchronous motor
chaotic system
Fuchen Zhang1,2*, Xiaofeng Liao3 and Chunlai Mu4

*Correspondence:
zhangfuchen1983@163.com
1College of Mathematics and
Statistics, Chongqing Technology
and Business University, Chongqing,
400067, People’s Republic of China
2College of Mathematics and
Statistics, Southwest University,
Chongqing, 400716, People’s
Republic of China
Full list of author information is
available at the end of the article

Abstract
This paper is concerned with some dynamics of the permanent-magnet synchronous
motor chaotic system based on Lyapunov stability theory and optimization theory.
The innovation of the paper lies in that we derive a family of mathematical
expressions of globally exponentially attractive sets for this chaotic system with
respect to system parameters. Numerical simulations confirm that theoretical analysis
results are correct.
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1 Introduction
Since Lorenz et al. were the first to investigate the Lorenz equations in , chaotic sys-
tems have played an important role in a variety of industrial fields [–]. As is well known,
the research on chaos is not limited to the fields of mathematics and physics. It is found
that chaos widely exists in the fields of meteorology, medicine, computer science, eco-
nomics, mechanical engineering, cryptography, and so on [–]. However, it was not
until the s that chaos has gradually attracted enough attention due to the findings in
practical engineering. From the point of view of the potential application of chaos theory
in practical engineering, many efforts have been made to study chaos in the past  years.

This paper mainly focuses on the chaotic system model from a permanent-magnet syn-
chronous motor (PMSM) which is a nonlinear, multivariable, and strong coupling system.
A permanent-magnet synchronous motor is a kind of highly efficient and high-powered
motor, which has been widely used in the industry. Usually, the dynamics of a PMSM
is modeled as a three-dimensional autonomous differential equation [, ]. Dynamical
behaviors of the PMSM, such as periodic solutions, chaos phenomena, phase portraits, bi-
furcation diagrams, Lyapunov exponents, chaos anti-control and chaos synchronization,
have been widely studied in [, ].

In recent years, dynamical behaviors of chaotic systems, such as stability, periodic solu-
tions, circuit implementation, image encryption algorithm, chaos synchronization, chaos
attractors, heteroclinic orbits and homoclinic orbits, have been extensively investigated
[–]. However, little seems to be known about the global exponential attractive set of
chaotic systems [–]. Despite the fact that many qualitative and quantitative results on
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the permanent-magnet synchronous motor system have been obtained [, ], there is a
fundamental question that has not been completely answered so far: is there a global expo-
nential attractive set for the permanent-magnet synchronous motor system? Global expo-
nential attractive sets play an important role in dynamical systems. The global exponential
attractive set is also very important for engineering applications, since it is very difficult
to predict the existence of hidden attractors and they can lead to crashes []. Therefore,
how to get the global attractive sets of a chaotic dynamical system is particularly signifi-
cant both for theoretical research and practical applications. In [, ], one shows that
Lyapunov functions can be used to study chaos synchronization. However, Lyapunov-like
functions used in [, , , ] cannot be used to study the global attractive sets for
the permanent-magnet synchronous motor system. In this paper, a new Lyapunov-like
function is constructed to investigate the global attractive sets of the permanent-magnet
synchronous motor system.

Motivated by the above discussion, we will investigate the global attractive sets of the
permanent-magnet synchronous motor system. The meaning of the contribution of this
article is that not only do we derive a family of mathematical expressions of global expo-
nential attractive sets for permanent-magnet synchronous motor systems in [, ] with
respect to the parameters of the system, but we also get the rate of the trajectories of the
system going from the exterior of the trapping set to the interior of the trapping set.

The rest of the paper is organized as follows. The permanent-magnet synchronous mo-
tor (PMSM) model is given in Section . In Section , we prove that there exist global
exponential attractive sets for the chaotic PMSM system. Some numerical simulations are
also given in Section . Section  gives conclusions.

