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1 Introduction

We consider the following Sturm-Liouville problem:
t(w):=-u"+qX)u=2ru, x€l, (1.1)
with one of the boundary conditions including an eigenparameter:

B, (u) := pru(a) + pou/(a) = 0, (1.2)
By(u) := (o u(b) — oyt (b)) + (1 uu(b) — i/ (b)) = 0, 1.3)

and transmission conditions at two points of discontinuity, 0_, and 6,,:

T (1) := u(0_s—) — Su(6_.+) = 0, (1.4)
T () =t/ (0_e—) — 81/ (B_.+) = 0, (15)
Ty (u) := 0u(0.e=) — yu(.e+) = 0, (1.6)
T, (1) := 81/ (01e-) — y 1 (B1e+) = 0, (1.7)

where I := [a,0_;) U (6_,0,) U (6., b]; A is a complex spectral parameter; g(x) is a given

real valued function which is continuous in [a,0_;), (0_¢,0.¢), and (6., b] and has finite
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limits g(0_.%), q(6..£); B i}, 8,y € R (i =1,2); |B1l + |B2l #0, 8,7 #0; 0 := (a + b)/2;
Oret:=0£e)£0;0<e<(b-a)/2,and

p = (o —onay) > 0.

In the literature, the Whittaker-Kotel'nikov-Shannon (WKS) sampling theorem and
generalization of the WKS sampling theorem (see [1-3]) has been investigated exten-
sively (see also [4—8]). Sampling theorems associated with Sturm-Liouville problems were
investigated in [9-13]. Also, [14—17] and [18-21] are for example works in the direction
of sampling analysis for continuous and discontinuous eigenproblems, respectively. The
sampling series associated with strings were investigated and one compared them with
those associated with Sturm-Liouville problems in [20]. In [21] the author studied the
sampling analysis for the discontinuous Sturm-Liouville problem which had transmission
conditions at one point of discontinuity and contained an eigenparameter in two bound-
ary conditions. In the present paper, we derive sampling theorems associated with a new
Sturm-Liouville problem with moving discontinuity points. The problem studied in this
paper was presented in more detail for the first time in [22]. The problem has symmetri-
cally located discontinuities which are defined depending on a parameter in a neighbor-
hood of the midpoint of the interval and with an eigenparameter appearing in a boundary
condition. There are many published works on sampling theorems associated with differ-
ent types of generalized Sturm-Liouville boundary value problems, but the present paper
deals with a case that has not been studied before. To derive sampling theorems for the
problem (1.1)-(1.7), we establish briefly some spectral properties and construct the Green’s
function of the problem (1.1)-(1.7). Then we derive two sampling theorems using solutions
and the Green’s function, respectively.

2 An operator formulation and asymptotic formulas
Some properties of the eigenvalues and asymptotic formulas for the eigenvalues and the
corresponding eigenfunctions for the same problem were given in [22]. We state the re-
sults briefly in this section.

To formulate a theoretic approach to the problem (1.1)-(1.7) we define a Hilbert space
H := Ly(a, b) ® C with an inner product

O_¢ Ore
(f(-), g(-))H = f(x)g(x) dx + 82 fx)g(x)dx

a 0_¢

b v
+v? | f)gx)dx + Fhk, (2.1)

Ore
where f(x) = (f;x))’ gx) = (g]((x)) € H,f(-),g(-) € Ly(a,b), h,k € C. For convenience we put
R) = onu(b) — s (b),  R'(u) := otlua(b) — ety (b). 2.2)

Let D(A) C H be the set of all f(x) = (f ;x)) € H such that f and f’ are absolutely continuous
on [a,b] and t(f) € Ly(a, b), h = R'(f), B4(f) = 0, T+ (f) = T, (f) = 0. We define an operator
A:D(A) — H by

A(f(x)>::<f(f))’ (f(x))eD(A),
R()\-rp)" \R()
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Thus, the operator A : D(A) — H is equivalent to the eigenvalue problem (1.1)-(1.7) in the
sense that the eigenvalues of A are exactly those of the problem (1.1)-(1.7).

