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Abstract
In the present paper, we consider the boundedness of the rough singular integral
operator T�,h,φ along a surface � = {x = φ(|y|)y/|y|} on the Triebel-Lizorkin space
Ḟα
p,q(R

n) for � ∈ H1(Sn–1) and � belonging to some classWFα (Sn–1), which relates to
the Grafakos-Stefanov class.
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1 Introduction
Let Rn (n ≥ ) be the n-dimensional Euclidean space and Sn– be the unit sphere in R

n

equipped with the induced Lebesgue measure dσ = dσ (·). Suppose that � ∈ L(Sn–) sat-
isfies the cancelation condition

∫
Sn–

�
(
y′)dσ

(
y′) = . (.)

For a suitable function φ and a measurable function h on [,∞), we denote by T�,φ,h the
singular integral operator along the surface

� =
{

x = φ
(|y|)y′ : y ∈R

n}

defined as follows:

T�,h,φ f (x) = p.v.
∫
Rn

h(|y|)�(y′)
|y|n f

(
x – φ

(|y|)y′)dy (.)

for f in the Schwartz class S(Rn). If φ = , then T�,h,φ is the classical singular integral
operator T�,h, which is defined by

T�,hf (x) = p.v.
∫
Rn

h(|y|)�(y′)
|y|n f (x – y) dy. (.)

When h ≡ , we denote simply T�,h,φ and T�,h by T�,φ and T�, respectively.
The Lp boundedness of singular integrals along the surface has attracted the attention

of many authors [–], etc. There are several papers concerning rough kernels associated
to surfaces as above [–]. As one of them, we count the following one.

© 2015 Yabuta; licensee Springer. This is an Open Access article distributed under the terms of the Creative Commons Attribu-
tion License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any
medium, provided the original work is properly credited.

CORE Metadata, citation and similar papers at core.ac.uk

Provided by MUCC (Crossref)

https://core.ac.uk/display/194321666?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.1186/s13660-015-0630-7
mailto:kyabuta3@kwansei.ac.jp


Yabuta Journal of Inequalities and Applications  (2015) 2015:107 Page 2 of 26

Theorem A ([]) Let h ∈ �γ for some γ ≥ ,  < p < ∞, � ∈ H(Sn–). Let φ be a nonneg-
ative C function on (,∞) satisfying

(i) φ(t) is strictly increasing and φ(t) ≥ λφ(t) for all t >  and some λ > ,
(ii) φ(t) satisfies a doubling condition φ(t) ≤ cφ(t) for all t >  and some c > ,

(iii) φ′(t) ≥ Cφ(t)/t for all t >  and some C.
Then T�,h,φ is bounded on Lp(Rn).

This is, in fact, stated in the more general setting, i.e., for a weighted case (Theorem  and
Corollary  in []), but we state this as above for our purpose and for the sake of simplicity.
We note here that condition (i) follows from (iii).

On the other hand, Triebel-Lizorkin space boundedness of rough singular integrals was
also investigated by many authors, see [, ] and [].

Before stating the following result, let us recall the definitions of some function spaces.
First we give the definition of the Hardy space H(Sn–):

H(Sn–)

=
{
ω ∈ L(Sn–) ∣∣∣ ‖f ‖H(Sn–) =

∥∥∥∥ sup
≤r<

∣∣∣∣
∫

Sn–
ω
(
y′)Pr(·)

(
y′)dσ

(
y′)∣∣∣∣

∥∥∥∥
L(Sn–)

< ∞
}

,

where Pry′ (x′) denotes the Poisson kernel on Sn– defined by

Pry′
(
x′) =

 – r

|ry′ – x′|n ,  ≤ r <  and x′, y′ ∈ Sn–.

For  ≤ γ ≤ ∞, �γ (R+) is the collection of all measurable functions h : [,∞) → C satis-
fying

‖h‖�γ = sup
R>

(

R

∫ R



∣∣h(t)
∣∣γ dt

)/γ

< ∞.

Note that

L∞(R+) = �∞(R+) ⊂ �β (R+) ⊂ �α(R+) for α < β ,

and all these inclusions are proper.
As a result of boundedness on Triebel-Lizorkin spaces, we cite the following one, which

is somewhat different from our setting, but closely related.

Theorem B ([]) Let � ∈ H(Sn–) satisfy the cancelation condition (.) and h ∈ �γ for
some  < γ ≤ ∞. Let P = (P, P, . . . , Pd) be real polynomials in y. Then, for the singular
integral

T�,P,hf (x) = p.v.
∫
Rn

h(|y|)�(y′)
|y|n f

(
x – P(y)

)
dy

(i) for α ∈R and | 
p – 

 | < min( 
 , 

γ ′ ) and | 
q – 

 | < min( 
 , 

γ ′ ), there exists a constant
C >  such that ‖T�,P,hf ‖Ḟα

p,q(Rd) ≤ C‖f ‖Ḟα
p,q(Rd);
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(ii) for α ∈R and | 
p – 

 | < min( 
 , 

γ ′ ) and  < q < ∞, there exists a constant C >  such
that ‖T�,P,hf ‖Ḃα

p,q(Rd) ≤ C‖f ‖Ḃα
p,q(Rd).

Remark  We think that there is a gap in the proof of part (i) in the above theorem. Their
proof works in the same region as in our Theorem . below.

Besides H(Sn–), there is another class of kernels which leads to Lp and Triebel-Lizorkin
space boundedness of singular integral operators T�,h. It is closely related to the class Fα

introduced by Grafakos and Stefanov []. We say � ∈ WFβ = WFβ(Sn–) if

‖�‖WFβ
:= sup

ξ ′∈Sn–

(∫
Sn–

∫
Sn–

∣∣�(y′)�(z′)∣∣ logβ e
|(y′ – z′) · ξ ′| dσ

(
y′)dσ

(
z′)) 



< ∞. (.)

We note that
⋃

r> Lr(Sn–) ⊂ WFβ (Sn–) ⊂ WFβ (Sn–) for  < β < β < ∞.
About the inclusion relation between Fβ (Sn–) and WFβ (Sn–), the following is known:

when n = , Lemma  in [] shows Fβ (S) ⊂ WFβ(S). It is also known that WFα(S) \
(Fα(S) ∪ H(S)) �= ∅, cf. [].