2 Permanent-magnet synchronous motor model
A permanent-magnet synchronous motor (PMSM) is a kind of highly efficient and high-
powered motor, which has been widely used in the industry. The model of the PMSM, as
described in [], is as follows:

⎧
⎪⎪⎨

⎪⎪⎩

did
dt

= (ud – Rid + ωLqiq)/Ld,
diq
dt

= (uq – Riq – ωLdid + ωψr)/Lq,
dω
dt

= [npψriq + np(Ld – Lq)idiq – TL – βω]/J ,

()

where id , iq and ω are the state variables, which represent currents and motor angular
frequency, respectively; ud and uq represent the direct- and quadrature-axis stator voltage
components, respectively; J represents the polar moment of inertia; TL represents the
external load torque; β represents the viscous damping coefficient; R represents the stator
winding resistance; Ld and Lq represent the direct- and quadrature-axis stator inductors,
respectively; ψr represents the permanent-magnet flux, and np represents the number of
pole-pairs, the parameters Ld , Lq, J , TL, R, ψr , β are positive.

In [], by applying an affine transformation, X = λY , and time-scaling transformation,
t = τ t, where

X =
[
id iq ω

]T , Y =
[
x y z

]T ,

λ =

⎡

⎢
⎣

λd  
 λq 
  λω

⎤

⎥
⎦ =

⎡

⎢
⎣

bk  
 k 
  

τ

⎤

⎥
⎦ , b =

Lq

Ld
, k =

β

npτψr
, τ =

Lq

R
,
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the model () is written as []
⎧
⎪⎪⎨

⎪⎪⎩

dx
dt = – Lq

Ld
x + yz + ũd,

dy
dt = –y – xz + γ z + ũq,
dz
dt = σ (y – z) + εxy – T̃L,

()

where

γ =
npψ


r

Rβ
, σ =

Lqβ

RJ
, ũq =

npLqψruq

R
β

, ũd =
npLqψrud

R
β

,

ε =
Lqβ

(Ld – Lq)
LdJnpψ

r
, T̃L =

L
qTL

R
 J

, np = .

The PMSM system () with smooth-air-gap case (Lq = Ld) is written as []
⎧
⎪⎪⎨

⎪⎪⎩

dx
dt = –x + yz + ũd,
dy
dt = –y – xz + γ z + ũq,
dz
dt = σ (y – z) – T̃L,

()

where x, y and z are the new variables of the system (), and the parameters γ and σ are
positive constants.

When ũd = , ũq = , T̃L = , where this case can be considered as the case that, after a
period of operation, the external inputs of the system () are removed, the PMSM system
() is written as []

⎧
⎪⎪⎨

⎪⎪⎩

dx
dt = –x + yz,
dy
dt = –y – xz + γ z,
dz
dt = σ (y – z),

()

where x, y and z are the new variables of the system (), and the parameters γ and σ

are positive constants. There exist complex nonlinear dynamical behaviors in the system
() including chaos and periodic orbit. The butterfly chaotic attractor of the system ()
with γ =  and σ =  in the xoyz space is shown in Figure . Chaotic attractors of

Figure 1 Chaotic attractor of system (4) in the xoyz space.
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Figure 2 Projections of chaotic attractors of system (4) onto planes.

the system () with γ =  and σ =  on the x-y, x-z, and y-z planes are shown in Fig-
ure .

The periodic and chaos phenomena, phase portraits, bifurcation diagrams, Lyapunov
exponents, chaos anti-control of the permanent-magnet synchronous motors (), () and
() are widely studied in [, ] in detail. But the global exponential attractive sets of
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systems ()-() are still unknown. Our principal aim here is to investigate the global ex-
ponential attractive sets of (), () and ().

3 Dynamics of the PMSM
In this section, we will discuss the global exponential attractive sets of PMSM system (),
() and (). We have the following results.

Theorem  For ∀λ > 
|ε| > , Lq > , Ld > , σ > , with

Vλ(X) = ( + λε)y + (x – γ – λγ ε – λσ ) + λz,

θ = min(a,σ , ) > , a =
Lq

Ld
> ,

Lλ =

θ

{
[ud – a(γ + λγ ε + λσ )]

a
+ ( + λε)u

q +
λT̃

L
σ

}

, X(t) =
(
x(t), y(t), z(t)

)
.

When Vλ(X(t)) > Lλ, Vλ(X(t)) > Lλ, we can get the exponential estimate of the system (),
given by

Vλ

(
X(t)

)
– Lλ ≤ (

Vλ

(
X(t)

)
– Lλ

)
e–θ (t–t).

That is to say, the set

�λ =
{

(x, y, z)
∣
∣
∣( + λε)y + (x – γ – λγ ε – λσ ) + λz ≤ Lλ,∀λ >


|ε| > 

}

()

is the global exponential attractive set of the permanent-magnet synchronous motor sys-
tem ().