We can prove according to [23, 24] that A is symmetric in H, and all eigenvalues of the
problem are real (see [22]).

Let ¢, (-) and x;.(-) be two solutions of (1.1) as

b_ep(x), xelab_), X-en(x), x€la,b_),
¢A (x) = ¢5,A (X), X € (9_5, 9+8)’ X (x) = Xa,)»(x)) X € (9—879+E))
¢+s,k(x): X € (9+av b], X+8,A(x)! x € (046, b],

satisfying the following conditions, respectively:

¢—e,k(a) = 52: ¢/_5,)L(('l) = _ﬂlx
Gep(0-c) =67 P ep(0-c-),  $,(0-) =879, (0c-), (233)
¢+5,A(9+5) = 5)/_1(1)8,1(94,5—), ¢:-g,k(9+8) = SV_lﬁb;,)L(ew_);

and

X+8,)»(b) = )»Olé + 0y, X:-s,)»(b) = )»Ol{ + o1,
Xs,k(ew) = V8_1X+s,k(9+s+)r Xé{,)\,(9+5) = V‘S_lXig,x(ew‘F)r (2.4)

X—S,A(G—a) = 8X£,A (0_c+), Xig’}\(e—&‘) = ‘SX;,)\ (0_+).

These functions are entire in A for all x € 1.
Let W (s, x5;x) be the Wronskian of ¢, (x) and x; (x) which is independent of x, since
the coefficient of ¥ in (1.1) is zero. Let

w(X) := W, x5 %) = d3. (%) x; (%) — ¢}, (%) x5 (%)

= 0_(A) = 8w (1) = Y20, (1), (2.5)

Now, w(A) is an entire function of A whose zeros are precisely the eigenvalues of the op-
erator A. Using techniques similar to those established by Titchmarsh in [25], see also
[22-24], the zeros of w()) are real and simple and if A,,, n=0,1,2,..., denote the zeros of
(1), then the two component vectors

®,(x) = d’/\,, (%)
R(¢5,)

are the corresponding eigenvectors of the operator A satisfying the orthogonality relation
(®@u(-), @m()), =0, forn#m.

Here {¢;,(-)}52, will be the sequence of eigenfunctions of the problem (1.1)-(1.7) corre-
sponding to the eigenvalues {1,}°°, and we denote by W,,(x) the normalized eigenvectors
of A, i.e;

_ o (e
)= e Ol (R’(wn))'
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Let k,, # 0 be the real constants for which

X, @) = kopy, (), x€l,n=0,1,2,.... (2.6)

¢».(-) is the solution determined by (2.3) so, the following integral equations hold for k = 0

and k = 1:
k J k
;k e (%) = ,62 cos(«/X(x—a)) - %% sin(ﬁ(x—a))
v [ (Vi - )a0)6-. )
dk
d_xk¢a,k(x) = 871¢—5,A(975—)d—xk COS(\/X(JC - 9—5))
st dk
+ ﬁfﬁ_m(@_g—)w s1n(\/_(x 0_))
1 x dk
* 75 ), g sV HE=)a0)0s0)

k k

dd—xkfl"u,/\ (@) =8y e (9+a—)d—xk cos(vVa(x —0,,))
syt

v

1 [(* dF

T o, dx

dk
O sin(Va(x - 6.))

sm(«/_(x y))q(y)¢+sA(y)dy7

and ¢, (-) has the following asymptotic representations for |A| — 0o, which holds uni-

formly for x € I:

d—k¢ x) =28 " cos(\/_(x a))+O(|A| elflt==a))
dxk —&,A = Zd )

k

d 1 dt eltle-a)
k¢€k(x) Bad™ —cos(«/_(x a)) +O(|A| ), (2.7)

k k

d
W ¢+8,A (x) /32 J/

(Vr(x—a)) + o(|)\| eltllx-a)),
if B #0,

dx k¢ eal® )——Tﬁsm(\/_(x “))"'O(W el ))’