Theorem C ([]) Let h ∈ �γ for some  < γ ≤ ∞. Suppose that � ∈ WFβ = WFβ (Sn–)
for some β > max(γ ′, ), and it satisfies the cancelation condition (.). Then the singular
integral operator T�,h is bounded on Ḟα

p,q(Rn) if α ∈ R, and (/p, /q) belongs to the inte-
rior of the parallelogram PPPP, where P = ( max(γ ′ ,)

β
, max(γ ′ ,)

β
), P = ( 

γ ′ + max(γ ′ ,)
β

( 
γ

–

γ ′ ), max(γ ′ ,)

β
), P = ( – max(γ ′ ,)

β
,  – max(γ ′ ,)

β
), and P = ( 

γ
– max(γ ′ ,)

β
( 
γ

– 
γ ′ ),  – max(γ ′ ,)

β
).

Let us recall the definitions of the homogeneous Triebel-Lizorkin spaces Ḟα
p,q = Ḟα

p,q(Rn)
and the homogeneous Besov spaces Ḃα

p,q = Ḃα
p,q(Rn). For  < p, q ≤ ∞ (p �= ∞) and α ∈ R,

Ḟα
p,q(Rn) is defined by

Ḟα
p,q
(
R

n) =
{

f ∈ S ′(
R

n) : ‖f ‖Ḟα
p,q =

∥∥∥∥
(∑

k∈Z
kαq|k ∗ f |q

)/q∥∥∥∥
Lp

< ∞
}

(.)

and Ḃα,q
p (Rn) is defined by

Ḃα
p,q
(
R

n) =
{

f ∈ S ′(
R

n) : ‖f ‖Ḃα
p,q =

(∑
k∈Z

kαq‖k ∗ f ‖q
Lp

)/q

< ∞
}

, (.)

where S ′(Rn) denotes the tempered distribution class on R
n, ̂k(ξ ) = �(–kξ ) for k ∈ Z

and � ∈ C∞
c (Rn) is a radial function satisfying the following conditions:

(i)  ≤ � ≤ ;

(ii) supp� ⊂ {
ξ : / ≤ |ξ | ≤ 

}
;

(iii) � > c >  if / ≤ |ξ | ≤ /;

(iv)
∑
j∈Z

�
(
–jξ

)
=  (ξ �= ).

(.)
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The inhomogeneous versions of Triebel-Lizorkin space and Besov space, which are de-
noted by Fα

p,q(Rn) and Bα
p,q(Rn) respectively, are obtained by adding the term ‖� ∗ f ‖p

to the right-hand side of (.) or (.) with
∑

k∈Z replaced by
∑∞

k=, where � ∈ S(Rn),
supp �̂ ⊂ {ξ : |ξ | ≤ }, and �̂(ξ ) > c >  if |ξ | ≤ /.

The following properties of the Triebel-Lizorkin space and the Besov space are well
known. Let  < p, q < ∞, α ∈R, and /p + /p′ = , /q + /q′ = :

(a) Ḟ
, = Ḃ

, = L, Ḟ
p, = Lp and

Ḟα
p,p = Ḃα

p,p for  < p < ∞ and Ḟ
∞, = BMO;

(b) Fα
p,q ∼ Ḟα

p,q ∩ Lp and ‖f ‖Fα
p,q ∼ ‖f ‖Ḟα

p,q + ‖f ‖Lp (α > );

(c) Bα
p,q ∼ Ḃα

p,q ∩ Lp and ‖f ‖Bα
p,q ∼ ‖f ‖Ḃα

p,q + ‖f ‖Lp (α > );

(d)
(
Ḟα

p,q
)∗ = Ḟ–α

p′ ,q′ and
(
Fα

p,q
)∗ = F–α

p′ ,q′ ;

(e)
(
Ḃα

p,q
)∗ = Ḃ–α

p′ ,q′ and
(
Bα

p,q
)∗ = B–α

p′ ,q′ ;

(f)
(
Ḟα

p,q , Ḟα
p,q

)
θ ,q = Ḃα

p,q

(
α �= α,  < p < ∞,  < q, q, q ≤ ∞,α = ( – θ )α + θα,  < θ < 

)
.

(.)

See [] and [] for more properties of Ḟα
p,q and Ḃα

p,q. See Triebel [], p. and p.,
for (f ).

Now we can state our first result.

Theorem . Let φ be a positive increasing function on (,∞) satisfying

φ(t) ≤ cφ(t) (t > ) for some c >  (.)

and

ϕ(t) = φ(t)/
(
tφ′(t)

) ∈ L∞(,∞). (.)

Let h ∈ �γ for some  < γ ≤ ∞. Suppose � ∈ H(Sn–) satisfying the cancelation condition
(.). Then

(i) T�,h,φ is bounded on Ḟα
p,q(Rn) for α ∈ R and p, q with ( 

p , 
q ) belonging to the interior

of the octagon PPRPPPRP (hexagon PPPPPP in the case  < γ ≤ ),
where P = ( 

 – 
max{,γ ′} , 

 – 
max{,γ ′} ), P = ( 

 , 
 – 

max{,γ ′} ), P = ( 
 + 

max{,γ ′} , 
 ),

P = ( 
 + 

max{,γ ′} , 
 + 

max{,γ ′} ), P = ( 
 , 

 + 
max{,γ ′} ), P = ( 

 – 
max{,γ ′} , 

 ),
R = ( – 

γ
, 

γ
), and R = ( 

γ
,  – 

γ
);

(ii) T�,h,φ is bounded on Ḃα
p,q(Rn) for α ∈ R and p, q satisfying | 

 – 
p | < min{ 

 , 
γ ′ } and

 < q < ∞.

See Figures  and  for the conclusion (i) of Theorem ..

Example  As typical examples of φ satisfying conditions (.) and (.), we list the fol-
lowing three: tα logβ ( + t) (α > , β ≥ ), (t – t + )t+α (α ≥ ), and φ(t) = t + t
( < t < π

 ), φ(t) = t + t sin t (t ≥ π
 ). Note that linear combinations with positive coeffi-

cients of functions φ’s satisfying the above two conditions also satisfy them, cf. [].
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Figure 1 (1 < γ < 2).

Figure 2 (2 ≤ γ ≤ ∞).