Proof Let us define

f (x) = –ax + udx,

h(y) = –( + λε)y + ( + λε)uqy,

g(z) = –σλz – λT̃Lz – ud(γ + λγ ε + λσ ),

then we get

max
x∈R

f (x) =
u

d
a

,

max
y∈R

h(y) = ( + λε)u
q,

max
z∈R

g(z) =
λT̃

L
σ

– ud(γ + λγ ε + λσ ).

Define the following Lyapunov-like function:

Vλ(X) = ( + λε)y + (x – γ – λγ ε – λσ ) + λz
(

∀λ >

|ε| > 

)

.



Zhang et al. Advances in Difference Equations  (2017) 2017:76 Page 6 of 10

Differentiating the above Lyapunov-like function Vλ(X) with respect time t along the tra-
jectory of system () yields

dVλ(X)
dt

∣
∣
∣
∣
()

= (x – γ – λγ ε – λσ )
dx
dt

+ ( + λε)y
dy
dt

+ λz
dz
dt

= (x – γ – λγ ε – λσ )(–ax + yz + ũd) + ( + λε)y(–y – xz + γ z + ũq)

+ λz
[
σ (y – z) + εxy – T̃L

]

= –ax – ( + λε)y + ( + λε)uqy – λσ z – λT̃Lz

+ 
[
ud + a(γ + λγ ε + λσ )

]
x + –ud(γ + λγ ε + λσ )

= –ax + udx + a(γ + λγ ε + λσ )x – ( + λε)y + ( + λε)uqy

– λσ z – λT̃Lz – ud(γ + λγ ε + λσ )

= –ax + a(γ + λγ ε + λσ )x – ax + udx – ( + λε)y – ( + λε)y

+ ( + λε)uqy – λσ z – λσ z – λT̃Lz – ud(γ + λγ ε + λσ )

= –ax + a(γ + λγ ε + λσ )x + f (x) – ( + λε)y + h(y) – λσ z + g(z)

= –a
[
x – (γ + λγ ε + λσ )

] + a(γ + λγ ε + λσ ) – ( + λε)y – λσ z

+ f (x) + h(y) + g(z)

≤ –θVλ(X) + a(γ + λγ ε + λσ ) + f (x) + h(y) + g(z)

≤ –θVλ(X) + a(γ + λγ ε + λσ ) +
u

d
a

+ ( + λε)u
q

+
λT̃

L
σ

– ud(γ + λγ ε + λσ )

≤ –θVλ(X) +
[ud – a(γ + λγ ε + λσ )]

a
+ ( + λε)u

q +
λT̃

L
σ

≤ –θ
[
Vλ(X) – Lλ

]
< ,

which is equivalent to

dVλ(X(t))
dt

∣
∣
∣
∣
()

≤ –θ
(
Vλ(X) – Lλ

)
< . ()

Integrating both sides of equation () yields

Vλ

(
X(t)

) ≤ Vλ

(
X(t)

)
e–θ (t–t) +

∫ t

t

θLλe–θ (t–τ ) dτ

= Vλ

(
X(t)

)
e–θ (t–t) + Lλ

(
 – e–θ (t–t)),

and if Vλ(X(t)) > Lλ, Vλ(X(t)) > Lλ, we have the inequality for system () given by

Vλ

(
X(t)

)
– Lλ ≤ (

Vλ

(
X(t)

)
– Lλ

)
e–θ (t–t). ()
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By definition, taking the limit on both sides of the above inequality as t → +∞ results in

lim
t→+∞ Vλ

(
X(t)

) ≤ Lλ. ()

Namely,

�λ =
{

(x, y, z)
∣
∣
∣( + λε)y + (x – γ – λγ ε – λσ ) + λz ≤ Lλ,∀λ >


|ε| > 

}

is the global exponential attractive set of the permanent-magnet synchronous motor sys-
tem ().

This completes the proof. �

Theorem  For ∀λ > , σ > , with

Vλ(X) = y + (x – γ – λσ ) + λz, θ = min(σ , ) > ,

Mλ =

θ

{
[
ud – (γ + λσ )

] + u
q +

λT̃
L

σ

}

, X(t) =
(
x(t), y(t), z(t)

)
.

When Vλ(X(t)) > Mλ, Vλ(X(t)) > Mλ, we can get the exponential estimate of the system (),
given by

Vλ

(
X(t)

)
– Mλ ≤ (

Vλ

(
X(t)

)
– Mλ

)
e–θ(t–t).