1 gk
:k¢€ A(x) = ﬁf ;k s1n(\/—(x a)) + O(|A| elt &= a)) (2.8)
dk t|(x—a
wqﬁw,k(x) = 'Bi}/x o sm(«/_(x (,z)) + O(|)\| et ))

if B = 0

Page 4 of 15
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Then we obtain four distinct cases for the asymptotic behavior of w() for |A| — oo,

namely,
IrdBoy sin(VA(b - @) + O(el®-9), if B, 70,a] 0,
00) = Aty Bay cos(VA(b — a)) + O(VAel1b=D), if B, # 0,0 = 0,
| 2t Bry cos(Va(b - @) + O(aeld®-a)), if By = 0,af #0,
—Vad, By sin(vA(b - a)) + 0?2, if By = 0,a] = 0.
Consequently if Ag < A1 < - - -, are the zeros of (1), then we have the following asymptotic

formulas for sufficiently large n:

G5+ O™, if Br 0,0 #0,

(n-1/2) 1 . B
. (n(—bl_/;))” +0(m™), ifBy#0,a;=0,
\ n(—b_a)ff + O(nil), if /32 = Oyai 7_/0’

(;,ﬂu) + O(n_l)y if By = 0,0{{ =0.

3 Green's function
To study the completeness of the eigenvectors of A and hence the completeness of the
eigenfunctions of the problem (1.1)-(1.7), we construct the resolvent of A as well as the
Green’s function of the problem (1.1)-(1.7). We assume without any loss of generality that
A =0 is not an eigenvalue of A.

Now let A € C not be an eigenvalue of A and consider the inhomogeneous problem for
f() = (/") € H, u@) = () € D(A);

A -Aulx) =f(x), xel,

where I is the identity operator. Since

(M- A)u() = & ux) Y [t ) _ (f@)
'(u) —R(u) h

we have
A-Dulx) =fx), xel, (3.1)
AR (1) + R(u) = h. (3.2)

Now we can represent the general solution of the homogeneous differential equation

(1.1), appropriate to (3.1) in the following form:

€10 (¥) + C2X-e (%), x € [a,0-),
ulx, 1) = 306, (%) + Ca X0 (%), x € (0_¢,0.c),
C5¢+s,k(x) + C6X+£,A(x)r X € (9+Er b]r

in which ¢; (i = 1,6) are arbitrary constants. By applying the method of variation of the

constants, we shall search the general solution of the non-homogeneous linear differential
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(3.1) in the following form:

(X M) p_e (%) + ca(, A) x—ep (%),  x € [a,0-,),
u(x, A) = 1 c3(%A)de (%) + ca, M) xep (%), % € (0—¢,056), (3.3)
5 (% A)Paen (%) + €6 (%, A) Xoe (%), % € (B, D],

where the functions ¢;(x, 1) (i = 1, 6) satisfy the following linear system of equations:

1 (%, A)p_e . (%) + €5 (%, A) x_e 0. (%) = O,

forx € [a,0_,),
(6, M), 5 (%) + ch(x, A) x5 (%) = f (),

C{’,(xr k)d’s,)»(x) + Ci;(x’ )\)Xa‘ A( ) 0

for x € (0_¢,0.¢), (3.4)
s, M)y, (x) + ¢y (e, A) x. 5 (%) = f(x),

Cls(x! )\‘)¢+E,)» (x) + 6/6 (x, )")X+8 »(x) =0
Cs5 (%, M)l ; () + e (0, A) Xy (%) = f (),

’

for x € (0., b].

