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Abstract
This work is devoted to the study of some functions arising from a limit transition of
the Jackson q-Bessel functions when q tends to –1. These functions coincide with the
so-called cas function for particular values of parameters. We prove that there are
eigenfunctions of differential-difference operators of Dunkl-type. Also we consider
special cases of the Askey-Wilson algebra AW(3), which have these operators (up to
constants) as one of their three generators and whose defining relations are given in
terms of anti-commutators.
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1 Introduction
In [], Vinet and Zhedanov introduced new families of orthogonal polynomials by consid-
ering appropriate limits when q tends to – of the little and big q-Jacobi polynomials. In
this work we will study the limit when q tends to – of the three q-analogs of the Bessel
function, which are introduced by Jackson [–]. The first and the second q-Bessel func-
tions are reconsidered and rewritten in modern notations by Ismail []. The third q-Bessel
function is rediscovered later by Hahn [] and Exton []. This function has an interpre-
tation as matrix elements of irreducible representations of the quantum group of plane
motions Eq() and satisfies an orthogonality relation that makes it more suitable for har-
monic analysis [–]. Of course, when q tends to , the Jackson q-Bessel functions tend
to the standard Bessel function [].

In this paper we will show that the limit when q tends to – of the third q-Bessel
functions leads to a new type of nonsymmetric Bessel functions satisfying first order
differential-difference equation. Also these functions coincide for a particular value of its
parameters with the cas function []. Furthermore, by using the limit transition from lit-
tle q-Jacobi polynomials to the third q-Bessel function and from q-Laguerre to the second
q-Bessel function we construct a q-Bessel version of the Askey-Wilson AW () algebra.

Notations Throughout we assume – < q < . For q-Pochhammer symbols and q-
hypergeometric series we use the notation of [],

(a; q) := , (a; q)n :=
n–∏

k=

(
 – aqk), n = , . . . ,∞. (.)
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The basic hypergeometric series are defined by

r�s

(
a, . . . , ar

b, . . . , bs

∣∣∣q; z
)

:=
+∞∑

k=

(a, . . . , ar ; q)k

(q, b, . . . , bs; q)k

(
(–)kq(k

))+s–rzk , (.)

where

(a, . . . , ar ; q)n := (a; q)n · · · (ar ; q)n.

2 Askey-Wilson relations for the little q-Jacobi polynomials
2.1 Little q-Jacobi polynomials
The little q-Jacobi polynomial is defined by [], (.(iv))

pn(x) = pn(x; a, b|q) := �

(
q–n, abqn+

aq

∣∣∣q; qx
)

. (.)

For  < a < q– and b < q–, the polynomials {pn(x)}n satisfy the orthogonality relations

(aq; q)∞
(abq; q)∞

∞∑

k=

pm
(
qk)pn

(
qk)(aq)k (bq; q)k

(q; q)k
=

( – abq)(aq)n

 – abqn+
(q, bq; q)n

(aq, abq; q)n
δm,n.

There is a q-difference equation for this polynomial of the form

Ya,b,qf (x) = λnf (x), (.)

where

(Ya,b,qf ) := a
(
bq – x–)(f (qx) – f (x)

)
+

(
 – x–)(f

(
q–x

)
– f (x)

)
(.)

and

λn = q–n( – qn)( – abqn+). (.)

The Askey-Wilson algebra AW () involves a nonzero scalar q and three parameters ω,
ω, and ω, it was introduced by Zhedanov [] as an associative algebra generated by X,
Y , and Z subject to the following commutation relations:

YX – qXY = μZ + ω, ZY – qYZ = μX + ω,

XZ – qZXY = μY + ω.
(.)

There is a central element Q, which is explicitly given as a polynomial of degree  in terms
of X, Y , and Z []

Q =
(
q – 

)
YXZ + μY  + μqX + μZ + (q + )(ωY + ωqX + ωZ). (.)

The limit of orthogonal polynomials in the Askey scheme as q →  corresponds to the
limit q →  of AW () to some classical algebras. In particular, the related Askey-Wilson
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algebra for the little q-Jacobi polynomial is generated by X, Y , Z with relations []

YX – qXY = Z + ω, ZY – qYZ = X + ω, XZ – qZX = , (.)

where

ω = –
 + b

( + q)b
, ω = –

 + a
( + q)

√
ab

. (.)