We shall state our following result, which relates to two function spaces L(log L)(Sn–)
and the block spaces B(,)

q (Sn–). Let L(log L)α(Sn–) (for α > ) denote the class of all mea-
surable functions � on Sn– which satisfy

‖�‖L(log L)α (Sn–) =
∫

Sn–

∣∣�(y′)∣∣ logα
(
 +

∣∣�(y′)∣∣)dσ
(
y′) < ∞.

Denote by L(log L)(Sn–) for L(log L)(Sn–). A well-known fact is L(log L)(Sn–) ⊂ H(Sn–).
Next, we turn to the block space B(,v)

q (Sn–). A q-block on Sn– is an Lq(Sn–) ( < q ≤ ∞)
function b which satisfies

(i) supp b ⊂ I;

(ii) ‖b‖q ≤ |I|–/q′
,

(.)

where |I| = σ (I), and I = B(x′
, θ) ∩ Sn– is a cap on Sn– for some x′

 ∈ Sn– and θ ∈ (, ].
For  < q ≤ ∞ and v > –, the block space B(,v)

q (Sn–) is defined by

B(,v)
q
(
Sn–) =

{
� ∈ L(Sn–);� =

∞∑
j=

λjbj, M(,v)
q

({λj}
)

< ∞
}

, (.)
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where λj ∈C and bj is a q-block supported on a cap Ij on Sn–, and

M(,v)
q

({λj}
)

=
∞∑
j=

|λj|
{

 + log(v+)(|Ij|–)}. (.)

For � ∈ B(,v)
q (Sn–), denote

‖�‖B(,v)
q (Sn–) = inf

{
M(,v)

q
({λj}

)
;� =

∞∑
j=

λjbj, bj is a q-block

}
.

Then ‖ · ‖B(,v)
q (Sn–) is a norm on the space B(,v)

q (Sn–), and (B(,v)
q (Sn–),‖ · ‖B(,v)

q (Sn–)) is a
Banach space.

Historically, the block spaces in R
n originated in the work of Taibleson and Weiss on

the convergence of the Fourier series in connection with the developments of the real
Hardy spaces. The block spaces on Sn– were introduced by Jiang and Lu [] in studying
the homogeneous singular integral operators. For further information about the theory
of spaces generated by blocks and its applications to harmonic analysis, see the book []
and survey article []. The following inclusion relations are known:

(a) B(,v)
q

(
Sn–)⊂ B(,v)

q
(
Sn–) if v > v > –;

(b) B(,v)
q

(
Sn–)⊂ B(,v)

q

(
Sn–) if  < q < q for any v > –;

(c)
⋃
p>

Lp(Sn–)⊂ B(,v)
q
(
Sn–) for any q > , v > –;

(d)
⋃
q>

B(,v)
q
(
Sn–) �⊂

⋃
q>

Lq(Sn–) for any v > –;

(e) B(,v)
q
(
Sn–)⊂ H(Sn–) + L(log L)+v(Sn–) for any q > , v > –;

(f)
⋃
q>

B(,)
q

(
Sn–)⊂ H(Sn–).

(.)

The following theorem shows that if � belongs to L log L(Sn–) or block spaces, then we
can get better results than Theorem ..

Theorem . Let φ be a positive increasing function on (,∞) satisfying the same con-
dition as in Theorem .. Let h ∈ �γ for some  < γ ≤ ∞, and � ∈ L(Sn–) satisfy the
cancelation condition (.). Then if � ∈ L(log L)(Sn–) ∪ (

⋃
<q<∞ B(,)

q (Sn–)), then
(i) T�,h,φ is bounded on Ḟα

p,q(Rn) for α ∈ R and p, q with ( 
p , 

q ) belonging to the interior
of the octagon QQRPQQRP (hexagon QQPQQP in the case  < γ ≤ ),
where Q = (, ), Q = ( 

γ ′ , ), Q = (, ), Q = ( 
γ

, ), P = ( 
 + 

max{,γ ′} , 
 ),

P = ( 
  

max{,γ ′} , 
 ), R = ( – 

γ
, 

γ
), and R = ( 

γ
,  – 

γ
);

(ii) T�,h,φ is bounded on Ḃα
p,q(Rn) for α ∈ R and  < p, q < ∞.

See Figures  and  for the conclusion of Theorem . for the cases  < γ <  and  ≤
γ < ∞, respectively.

As a corresponding result to Theorem C, we have the following theorem.
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Figure 3 (1 < γ < 2).

Figure 4 (2 ≤ γ ≤ ∞).

Theorem . Let φ be a positive increasing function on (,∞) satisfying the same condi-
tion as in Theorem .. Let h ∈ �γ for some  < γ ≤ ∞. Suppose � ∈ WFβ = WFβ (Sn–)
for some β > max(γ ′, ), and it satisfies the cancelation condition (.). Then

(i) the singular integral operator T�,h,φ is bounded on Ḟα
p,q(Rn), if α ∈R and ( 

p , 
q )

belongs to the interior of the octagon QQRPQQRP (hexagon
QQPQQP in the case  < γ ≤ ), where Q = ( max(γ ′ ,)

β
, max(γ ′ ,)

β
),

Q = ( 
γ ′ + max(γ ′ ,)

β
( 

 – 
γ ′ ), max(γ ′ ,)

β
), P = ( 

 + 
max(γ ′ ,) – 

β
, 

 ),
Q = ( – max(γ ′ ,)

β
,  – max(γ ′ ,)

β
), Q = ( 

γ
– max(γ ′ ,)

β
( 
γ

– 
 ),  – max(γ ′ ,)

β
),

P = ( 
 – 

max(γ ′ ,) + 
β

, 
 ), R = ( – 

γ
– max(γ ′ ,)

βγ ′ , 
γ

+ max(γ ′ ,)
βγ ′ ), and

R = ( 
γ

+ max(γ ′ ,)
βγ ′ ,  – 

γ
– max(γ ′ ,)

βγ ′ );
(ii) T�,h,φ is bounded on Ḃα

p,q(Rn), if α ∈R, max(γ ′ ,)
β

< p <  – max(γ ′ ,)
β

and  < q < ∞.

This improves Theorem C sufficiently. See Figures  and  for the conclusion (i) of The-
orem ..