Since A is not an eigenvalue and w_(X) # 0, w.(X) # 0, w,-(A) # 0, each of the linear
systems in (3.4) has a unique solution, which leads to

S5 xeen O D) dy + a(v),
5 [2 b-en ) 0) dy + (),

c3(x,2) = 5 [ Xen O 0) dy + c3(0),
ca(,2) = 555 Jo., Ber O D) dy + ca(h),

es(1) = o5 [ Xeen O ) dy + c5(0),
C6(xr}\) = ﬁ fgﬁg ¢+8,)~(y)f()/) dy + 66()‘)’

Cl(xr)") = o i

for x € [a,0_,),
CZ(x))\') - o [ )

for x € (0_¢,0,¢), (3.5)

for x € (0.¢,b],

where ¢;(1) (i = 1,6) are arbitrary constants. Substituting (3.5) into (3.3), we obtain the
solution of (3.1) as

20 [0 X ea O )y + S8 (%6 (0)f () dy

+ cl(K)¢ e () + ca(A) x- m(x) x €la,0_),
B2l [0 yea O ) dy + 222 [¥ 4 (0)f () dy

+ C3 (AP (%) + ca(X) xe, A(x) X € (0_¢,0+5),

¢+8A f X+a/\0’)f()’)dy+ Rue. )L(x f9+s ¢+sx()/f()’

wie(h e (A

+ CS( )¢+e,k( ) + 06()\)X+s,k( ) x € (04, b].

u(x,A) = (3.6)

Then, from the boundary conditions (3.2), (1.2), and the transmission conditions (1.4)-

(1.7), we get
1 Ove 1
a)= /9 xes YOy 05 . OV o)’
02()\') = 07
b
alt) = w.c(A) Jo,, Kaea O 0) dy + (X)) 3.7)

Page 6 of 15
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0—¢
ca(r) = o / -2 ) ) dy,
h
=y
0_¢ [
C6(k)=a)_8()») ; ¢—s,x()’)f0’)d)’+w8(m . DN () d

Substituting (3.7) and (2.5) into (3.6), (3.6) can be written as

L e Y Oy + S [0 ea 0 0)
+ % v Xer O ) dy
+ r d:u&;\ w fé}w X+eh O’)f(y) dy + %(ﬁf&)\ (x)’ xe [a’ 978),
PO [ 50U 0)dy+ S [ 00,0 0y
+ 2 [0 6 a0V ) dy
N y%m(x) fel; Xoer O () dy + %qsg,x(x), x € (0-¢,0s),
- ¢+“ f X+m()’)f(y) dy
‘S )Zj&* Jo. beex ) 0) dy
X*” fe’ D-er ) () dy
e [0 g OOy s P, xe @b

u(x,A) =

Hence we have

ux) = (AL — A) 7 (x)

7 Gy )f ) dy + 82 [ G,y )f () dly

2
- +72 [, Gl 1f ) dy+ 20 o b} : (3.8)
R (u)
where
LOLE g <y <x <bx#0.0,0069 #0c b

Gx,y;1) = @) 3.9
i) LOLO, a<x<y<bxi0.0.5y70.0. 32

is the Green’s function of the problem (1.1)-(1.7).

4 The sampling theorems
In this section we derive two sampling theorems associated with the problem (1.1)-(1.7).

For convenience we may assume that the eigenvectors of A are real valued.

Theorem 1 Consider the problem (1.1)-(1.7), and let

¢—8,A (X), VS [61, 9—5)»
¢X(x) = ¢£,)»(x)’ x € (0, 04e),
¢+s,)»(x)’ % € (646, b],

Page 7 of 15
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be the solution defined above. Let g(-) € Ly(a, b) and

O_¢ Ote b
F() = / 4@ pe () dx + 8 [9 g () dx+ 7 /9 (@b dr.  (4D)

Then F(A) is an entire function of exponential type (b — a) that can be reconstructed from
its values at the points {1,}° via the sampling formula

nd w())

The series (4.1) converges absolutely on C and uniformly on compact subset of C. Here w())
is the entire function defined in (2.5).

Proof The relation (4.1) can be rewritten as an inner product of H as follows:

F(3) = (g(), @2()),

O_¢ Ote b
- / Q()p_o (x) dx + 82 /9 2@ por (@) dx + 7 / eWpo () dx,  (43)

Ose

where

_[&&) [ #i(x)
glx) = ( 0 ), D, (x) = (R,(%)) €H.