There is a representation on the space of polynomials of the little q-Jacobi AW () defined
by relations (.) with structure constants given in (.) as follows:

(Yf )(x) := μ(Ya,b,q +  + qab)f (x), (Xf )(x) := xf (x),

(Zf )(x) :=
 – x

q
√

ab
f
(
q–x

)
,

(.)

where

μ = –


( – q)
√

ab
.

The Casimir operator

Q =
(
q – 

)
YXZ + qX + Z + (q + )(ωqX + ωZ) (.)

takes the value Q = –b–.

2.2 Little (–1)-Jacobi polynomials
The little (–)-Jacobi polynomials P(α,β ,–)

n (x) have been introduced and investigated in []
as limits of the little q-Jacobi polynomials (.)

lim
ε→

pn
(
x; –eεα , –eεβ | – eε

)
= P(α,β ,–)

n (x). (.)

We recall here their basic properties []. The polynomial P(α,β ,–)
n (x) satisfies the following

difference-differential equation

(Yα,β ,–f )(x) = λnf (x), (.)

where

(Yα,β ,–f )(x) = (x – )f ′(–x) +
(
α + β – αx–) f (x) – f (–x)



and

λn =

{
–n, if n is even,
α + β + n + , if n is odd.

These polynomials have the following expressions in terms of the hypergeometric series:
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For n, even

P(α,β ,–)
n (x) = F

(
– n

 , α+β+n+


α+


; x

)
+

nx
α +  F

(
 – n

 , α+β+n+


α+


; x

)
,

and for n odd

P(α,β ,–)
n (x) = F

(
– n–

 , α+β+n+


α+


; x

)
–

(α + β + n + )x
α +  F

(
– n–

 , α+β+n+


α+


; x

)
.

We introduce the operators

(Yf )(x) := (Yα,β ,–f )(x) –



(α + β + )f (x), (Xf )(x) := xf (x),

(Zf )(x) := (x – )f (–x).

In [], it was shown that these operators are closed in the framework of the Askey-Wilson
algebra and they satisfy the commutation relations

{X, Y } = Z + α, {X, Z} = , {Y , Z} = Y + β , (.)

with {A, B} = AB + BA denoting as usual the anti-commutator of A and B.
The Casimir operator is

Q = Y  + Z (.)

and takes the value

Q = .

3 The nonsymmetric Hankel transform
For Bessel functions Jα(x) see [], Chapter , and the references given therein. Let us
consider the normalized Bessel function Jα(x), which is given by

Jα(x) := 	(α + )(/x)αJα(x). (.)

Then

Jα(x) =
∞∑

k=

(– 
 x)k

(α + )kk!
= F

(
–

α + 
; –




x
)

(α > –).

Jα(x) is an entire function and has the simple properties and special cases [], Sec-
tion ..

Jα(x) = Jα(–x), Jα() = , J–/(x) = cos x, J/(x) =
sin x

x
.

The function x �→ Jα(λx) satisfies also the eigenvalue equation [], Section ..:

(
d

dx +
α + 

x
d

dx

)
Jα(λx) = –λJα(λx).
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The Hankel transform pair [], Section .(v), for f in a suitable function class, is given
by

{̂
f (λ) =

∫ ∞
 f (x)Jα(λx) xα+ dx

α+/	(α+) ,
f (x) =

∫ ∞
 f̂ (λ)Jα(λx) λα+ dλ

α+/	(α+) .
(.)

Now consider the so-called nonsymmetric Bessel function, also called Dunkl-type Bessel
function, in the rank one case (see [], Section ):

Eα(x) := Jα(x) +
ix

(α + )
Jα+(x). (.)

In particular,

E–/(x) = eix.

The nonsymmetric Hankel transform pair takes the form

{̂
f (λ) =

∫
R

f (x)Eα(λx) |x|α+ dx
α+	(α+) ,

f (x) =
∫
R

f̂ (λ)Eα(λx) |λ|α+ dλ

α+	(α+) .
(.)