That is to say, the set

�λ =
{

(x, y, z)|y + (x – γ – λσ ) + λz ≤ Mλ,∀λ > 
}

()

is the global exponential attractive set of the permanent-magnet synchronous motor sys-
tem ().

Proof Let us define

f(x) = –x + udx,

h(y) = –y + uqy,

g(z) = –σλz – λT̃Lz – ud(γ + λσ ),

then we can get

max
x∈R

f(x) = u
d,

max
y∈R

h(y) = u
q,

max
z∈R

g(z) =
λT̃

L
σ

– ud(γ + λσ ).
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Define the following Lyapunov-like function:

Vλ(X) = y + (x – γ – λσ ) + λz, ∀λ > .

Differentiating the above Lyapunov-like function Vλ(X) with respect time t along the tra-
jectory of system () yields

dVλ(X)
dt

∣
∣
∣
∣
()

= (x – γ – λσ )
dx
dt

+ y
dy
dt

+ λz
dz
dt

= (x – γ – λσ )(–x + yz + ũd) + y(–y – xz + γ z + ũq)

+ λz
[
σ (y – z) – T̃L

]

= –x – y + uqy – λσ z – λT̃Lz + 
[
ud + (γ + λσ )

]
x

+ –ud(γ + λσ )

= –x + udx + (γ + λσ )x – y + uqy – λσ z – λT̃Lz

– ud(γ + λσ )

= –x + (γ + λσ )x – x + udx – y – y

+ uqy – λσ z – λσ z – λT̃Lz – ud(γ + λσ )

= –x + (γ + λσ )x + f(x) – y + h(y) – λσ z + g(z)

= –
[
x – (γ + λσ )

] + (γ + λσ ) – y – λσ z

+ f(x) + h(y) + g(z)

≤ –θVλ(X) + (γ + λσ ) + f(x) + h(y) + g(z)

≤ –θVλ(X) + (γ + λσ ) + u
d + u

q +
λT̃

L
σ

– ud(γ + λσ )

≤ –θVλ(X) +
[
ud – (γ + λσ )

] + u
q +

λT̃
L

σ

≤ –θ
[
Vλ(X) – Mλ

]
< ,

and integrating both sides of the above formula yields

Vλ

(
X(t)

) ≤ Vλ

(
X(t)

)
e–θ(t–t) +

∫ t

t

θMλe–θ(t–τ ) dτ

= Vλ

(
X(t)

)
e–θ(t–t) + Mλ

(
 – e–θ(t–t)),

while if Vλ(X(t)) > Mλ, Vλ(X(t)) > Mλ, we have the inequality for system () given by

Vλ

(
X(t)

)
– Mλ ≤ (

Vλ

(
X(t)

)
– Mλ

)
e–θ(t–t). ()

Similarly, we get

�λ =
{

(x, y, z)|y + (x – γ – λσ ) + λz ≤ Mλ,∀λ > 
}
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as the global exponential attractive set of the permanent-magnet synchronous motor sys-
tem ().

This completes the proof. �

Remark  (i) Currently the question is being actively discussed of the equivalence of var-
ious Lorenz-like systems and the possibility of universal consideration of their behavior
[–] in view of the possibility of the reduction of such systems to the same normal
form with the help of various reversible transformations. It is straightforward to obtain,
simply by interchanging the state variables x and z in system (), the PMSM model () can
be written in the form of the Lorenz system () as follows:

⎧
⎪⎪⎨

⎪⎪⎩

dx
dt = σ (y – x),
dy
dt = –y – xz + γ x,
dz
dt = –z + xy,

()

then, as a summary, the permanent-magnet synchronous motor system considered in (),
from a dynamical point of view, has an identical behavior to the Lorenz system. Thus,
many known results on the localization and global exponential attractive sets of the Lorenz
system can be used for the considered system () (see [, , , ] for a detailed discussion
of the localization and global exponential attractive sets of the Lorenz system). Systems
() and () are not equivalent to the Lorenz system [, ], the already known techniques
do not work for the considered systems () and ().

4 Conclusions
In this paper, the global attractive sets of the permanent-magnet synchronous motor have
been obtained based on dynamical systems theory. This method can be applied to consider
other chaotic systems. In the future we will conduct research on how to control the PMSM
to avoid the chaotic behavior and protect the motors in practical applications.
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