Since both g(-) and @, (-) are in H, then they have the Fourier expansions

ad 5 D) = ®,,(x)
)= S (D), D (), —
Zg R ZO< O 0,017
where
i) = [g0), ©,0),,

0_¢ Ote b
- / 2P, (x) i + 82 f 2o, () dx+ 7 / 4o, () dx

a 0_¢ (e
=F(A,). (4.4)

Applying Parseval’s identity to (4.3) and using (4.4), we obtain

(), D, () m

F(x) = F()\n)i
Z D, ()17

Now we calculate (®,(-), ®;(-))y and ||D,(-)||5. To prove formula (4.2), we need to show

that

(@,0), 0N o)

= , n=0,12,.... 45
@, ()% C=a ) (4.5)
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By the definition of the inner product of H, we have

0—¢ Ore
(@4(), Pu()),, = G- ) (X)P_c 1, (x) dx + 82 i Bep () Pe 1, (x) dx
b 52
oy’ f@ Brea W), @)+ ROGIR B1,) (4.6)

From the Green’s identity [26], we have

O

0, b
/ T (Porn)be, () + 5 / (o) po, (6) dx + 7 f T (Pron)ren, () dx

0_¢ O+e
60_¢ O+e

b
= G- (%) T(Psr,) dx + 87 Gep®)T(Pen,) dx+ V> | Pren®)T(Bren,) dx

a 0_¢ Ose

F W(DepsbepyiOe) = W(Bcpsbcpi@) + 8 W (e Py Ove)
- 82 W(¢E,)u ¢5,An; 9—8 +) + V2 W(¢+s,)u ¢+5,An; b) - Vz W(¢+8,)n ¢+s,k,, 5 0+8 +)’ (4'7)

then from (2.3) and (2.4), the equality (4.11) becomes

6_¢ Ore
(A - kn)( P-cp(®)P-cp, @) dx + 87 | e (%)ep, (x) dx
a 0_¢
b
+ y2 ¢+s,k (x)¢)+£,)»n (%) dx)
O+
= 7/2 W(¢+8,)n ¢+8,A,,; b)
Thus
0 Ose b
D_e (x)¢—e,)»n (%) dx + 8 Pe (x)(ps,ln (%) dx + Vz Qe (x)¢+s,k,, (x) dx
a 0_¢ Ore
_ Vz W(¢+8,)n ¢+8,A,,; b)
) (3= 1) 8
From (2.2), (2.4), and (2.5), we have
W(¢+e,)u ¢+e,xn; b) = ¢+£,)» (b)ﬁb;g,)\n (b) - ¢;8,x (b)¢+s,)w, (b)
= kn_l {¢+8,A (b) Xig,)\n (b) - ¢;5,)L (b)x+5,)tn (b) }
= k;l {¢+.9,A (b) ()\nai - 051) - ¢15,A(b) ()\na/z - Olz) }
=k, {w() + (hy = MR () }. (4.9)
Equations (2.5), (2.6), and R'(x,,) = p vield
VZ/ / _72—1/ / 21
?R (@R (¢2,,) = 7/(” R($:)R (x3,) = vk, R'($3). (4.10)
Substituting from (4.8), (4.9), and (4.10) into (4.6), we get
A
(@:(), @), = )/2k‘1M (4.11)

S
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Letting & — A, in (4.11), since the zeros of w(}) are simple, we get
2 _
(@u(), @u()),, = [ @), = ¥k ' (M) (4.12)
Therefore from (4.11) and (4.12), we get (4.5). Hence (4.2) is proved with a pointwise con-

verge on C. Now we investigate the convergence of (4.2). First we prove that it is absolutely

convergent on C. Using the Cauchy-Schwarz’s inequality for A € C,

ek

" 0= Ao (1)
_ (10, 20\ S5 0,0, 10 " W
“\& 100 2 e, 0 ) ‘

Since g(-), ®,(-) € H, both series in the right-hand side of (4.13) converge. Thus the series
(4.2) converges absolutely on C. For uniform convergence let M C C be compact. Let
A€M and N > 0. Define oy (A) to be