The transform pair (.) follows immediately from (.). For some given α let us define
the differential-reflection operator

(Tαf )(x) := f ′(x) +
(

α +



)
f (x) – f (–x)

x
, (.)

called the Dunkl operator for root system A (see [], Definition ..). We have the eigen-
value equation

Tα

(
Eα(λx)

)
= iλEα(λx). (.)

If in (.) we substitute (.), compare even and odd parts, and then substitute (.), then
we see that (.) is equivalent to a pair of lowering and raising differentiation formulas for
Bessel functions (see [], (..)):

J ′
α(x) –

α

x
Jα(x) = –Jα+(x), J ′

α+(x) +
α + 

x
Jα+(x) = Jα(x).

The double degeneration of the double affine Hecke algebra H" is generated by D, Z, and
s with relations []

sZs– = –Z, sDs– = –D, [D, Z] =  + ks. (.)

The operators D, s, and Z act on the polynomial f (x) as

(Df )(x) = (Tαf )(x), (sf )(x) = f (–x), (Zf )(x) = xf (x). (.)
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The operators defined in (.) are also known as para-Bose operators and the algebra (.)
is equivalent to the para-Bose algebra [, ].

Another important generalization of the exponential function is the so-called cas func-
tion, which is given by [, ]

cas(x) = cos(x) + sin(x). (.)

It is evident that the function y(x) = cas(λx) satisfies

(
y)(x) = λy(x), y() = , (.)

where 
 = s∂ and ∂ is the derivative operator.

4 Limit q → –1 of the third q-Bessel function
The third q-Bessel function was introduced in [, ], see also [, , ], and is defined by

J ()
ν (x; q) :=

(qν+; q)∞
(q; q)∞

(



x
)ν

�

(


qν+

∣∣∣q;



qx
)

(x > ).

We will consider a slightly different function J(x, a; q), called a normalized third q-Bessel
function, which is defined by

J(x, a; q) = �

(


aq

∣∣∣q; qx
)

. (.)

It is easy to see that

lim
q→

J
(
( – q)x, qα ; q

)
= Jα(

√
x).

The function J(λx, a; q) is a solution of the q-difference

(Ya,qf )(x) = –λf (x), (.)

where

(Ya,qf )(x) :=
a
x
(
f (qx) – f (x)

)
+


x
(
f
(
q–x

)
– f (x)

)
. (.)

Next, we describe the construction of new function by the limiting process from normal-
ized third q-Bessel as q → – and from the (–)-Jacobi polynomials as n → ∞. Moreover,
we have the following diagram for limit relations between these special functions and or-
thogonal polynomials.

little q-Jacobi
q→–

n→∞

little (–)-Jacobi

n→∞

third q-Bessel
q→–

third (–)-Bessel
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The upper limit in the previous diagram is studied by []. Next we are concerned only
by the three other limits.

There is a well-known limit from Jacobi polynomials to Bessel functions, see [],
(..),

lim
n→∞

	(α + )
nα

P(α,β)
n

(
 –

x

n

)
= Jα(x). (.)

The q-analog of this limit transition starts with the little q-Jacobi polynomials (.). From
Proposition A. in [] we have

lim
n→∞ pn

(
qnx; a, b|q)

= J(x, a; q). (.)

The operators X, Y , and Z defined in (.) have also a limit for n → ∞ after the rescaling
x → qnx. More precisely, let us denote

(Xf )(x) := lim
n→∞ q–n(Xf )

(
qnx

)
,

(Yf )(x) := lim
n→∞

√
abqn(Yf )

(
qnx

)
,

(Zf )(x) := lim
n→∞

√
ab(Zf )

(
qnx

)
.

Then in the limit the operators X, Y , and Z are given by

(Xf )(x) = xf (x), (Yf )(x) =


q – 
(Ya,qf )(x), (Zf )(x) = q–f

(
q–x

)
, (.)

and (.) become

YX – qXY = Z + ω, ZY – qYZ = , XZ – qZX = , (.)

where

ω = –
 + a
 + q

. (.)

The resulting algebra generated by X, Y , and Z with (.) and (.) is called the q-Bessel
AW () algebra. In this case the Casimir operator becomes

Q =
(
q – 

)
YXZ + Z – ( + a)Z (.)

and takes the value Q = –a.
Equations (.) hold in the limit q → –. Indeed, let us take the parametrization

a = –eε(α+) and q = –eε .