The proofs of Theorems . and . will be given in Sections  and , respectively, and
the proof of Theorem . will be given in Section . The letter C will denote a posi-
tive constant that may vary at each occurrence but is independent of the essential vari-
ables.
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2 Proof of Theorem 1.1
2.1 Some lemmas
In [], the following atom-decomposition of H(Sn–) was given. If � ∈ H(Sn–) satisfying
(.), then

� =
∞∑
j=

λjaj, (.)

where
∑∞

j= |λj| ≤ C‖�‖H(Sn–) and each aj is a regular H(Sn–) atom. A function a on Sn–

is called regular ∞-atom in H(Sn–) if there exist ζ ∈ Sn– and ρ ∈ (, ] such that
(i) supp(a) ⊂ Sn– ∩ B(ζ ,ρ), where B(ζ ,ρ) = {y ∈ Rn : |y – ζ | < ρ};

(ii) ‖a‖L∞ ≤ ρ–n+;
(iii)

∫
Sn– a(y) dσ (y) = .

Let a be a regular ∞-atom. When n ≥ , set

Ea
(
s, ξ ′) =

(
 – s) n–

 χ(–,)(s)
∫

Sn–
a
(
s,

√
 – sỹ

)
dσ (ỹ), (.)

and when n = , set

ea
(
s, ξ ′) =

√
 – s

χ(–,)(s)
[
a
(
s,

√
 – s

)
+ a
(
s, –

√
 – s

)]
. (.)

Next we prepare two lemmas, whose proofs can be found in Fan and Pan [].

Lemma . Let � be a regular ∞-atom in H(Sn–) (n ≥ ). Then there exists a constant
c > , independent of �, such that cE�(s, ξ ′) is an ∞-atom in H(R). That is, cE�(s, ξ ′)
satisfies

‖cE�‖L∞ ≤ 
r(ξ ′)

, supp E� ⊂ (
ξ ′

 – r
(
ξ ′), ξ ′

 + r
(
ξ ′)) and

∫
R

E�

(
s, ξ ′)ds = ,

(.)

where r(ξ ′) = |ξ |–|Aτ ξ | and Aτ (ξ ) = (τ ξ, τξ, . . . , τξn).

Lemma . Let � be a regular ∞-atom in H(S). Then, for  < q < , there exists a con-
stant c > , independent of �, such that ce�(s, ξ ′) is a q-atom in H(R), the center of whose
support is ξ ′

 and the radius r(ξ ′) = |ξ |–(τ ξ 
 + τ ξ 

 )/.

For � ∈ L(Sn–), h ∈ �γ for some  < γ ≤ ∞, and a suitable function φ on R+, we define
the maximal functions M�,h,φ by

M�,h,φ f (x) = sup
k∈Z


kn

∫
k–<|y|≤k

∣∣�(y′)h(|y|)f (x – φ
(|y|)y′)∣∣dy. (.)

Let φ be a positive increasing function on (,∞) satisfying φ(t) ≤ cφ(t) (t > ) for some
c > , and ϕ(t) = φ(t)/(tφ′(t)) ∈ L∞(,∞). Then, as in the proof of Lemma . in [],
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p., we have

M�,h,φ f (x) ≤ ‖h‖�γ

(‖�‖L(Sn–)
) 

γ

×
(∫

Sn–

∣∣�(y′)∣∣My′
(|f |γ ′)

(x) dσ
(
y′)) 

γ ′
, (.)

where My′g is the directional Hardy-Littlewood maximal function of g defined by

My′g(x) = sup
r>


r

∫
|t|<r

∣∣g(x – ty′)∣∣dt.

For this directional maximal function My′ , we know that for  < p, q < ∞,

(∫
Rn

[(∑
j∈Z

(
My′ (fj)(x)

)q
) 

q
]p

dx
) 

p

≤ Cp,q

(∫
Rn

[(∑
j∈Z

∣∣fj(x)
∣∣q
) 

q
]p

dx
) 

p
. (.)

This is just (.) in the proof of Lemma . of [], p.. From (.) and (.), we get the
following lemma.

Lemma . Let φ be a positive increasing function on (,∞) satisfying φ(t) ≤ cφ(t) (t >
) for some c > , and ϕ(t) = φ(t)/(tφ′(t)) ∈ L∞(,∞). Let h ∈ �γ for some  < γ ≤ ∞. For
γ ′ < p, q < ∞, we have

∥∥∥∥
(∑

j∈Z
|M�,h,φ fj|q

) 
q
∥∥∥∥

Lp(Rn)
≤ C

∥∥∥∥
(∑

j∈Z
|fj|q

) 
q
∥∥∥∥

Lp(Rn)
. (.)

Proof Let {gj}j∈Z be a sequence of functions satisfying ‖(
∑

j∈Z |gj|q′ )/q′ ‖Lp′ (Rn) ≤ . Then,
noting p, q > γ ′ and using (.), the duality, and Minkowski’s inequality, we see that

∣∣∣∣
∫
Rn

∑
j∈Z

M�,h,φ fj(x)gj(x) dx
∣∣∣∣

≤ C
∫
Rn

∑
j∈Z

(∫
Sn–

∣∣�(y′)∣∣My′
(|fj|γ ′)(x) dσ

(
y′)) 

γ ′ ∣∣gj(x)
∣∣dx

≤ C
(∫

Rn

(∑
j∈Z

(∫
Sn–

∣∣�(y′)∣∣My′
(|fj|γ ′)

(x) dσ
(
y′))

q
γ ′ ) p

q
dx
) 

p

×
∥∥∥∥
(∑

j∈Z

∣∣gj(x)
∣∣q′
) 

q′ ∥∥∥∥
Lp′ (Rn)

≤ C
{∫

Sn–

∣∣�(y′)∣∣
(∫

Rn

[(∑
j∈Z

(
My′

(|fj|γ ′)(x)
) q

γ ′
) γ ′

q
] p

γ ′
dx
) γ ′

p
dσ
(
y′)} 

γ ′
.
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Hence by (.) we have

∣∣∣∣
∫
Rn

∑
j∈Z

M�,h,φ fj(x)gj(x) dx
∣∣∣∣≤ C

{∫
Sn–

∣∣�(y′)∣∣
(∫

Rn

(∑
j∈Z

∣∣fj(x)
∣∣q
) p

q
dx
) γ ′

p
dσ
(
y′)} 

γ ′

≤ C
∥∥∥∥
(∑

j∈Z
|fj|q

) 
q
∥∥∥∥

Lp(Rn)
,

which implies our (.). �

Now, for � ∈ L(Sn–), we define the measures σ�,h,φ,k on R
n and the maximal operator

σ ∗
�,h,φ f (x) by

∫
Rn

f (x) dσ�,h,φ,k(x) =
∫
Rn

f
(
φ
(|x|)x′)�(x′)h(|x|)

|x|n χk–<|x|≤k (x) dx, (.)