- (*)
on () = [F) = 3 F) .
v Zo (= A)' (h)

Using the same method developed above
(O 2O\ (S 1 2a0) @Ol
UN()\)S Z g VH Z n\") Az H '
n=N+1 ||CD,,()||H H=N+1 ||CD,,()||H

Therefore

= 1g), @)
on(A) < || q))»(')”H( Z W)

n=N+1

Since [a, b] x M is compact, then we can find a positive constant Cy; such that
|®:()|,, <Cu, forallieM.

Therefore,

=L g0, @Ol
o= 5 s
L T, 0
uniformly on M. In view of Parseval’s equality,

1/2
o (g(), @)l
(Z 4”(1%(')”12{ ) —0 asN — oo.

n=N+1
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Thus ox (%) — 0 uniformly on M. Hence (4.2) converges uniformly on M. As a result F(A)
is analytic on compact subsets of C and hence it is entire function. From the relation

0, Ore b
F0)| = [ ello-aldr o8 [ eIl drs v [ o] [a )]
a —& 9+s
and the fact that ¢_. ; (%), ¢., (%) and ¢, , (x) are entire functions of exponential type (b—a),
we conclude that F(A) is also exponential type (b — a). O

Remark1 To see that the expansion (4.2) is a Lagrange type interpolation, we may replace
(X) by the canonical product

® (1-2), ifzero isnotan eigenvalue,
o)) = !HM( ) : genvatt (4.14)

A2, a—- ﬁ), if Ao = 0 is an eigenvalue.
From Hadamard’s factorization theorem (see [27]), w(A) = k(L) (1), where A(1) is an en-

tire function with no zeros. Thus,

w(A) _ h(LV)w (L)
@' () h) (A

and (4.1), (4.2) remain valid for the function F(A)/h(1). Hence

ad h(\) o (1)
F0) =D FOu) G S sy

n=0
We may redefine (4.1) by taking the kernel ¢, (-)/4()) = ¢, (-) to get

- F(A) = w (L)
=50 = ;m”) (A=) ()

The next theorem is devoted to giving interpolation sampling expansions associated
with the problem (1.1)-(1.7) defined in terms of the Green’s function (these steps were
introduced for the first time in [4, 10] and recently in [21, 28]). As we see in (3.9), the
Green’s function G(x,y;A) of the problem (1.1)-(1.7) has simple poles at {1,}°,. Let the
function G(x, 1) to be G(x, 1) = w(L)G(x, yo; A), where y, € I is a fixed point and w(A) is the
function defined in (2.5) or the canonical product (4.14).

Theorem 2 Let g(-) € Ly(a, b) and F()) be the integral transform

0_¢ O+e b
F(\) = / G(x, 1)g(x) dx + 82/ G(x, AM)g(x) dx + y2/ G(x, 1)g(x) dx. (4.15)
a 0—¢ O+e
Then F()) is an entire function of exponential type (b — a) which admits the sampling rep-
resentation

w())

(A = Ao’ () (416

F() =) F(h)
n=0

The series (4.16) converges absolutely on C and uniformly on a compact subset of C.
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Proof The integral transform (4.15) can be rewritten as

F(A) =(G(-2),80)),p (4.17)

where

gx) _ (G A)
g()—( ) G(x,k)—<R,(G)>eH

Applying Parseval’s identity to (4.17) with respect to {®,(-)}°°,, we obtain

o (), @i
)= 3 (00, 0,0,
n=0 ’

(4.18)
Let A # A,,. Since each ®,(-) is an eigenvector of A4,
(AL=A)D,(x) = (A = 2y) Pp(x).