Since

f
(
–e±εz

)
= f (–z) ∓ zf (–z)ε + o(ε),
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q = – – ε + o(ε),

a = – – (α + )ε + o(ε),

the q-difference equation (.) tends formally as ε →  to the differential-difference equa-
tion

(Yαf )(x) = λf (x), (.)

where

(Yαf )(x) = f ′(–x) +
(

α +



)
f (x) – f (–x)

x
. (.)

The operator Yα is a difference-differential operator of the first order containing reflec-
tion terms. Notice the important property of the operator Yα : it sends the linear space of
polynomials of dimension n +  to the space of dimension n. In particular, this means that
there are no polynomial eigenfunction of the operator Yα .

Now, let us introduce the operators

(Xf )(x) := xf (x), (Yf )(x) := (Yαf )(x), (Zf )(x) := f (–x). (.)

Then it is elementary to verify that the operators X, Y , Z satisfy the relations

{X, Y } = –Z – α – , {X, Z} = , {Y , Z} = , (.)

which corresponds to the AW () algebra with parameters

q = –, ω = –α – , μ = –, ω = ω = μ = μ = .

It is easily verified that the Casimir operator is

Q = Z. (.)

In the case of the realization (.) of the operators X, Y Z, the Casimir operator becomes
the identity operator.

Theorem . For each λ ∈C. The differential-difference equation (.) under the initial
condition y() = , admits unique C∞-solution denoted Jα,–(λx), which is expressed in
terms of the normalized q-Bessel function (.) by

Jα,–(λx) = Jα(λx) +
λx

(α + )
Jα+(λx). (.)

Proof From the decomposition in the form f = f + f where f is even and f is odd. Equa-
tion (.) is equivalent to the following system:

⎧
⎪⎨

⎪⎩

–f ′
 (x) = λf(x),

f ′
(x) + α+

x f(x) = λf(x),
f() = , f ′

 () = .
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Thus

⎧
⎪⎨

⎪⎩

–f ′
 (x) = λf(x),

f ′′
 (x) + α+

x f ′
 (x) = –λf(x),

f() = , f ′
 () = .

Hence,

f(x) = Jα(λx) and f(x) = –

λ

d
dx

Jα(λx). �

In particular, for α = –/, the (–)-Bessel functionJα,–(λx) coincides with the cas func-
tion (.)

J–/,–(λx) = cas(λx).

The function Jα,–(λx) is related to the Dunkl function (.) by

Jα,–(λx) =


(
( + i)Eα(λx) + ( – i)Eα(–λx)

)
. (.)

The (–)-Bessel transform pair takes the form

{̂
f (λ) = 

α+	(α+)

∫ ∞
–∞ f (x)Jα,–(–λx)|x|α+ dx,

f (x) = 
α+	(α+)

∫ ∞
–∞ f̂ (λ)Jα,–(λx)|λ|α+ dλ.

(.)

The transform pair (.) follows immediately from (.) by putting f (x) = f(x) + xf(x) in
(.) with f and f even.

The (–)-Bessel function Jα,–(λx) can be obtained also as limit case of the normalized
third q-Bessel function (.)

lim
ε→

J
(
x, –eε(α+); –eε

)
= Jα,–(x). (.)

Indeed, from (.) we can expand J (x, –eε(α+); –eε) in a power series of x as follows:

J
(
x, –eε(α+); –eε

)
=

∞∑

n=

cn,α(ε)xn,

where

cn,α(ε) = (–)n (–)
n(n–)

 ( – eε)n

n(eε(α+), –eε ; –eε)n
.