σ ∗
�,h,φ f (x) = sup

k∈Z

∣∣|σ�,h,φ,k| ∗ f (x)
∣∣, (.)

where |σ�,h,φ,k| is defined in the same way as σ�,h,φ,k , but with � replaced by |�| and h
by |h|.

Then we have the following lemma.

Lemma . Let φ be a positive increasing function on (,∞) satisfying φ(t) ≤ cφ(t) (t >
) for some c > , and ϕ(t) = φ(t)/(tφ′(t)) ∈ L∞(,∞). Let h ∈ �γ for some  < γ ≤ ∞,
� ∈ L(Sn–). Then:

(i) If ( 
p , 

q ) belongs to the interior of the octagon PPRPPPRP, there exists C > 
such that

∥∥∥∥
(∑

j∈Z

(∑
k∈Z

|σ�,h,φ,k ∗ gk,j|
) q


) 

q
∥∥∥∥

Lp(Rn)

≤ C‖h‖�γ ‖�‖L(Sn–)

∥∥∥∥
(∑

j∈Z

(∑
k∈Z

|gk,j|
) q


) 

q
∥∥∥∥

Lp(Rn)
, (.)

where P = ( 
 – 

max{,γ ′} , 
 – 

max{,γ ′} ), P = ( 
 , 

 – 
max{,γ ′} ), P = ( 

 + 
max{,γ ′} , 

 ),
P = ( 

 + 
max{,γ ′} , 

 + 
max{,γ ′} ), P = ( 

 , 
 + 

max{,γ ′} ), P = ( 
 – 

max{,γ ′} , 
 ),

R = ( – 
γ

, 
γ

), and R = ( 
γ

,  – 
γ

).
(Note that if  < γ ≤ , the octagon PPRPPPRP reduces to the hexagon

PPPPPP.)
(ii) If ( 

p , 
q ) belongs to the interior of QQQQ, there exists C >  such that

∥∥∥∥
(∑

j∈Z

∑
k∈Z

|σ�,h,φ,k ∗ gk,j|q
) 

q
∥∥∥∥

Lp(Rn)

≤ C‖h‖�γ ‖�‖L(Sn–)

∥∥∥∥
(∑

j∈Z

∑
k∈Z

|gk,j|q
) 

q
∥∥∥∥

Lp(Rn)
, (.)

where Q = (, ), Q = ( 
γ ′ , ), Q = (, ), and Q = ( 

γ
, ).
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Proof (a) Let  < γ ≤ ∞. Since

sup
k∈Z

|σ�,h,φ,k ∗ gk,j| ≤ sup
k∈Z

|σ�,h,φ,k| ∗ sup
�∈Z

|g�,j| ≤ M�,h,φ

(
sup
�∈Z

|g�,j|
)

,

we get using Lemma .

∥∥∥∥
(∑

j∈Z

(
sup
k∈Z

|σ�,h,φ,k ∗ gk,j|
)q
) 

q
∥∥∥∥

Lp(Rn)
≤
∥∥∥∥
(∑

j∈Z

(
M�,h,φ

(
sup
k∈Z

|gk,j|
))q

) 
q
∥∥∥∥

Lp(Rn)

≤ C
∥∥∥∥
(∑

j∈Z

(
sup
k∈Z

|gk,j|
)q
) 

q
∥∥∥∥

Lp(Rn)
. (.)

On the other hand, there exists {hj} ∈ Lp′ (�q′ ) with ‖{hj}‖Lp′ (�q′ ) =  such that

∥∥∥∥
(∑

j∈Z

(∑
k∈Z

|σ�,h,φ,k ∗ gk,j|
)q) 

q
∥∥∥∥

Lp(Rn)

=
∑
j∈Z

∫
Rn

∑
k∈Z

∣∣σ�,h,φ,k ∗ gk,j(x)
∣∣hj(x) dx

≤
∑
j∈Z

∫
Rn

∑
k∈Z

∣∣gk,j(x)
∣∣|σ̃�,h,φ,k| ∗ hj(x) dx

≤
∑
j∈Z

∫
Rn

∑
k∈Z

∣∣gk,j(x)
∣∣M�̃,h,φhj(x) dx

≤ C
∥∥∥∥
(∑

j∈Z

(∑
k∈Z

|gk,j|
)q) 

q
∥∥∥∥

Lp(Rn)

∥∥∥∥
(∑

j∈Z

(
M�̃,h,φhj(x)

)q′
) 

q′ ∥∥∥∥
Lp′ (Rn)

,

where �̃(y′) = �(–y′). So by Lemma . we obtain for γ ′ < p′, q′ < ∞, i.e.,  < p, q < γ ,

∥∥∥∥
(∑

j∈Z

(∑
k∈Z

|σ�,h,φ,k ∗ gk,j|
)q) 

q
∥∥∥∥

Lp(Rn)

≤ C
∥∥∥∥
(∑

j∈Z

(∑
k∈Z

|gk,j|
)q) 

q
∥∥∥∥

Lp(Rn)

∥∥∥∥
(∑

j∈Z

(∣∣hj(x)
∣∣)q′
) 

q′ ∥∥∥∥
Lp′ (Rn)

≤ C
∥∥∥∥
(∑

j∈Z

(∑
k∈Z

|gk,j|
)q) 

q
∥∥∥∥

Lp(Rn)
. (.)

Now, let R = ( 
γ

, 
γ

), R = ( – 
γ

, 
γ

), R = ( – 
γ

,  – 
γ

), and R = ( 
γ

,  – 
γ

). Then,
if ( 

p , 
q ) belongs to the interior of the square RRRR, there are two points ( 

p
, 

q
) and

( 
p

, 
q

) such that


p

=




p

+




p

,

q

=




q

+




q

,

 < p, q < γ and γ ′ < p, q < ∞.
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Hence, interpolating (.) with (.), we obtain (.) if ( 
p , 

q ) belongs to the interior of
the square RRRR.