Thus

1
(A = 2n)

AI-A) ', (x) = D, (x). (4.19)

From (3.8) and (4.9), we obtain

[

0_¢
/ G, 903 Mo, (x) i + 6 / Gl 303 M), () dx

¢

b ,}/2
iy? / Gl o3 1), (B 4 s GOR 1)

[
1

T @, (o). (4.20)

Using R'(¢,,) = k' p, (4.20) becomes

[

0_¢
f Gl 901 Mo, (x) i + 8 / Gl Y03 M), () dx

¢

b
+y? / G(x,yo;)»)¢+s,xn(x)dx+mk Lo ()
O+
1

=) ®;, (%0)- (4.21)

Hence (4.21) can be rewritten as

Ose

0—¢
/ G, A)p_ep, (%) dx+52/ G(x%, L) e 5, (x) dx

0_¢

b
y? / Gt e, (¥) dx + 77K i (30)

O+e
w(k)

S G @, (70)- (4.22)

Page 12 of 15
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From the definition of G(-, 1), we have
0_¢ Ore
(Gl 2), (), = / Gl W)ps () dix + 57 / G, W), (3)
a 0_¢

b y2
.y’ f G, (1) + L RIOR (), (4.23)

Ore

From (3.8), we have

R(G) = $5.(y0)R (X4e,0)- (4.24)

Combining (4.24), R'(x+e,) = p and (2.6), together with (4.23), yields

0_¢ O1e
(G(., A), d),,(-))H = / G(x, \)p_e 5, (%) dx + 82 /9 Gx, M) e, (x) dx
b
by fe Gl Wpre (3) dx + 12K 05 (30). (4.25)

Substituting from (4.22) and (4.25), we get

w())

(G ), @4()),, = G

@;, (5o)- (4.26)

As an element of H, G(-, 1) has the eigenvectors expansion

bi(x)

Gl d) = H @12,

(G0, i()
w(A) Di(x)

D, . . .
o) u00) 1D ()% #.27)

M2 LM]¢

JIi
(=]

1

Taking the limit when A — 1, in (4.17), we get

F(h,) = 1im (G(, 1), 8()) - (4.28)

A—>An H

Making use of (4.27), we may rewrite (4.28) as

e o) (@i(), g())m
Fdn) = Hﬁ; G- 9 e 01,

Pu(), g( )1

oy (
=o' (M) P, (o) 15,012 (4.29)

The interchange of the limit and summation is justified by the asymptotic behavior of
D, (%) and w(1). If @, (y) # 0, then (4.29) gives

<g('),(bn('))H _ F()‘-n)
”q)n()”;{ w/()‘n)ch,,(yO).

(4.30)
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Combining (4.26), (4.27), and (4.18) under the assumption that ®; ,(yo) # 0 for all n. If
®,,,(y0) = 0, for some n, the same expansion holds with F(%,) = 0. The convergence prop-

erties as well as the analytic and growth properties can be established as in Theorem 2.
O

Now we give an example to illustrate the sampling transform.
Example Consider the boundary value problem:
—u' = u, -2<x<4,
u/(—2) = 01
Au(d) —u'(4) =0,

u(0-) - 2u(0+) = 0, (4.31)

' (0-) —24/(0+) =0,
u(2-) - %u(2+) =0,

u'(2-) - %u/(2+) =0,

is a special case of the problem (1.1)-(1.7) when 6_, = 0 and 6,, =2 as 0 < ¢ < 3. The eigen-
values 1, of the problem (4.31) are the zeros of the function

w(X) = cos(68v/A) + AV/A sin(64/A) = 0. (4.32)

By Theorem 1, the transform

F(A) = fog(x) cos(«/x(x + 2)) dx+2 /Ozg(x) cos(«/X(x + 2)) dx

2

4
+ / g(x) cos(Va(x +2)) dx,
2

has the following expansion:

cos(6+4/2) + A/ sin(6+4/2)
(k= dn)(Bhn cOS(64/Rr) + (3(hn — 2)/24/A) sin(64/R))

F()= ) F()
n=0

where A, are the zeros of (4.32).
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