Then the result follows from the following elementary limits involving q-shifted factorials:

lim
ε→

ε–[n/](–eεα ; –eε
)

n = (–)[n/]n((α + )/
)

[n/],

lim
ε→

ε–[(n+)/](eεα ; –eε
)

n = (–)([n+)/]n(α/)[(n+)/].
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5 The second q-Bessel function case
5.1 q-Laguerre polynomials
The q-Laguerre polynomials {Ln(x, a; q)}n are defined by

Ln(x, a; q) :=
(aq; q)n

(q; q)n 
φ

(
q–n

aq

∣∣∣q, –aqn+x

)
, (.)

we have used slightly different notations (see [], (..)). They satisfy the recurrence
relations

–aqn+xLn(x, a; q) =
(
 – qn+)Ln+(x, a; q) –

[(
 – qn+)

+ q
(
 – aqn)]Ln(x, a; q) + q

(
 – aqn)Ln–(x, a; q). (.)

There is a q-difference equation of the form

(La,qy)(x) = –a
(
 – qn)y(x), (.)

where

(La,qy)(x) := a
(
 + x–)y(qx) –

[
x– + a

(
 + x–)]y(x) + x–y

(
q–x

)
. (.)

When q →  (a = qα) the q-Laguerre polynomial Ln(x, a; q) becomes the ordinary Laguerre
polynomial

Lα
n(x) :=

(α + )n

n! F

(
–n

α + 

∣∣∣x
)

. (.)

There is a limit transition from little q-Jacobi to q-Laguerre (see [], Section ..),

Ln(x, a; q) = lim
b→∞

(qa; q)∞
(q; q)∞

pn

(
–

x
qb

, a, b
∣∣∣q

)
. (.)

Starting with the operators X, Y , and Z given by (.) we can also obtain the following
operators:

(Xf )(x) := –q lim
b→∞

b(Xf )(–x/qb),

(Yf )(x) :=
√

a lim
b→∞

√
b

(Yf )(–x/qb),

(Zf )(x) := –q lim
b→∞

√
ab(Zf )(–x/qb).

Then

(Xf )(x) := xf (x),

(Yf )(x) :=
q

q – 
(La,q + a)f (x),

(Zf )(x) := –f
(
q–x

)
,

(.)
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where the operator La,q is defined in (.). A simple computation shows that the operators
X, Y , Z satisfy the relations

YX – qXY = Z + ω, ZY – qYZ = ω, XZ – qZX = , (.)

where

ω =
aq

 + q
, ω =

q( + a)
 + q

. (.)

The Casimir operator

Q =
(
q – 

)
YXZ + Z + (q + )(ωqX + ωZ) (.)

takes the value Q = –aq.

5.2 Second Jackson’s q-Bessel function
The second Jackson’s q-Bessel function is defined as follows:

J ()
ν (x; q) :=

(qν+; q)∞
(q; q)∞

(



x
)ν

�

(


qν+

∣∣∣q; –



qν+x
)

(x > ).

This notation is from [] and is deferent from Jackson’s notation [–]. The classical Bessel
function Jν is recovered by letting q →  in J ()

ν (x; q). Similarly to (.), we defined the
second normalized q-Bessel function J(x; a; q) by

J(x; a; q) = �

(


qa

∣∣∣q; –qax
)

. (.)

There is a well-known limit from q-Laguerre [] to the second normalized q-Bessel func-
tion as n → ∞

J(x; a; q) = lim
n→∞ Ln(x, a; q). (.)

From (.) and (.) is not difficult to establish the q-difference equation for J(λx, a; q)

(Ya,q,y)(x) = –aλy(x), (.)

where

(Ya,q,y)(x) =
aq
x

y(x) – q
a + 

x
y
(
q–x

)
+

q
x

y
(
q–x

)
. (.)

Furthermore, the q-Bessel operator Ya,q, is related to the q-Laguerre operator La,q defined
in (.) by

(La,q + a)f
(
q–x

)
= (Ya,q, + a)f (x). (.)
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This allows us to construct a Askey-Wilson algebra type that has the q-Bessel operator
Ya,q, as one of its three generators. A straightforward computation shows that the opera-
tors X, Y , Z given by

(Xf )(x) := xf (x),

(Yf )(x) :=
q

q – 
(Ya,q, + a)f (x), (.)

(Zf )(x) := –f
(
q–x

)
,

satisfy the relations

YX – qXY = μZ + μX + μ, ZY – qYZ = μZ, XZ – qZX = , (.)

where

μ = –q
 + a

( + q)
, μ = –aq, μ = –aq, μ = –

aq
( + q)

. (.)
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