(b) Let  < γ < . Using the Cauchy-Schwarz inequality, we get

∣∣σ�,h,φ,k ∗ gk,j(x)
∣∣ ≤

(∫
k–≤|y|≤k

|�(y′)||h(|y|)|γ
|y|n dy

) 


×
(∫

k–≤|y|≤k

∣∣gk,j
(
x – φ

(|y|)y′)∣∣ |�(y′)||h(|y|)|–γ

|y|n dy
) 



≤ C‖h‖
γ

�γ

‖�‖ 

L(Sn–)

(
σ|�|,|h|–γ ,φ,k ∗ |gk,j|

)
(x)


 .

So, we have

∥∥∥∥
(∑

j∈Z

(∑
k∈Z

|σ�,h,φ,k ∗ gk,j|
) q


) 

q
∥∥∥∥

Lp(Rn)

≤ C‖h‖
γ

�γ

‖�‖ 

L(Sn–)

∥∥∥∥
(∑

j∈Z

(∑
k∈Z

σ|�|,|h|–γ ,φ,k ∗ |gk,j|
) q


) 

q
∥∥∥∥

Lp(Rn)
.

Hence, noting |h|–γ ∈ �γ /(–γ ) and using (.) for γ /( – γ ), p/ and q/ in place of γ , p,
q, respectively, we see that (.) holds provided  < p/, q/ < γ /( – γ ), i.e., / – /γ ′ <
/p, /q < /. By duality, it holds also provided / < /p, /q < / + /γ ′. Interpolating
these two cases, we see that (.) holds if ( 

p , 
q ) belongs to the interior of the hexagon

PPPPPP.
(c) Noting �γ ⊂ � for γ > , and interpolating cases (a) and (b) above, we see that (.)

holds if ( 
p , 

q ) belongs to the interior of the octagon PPRPPPRP. This completes
the proof of Lemma .(i).

(d) We shall prove Lemma .(ii). If ( 
p , 

q ) belongs to the interior of the parallelogram
QQQQ, there are two points ( 

p
, 

q
) and ( 

p
, 

q
) such that


p

=
(

 –

q

)

p

+

q


p

,

q

=
(

 –

q

)

q

+

q


q

,

 < p, q < γ and γ ′ < p, q < ∞.

Hence, interpolating (.) with (.), we obtain (.). Thus, we finished the proof of
Lemma .. �

About the Fourier transform estimates of σ�,h,φ,k with � ∈ H(Sn–), we have the follow-
ing.

Lemma . Let  < q ≤ +∞ and � be a regular ∞-atom in H(Sn–) supported in Sn– ∩
B(e, τ ), where e = (, , . . . , ). Let φ be a positive increasing function on (,∞) satisfying
ϕ(t) = φ(t)/(tφ′(t)) ∈ L∞(,∞), and h ∈ �γ for some  < γ ≤ ∞. Then there exist positive
constants C’s such that

∣∣σ̂�,h,φ,k(ξ )
∣∣≤ C‖h‖�‖�‖L(Sn–), (.)

∣∣σ̂�,h,φ,k(ξ )
∣∣≤ C‖h‖�φ

(
k)∣∣Aτ (ξ )

∣∣ (.)



Yabuta Journal of Inequalities and Applications  (2015) 2015:107 Page 13 of 26

and

∣∣σ̂�,h,φ,k(ξ )
∣∣≤ C‖h‖�γ

(φ(k–)|Aτ (ξ )|)/ max{γ ′ ,} . (.)

These are shown by using Lemmas . and . as in the proofs of Lemmas . and .
in [], pp.-. There these are stated for the case where a parameter ρ of positive
number arises, but one sees easily that these hold in our case (ρ = ), too.

To show Theorem ., we need a characterization of the Triebel-Lizorkin space in
terms of lacunary sequences. Let {aj}j∈Z be a lacunary sequence with lacunarity a > ,
i.e.,

aj+

aj
≥ a for j ∈ Z. (.)

Let η be a radial function in C∞(Rn) satisfying χ|ξ |≤(ξ ) ≤ η(ξ ) ≤ χ|ξ |≤a(ξ ) and |∂αη(ξ )| ≤
cα(a – )–|α| for ξ ∈R

n and α ∈ Z
n
+. We define functions ψj on R

n by

ψj(ξ ) = η

(
ξ

aj+

)
– η

(
ξ

aj

) (
ξ ∈ R

n). (.)

Then observe that

ψj(ξ ) =

⎧⎨
⎩

,  ≤ |ξ | ≤ aj, |ξ | ≥ aaj+,

, aaj ≤ |ξ | ≤ aj+,
(.)

and that

suppψj ⊂
{

aj ≤ |ξ | ≤ aaj+
}

, (.)

suppψj ∩ suppψ� = ∅ for |j – �| ≥ , (.)
∣∣ξα∂αψj(ξ )

∣∣≤ Cα for α ∈ Z
n
+, (.)

∑
j∈Z

ψj(ξ ) = 
(
ξ ∈R

n \ {}). (.)

Let j be defined on R
n by ̂j(ξ ) = ψj(ξ ) for ξ ∈ R

n, i.e., j(x) = an
j+η̌(aj+x) – an

j η̌(ajx).

Lemma . Define the multiplier Sj by Sjf = j ∗ f . Then, for  < p, q < ∞, we have

∥∥∥∥
(∑

j∈Z

(∑
k∈Z

|Skfj|
)q/)/q∥∥∥∥

Lp(Rn)
≤ C

∥∥∥∥
(∑

j∈Z
|fj|q

)/q∥∥∥∥
Lp(Rn)

,

where C is independent of {fj}j∈Z.

This is a consequence of Proposition .. in Grafakos []. For the sake of completeness,
we will give a proof in the Appendix. From this lemma we have the following lemma with
minor change of the proof of Lemma . in [].
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Lemma . Let ψj be as in Lemma .. Denote Aτ (ξ ) = (τ ξ, τξ, . . . , τξn) for τ >  and
ξ ∈ R

n. Define the multiplier Sj,τ by Ŝj,τ f (ξ ) = ψ(akAτ (ξ ))f̂ (ξ ). Then, for  < p, q < ∞, we
have

∥∥∥∥
(∑

j∈Z

(∑
k∈Z

|Sk,τ fj|
)q/)/q∥∥∥∥

Lp(Rn)
≤ C

∥∥∥∥
(∑

j∈Z
|fj|q

)/q∥∥∥∥
Lp(Rn)

,

where C is independent of {fj}j∈Z.

We need one more lemma. If {ak}k∈Z satisfies furthermore ak+/ak ≤ d for some d ≥ a,
we can characterize Triebel-Lizorkin spaces in terms of this lacunary sequence.

Denote by P the set of all polynomials in R
n. Let  < p, q < ∞, and α ∈ R. For f ∈

S ′(Rn)/P , we define the norm ‖f ‖
Ḟ

α,{k }k∈Z
pq (Rn)

by

‖f ‖
Ḟ

α,{k }k∈Z
pq (Rn)

=
∥∥∥∥
(∑

k∈Z
aαq

k |k ∗ f |q
)/q∥∥∥∥

Lp(Rn)
. (.)

Lemma . Let α ∈ R and  < p, q < ∞. Let {ak}k∈Z be a lacunary sequence of positive
numbers with d ≥ ak+/ak ≥ a >  (k ∈ Z). Then ‖f ‖

Ḟ
α,{k }k∈Z
pq (Rn)

is equivalent to the usual
homogeneous Triebel-Lizorkin space norm ‖f ‖Ḟα

pq(Rn).

This is stated in Proposition  in [] for α �= , but the proof of this part works also for
α = .

2.2 Proof of Theorem 1.1
We have only to show Theorem . in the case � is a regular atom with supp� ⊂ Sn– ∩
B(ξ , τ ), where B(ξ , τ ) = {y ∈R

n; |y – ξ | < τ }. Using the definition of σ�,h,φ,k , we see that

T�,h,φ f (x) = p.v.
∫
Rn

h(|y|)�(y′)
|y|n f

(
x – φ

(|y|)y′)dy =
∑
k∈Z

σ�,h,φ,k ∗ f (x). (.)

Let ak = /φ(–k), k ∈ Z. Then as is known, {ak}k∈Z is a lacunary sequence with lacunarity
a = /‖ϕ‖L∞(R+) . This follows from (.) (see, for example, []). Also, we have ak+/ak ≤ c,
which follows from (.).

Let ψk ∈ C∞
c (Rn) be radial functions defined by (.). Set ψk,τ (ξ ) = ψk(Aτ (ξ )) and

Ŝk,τ f (ξ ) = ψk,τ (ξ )f̂ (ξ ), ξ ∈ R
n. Then, noting

∑
j∈Z ψj(ξ ) =  (ξ �= ) and

∑
�=– ψj+�(ξ ) = 

on suppψj, we have

T�,h,φ f (x) =
∑
k∈Z

∑
j∈Z

∑
�=–

Sj–k+�,τ (σ�,h,φ,k ∗ Sj–k,τ f )(x) =
∑
j∈Z

Qjf (x), (.)

where

Qjf (x) =
∑
k∈Z

∑
�=–

Sj–k+�,τ (σ�,h,φ,k ∗ Sj–k,τ f )(x). (.)
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We follow the proof of Theorem  in [], using our Lemma . and Lemma . in place of
Lemma . and Lemma . in [], respectively, and we see that if α ∈ R and ( 

p , 
q ) belongs

to the interior of the octagon PPRPPPRP, then we have

‖Qjf ‖Ḟα
p,q(Rn) ≤ C‖f ‖Ḟα

p,q(Rn). (.)

About L estimate, we have

‖Qjf ‖Ḟ
,(Rn) ≤ Ca–|j|/ max(γ ′ ,)‖f ‖Ḟ

,(Rn). (.)

In fact, by Lemma ., we get

∣∣σ̂�,h,φ,k(ξ )
∣∣≤ C‖h‖�‖�‖L(Sn–), (.)

∣∣σ̂�,h,φ,k(ξ ,η)
∣∣≤ C‖h‖�φ

(
k)∣∣Aτ (ξ )

∣∣ (.)

and

∣∣σ̂�,h,φ,φ,k(ξ )
∣∣≤ C‖h‖�γ

(φ(k–)|Aτ (ξ )|)/ max(γ ′ ,) . (.)

Also, we have

‖Qjf ‖Ḟ
,(Rn) =

(∫
Rn

∣∣∣∣∣
∑
k∈Z

∑
�=–

Sj–k+�,τ (σ�,h,φ,k ∗ Sj–k,τ f )(x)

∣∣∣∣∣


dx

)/

=

(∫
Rn

∣∣∣∣∣
∑
k∈Z

∑
�=–

ψj–k+�

(
Aτ (ξ )

)
σ̂�,h,φ,k(ξ )ψj–k

(
Aτ (ξ )

)
f̂ (ξ )

∣∣∣∣∣


dξ

)/

.

So, for j ≥ , we have, using (.) and φ(�) = /a–� and a�+/a� ≥ a = /‖ϕ‖L∞(R+) ,

‖Qjf ‖Ḟ
,(Rn)

≤ C
(∑

k∈Z

∫
aj–k≤|Aτ (ξ )|≤aj–k+

∣∣σ̂�,h,φ,k(ξ )f̂ (ξ )
∣∣ dξ

)/

≤ C‖h‖�γ

(∑
k∈Z

∫
aj–k≤|Aτ (ξ )|≤aj–k+

( |Aτ (ξ )|
a–k+

)–/ max(γ ′ ,)∣∣f̂ (ξ )
∣∣ dξ

)/

≤ C‖h‖�γ a–(j–)/ max(γ ′ ,)
(∑

k∈Z

∫
aj–k≤|Aτ (ξ )|≤aj–k+

( |Aτ (ξ )|
aj–k

)–/ max(γ ′ ,)∣∣f̂ (ξ )
∣∣ dξ

)/

≤ C‖h‖�γ a–j/ max(γ ′ ,)
(∫

Rn

∣∣f̂ (ξ )
∣∣ dξ

)/

≤ Ca–j/ max(γ ′ ,)‖f ‖Ḟ
,(Rn).

In the fourth inequality we used aj+ ≤ caj.
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For j ≤ –, using (.) we get as before

‖Qjf ‖Ḟ
,(Rn) ≤ C

(∑
k∈Z

∫
aj–k≤|Aτ (ξ )|≤aj–k+

∣∣σ̂�,ψ ,h,k(ξ )f̂ (ξ )
∣∣ dξ

)/

≤ C‖h‖�γ

(∑
k∈Z

∫
aj–k≤|Aτ (ξ )|≤aj–k+

( |Aτ (ξ )|
a–k

)∣∣f̂ (ξ )
∣∣ dξ

)/

≤ Caj
(∑

k∈Z

∫
aj–k≤|Aτ (ξ )|≤aj–k+

( |Aτ (ξ )|
aj–k

)∣∣f̂ (ξ )
∣∣ dξ

)/

≤ Caj
(∑

k∈Z

∫
aj–k≤|Aτ (ξ )|≤aj–k+

∣∣f̂ (ξ )
∣∣ dξ

)/

≤ Caj
(∫

Rn

∣∣f̂ (ξ )
∣∣ dξ

)/

≤ Caj‖f ‖L(R,Ḟ
,(Rn)).

Thus we have

‖Qjf ‖Ḟ
,(Rn) ≤ Ca–|j|/ max(γ ′ ,)‖f ‖Ḟ

,(Rn),

which shows the required estimate (.).
Interpolating these two cases (.) and (.), we see that if α ∈R and ( 

p , 
q ) belongs to

the interior of the octagon PPQPPPQP, then T�,h,φ is bounded on Ḟα
p,q(Rn). This

completes the proof of Theorem .(i).
Next, we prove (ii). Let | 

 – 
p | < min{ 

 , 
γ ′ },  < q < ∞, and α ∈ R. Then, by Theo-

rem .(ii), T�,h,φ is bounded on Ḟα–
p,p (Rn) and Ḟα+

p,p (Rn). Since (Ḟα–
p,p (Rn), Ḟα+

p,p (Rn)) 
 ,q =

Ḃα
p,q(Rn), we see by interpolation that T�,h,φ is bounded on Ḃα

p,q(Rn). This shows (ii) and
completes the proof of Theorem ..

3 Proof of Theorem 1.3
Let σ�,h,φ,k , ak , ψk , and Sk be the same as in the proof of Theorem .. Then, noting∑

j∈Z ψj(ξ ) =  (ξ �= ) and
∑

�=– ψj+�(ξ ) =  on suppψj, we have

T�,h,φ f (x) =
∑
k∈Z

∑
j∈Z

∑
�=–

Sj–k+�(σ�,h,φ,k ∗ Sj–kf )(x) =
∑
j∈Z

Q̃jf (x), (.)

where

Q̃jf (x) =
∑
k∈Z

∑
�=–

Sj–k+�(σ�,h,φ,k ∗ Sj–kf )(x). (.)

Using our Lemma . and Lemma .(i) in place of Lemma . and Lemma . in [],
respectively, we see, as in the proof of Theorem ., that if α ∈ R and ( 

p , 
q ) belongs to the

interior of the octagon PPRPPPRP, then we have

‖Q̃jf ‖Ḟα
p,q(Rn) ≤ C‖f ‖Ḟα

p,q(Rn). (.)
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Next, we approach the above estimate (.) by another method. We calculate the Ḟα
p,q norm

of Q̃j more directly. Considering the support property of ψk , we have

‖Q̃jf ‖Ḟα
p,q(Rn) =

∥∥∥∥∥
(∑

m∈Z
aαq

m

∣∣∣∣∣Sm
∑
k∈Z

∑
�=–

Sj–k+�(σ�,h,φ,k ∗ Sj–kf )

∣∣∣∣∣
q) 

q
∥∥∥∥∥

Lp(Rn)

≤
∥∥∥∥∥
(∑

m∈Z
aαq

m

∣∣∣∣∣Sm

∑
�=–

Sm+�(σ�,h,φ,j–m ∗ Smf )

∣∣∣∣∣
q) 

q
∥∥∥∥∥

Lp(Rn)

×
∥∥∥∥∥
(∑

m∈Z
aαq

m

∣∣∣∣∣Sm

∑
�=

Sm+�(σ�,h,φ,j–m– ∗ Sm+f )

∣∣∣∣∣
q) 

q
∥∥∥∥∥

Lp(Rn)

×
∥∥∥∥∥
(∑

m∈Z
aαq

m

∣∣∣∣∣Sm

∑
�=–

Sm+�(σ�,h,φ,j–m– ∗ Sm–f )

∣∣∣∣∣
q) 

q
∥∥∥∥∥

Lp(Rn)

.

By Fefferman-Stein’s vector-valued inequality for maximal functions, Lemma .(ii), and
am+/c ≤ am ≤ am+/a, we get

‖Q̃jf ‖Ḟα
p,q(Rn) ≤ C

∑
�=–

∥∥∥∥
(∑

m∈Z
aαq

m |σ�,h,φ,j–m ∗ Sm+�f |q
) 

q
∥∥∥∥

Lp(Rn)

≤ C
∑

�=–

∥∥∥∥
(∑

m∈Z
aαq

m |Sm+�f |q
) 

q
∥∥∥∥

Lp(Rn)

≤ C
∥∥∥∥
(∑

m∈Z
aαq

m |Smf |q
) 

q
∥∥∥∥

Lp(Rn)
≤ C‖f ‖Ḟα

p,q(Rn) (.)

if α ∈R and ( 
p , 

q ) belongs to the interior of the parallelogram QQQQ.
Interpolating (.) and (.), we obtain

‖Q̃jf ‖Ḟα
p,q(Rn) ≤ C‖f ‖Ḟα

p,q(Rn) (.)

if α ∈ R and ( 
p , 

q ) belongs to the interior of the octagon QQRPQQRP (hexagon
QQPQQP in the case  < γ ≤ ).

About L estimate, we have

‖Q̃jf ‖Ḟ
,(Rn) ≤ C

(


 + |j|
)β/ max(γ ′ ,)

. (.)

In fact, let σk = σ�,h,φ,k . Then we have

σ̂k(ξ ) =
∫ k

k–

∫
Sn–

�
(
y′)h(r)e–iφ(r)y′·ξ dσ

(
y′)dr

r
.

First we have

∣∣σ̂k(ξ )
∣∣≤ ‖h‖�γ ‖�‖L(Sn–). (.)
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Next, using Hölder’s inequality and assuming ‖�‖L(Sn–) ≤  without loss of generality,
we have

∣∣σ̂k(ξ )
∣∣ ≤

(∫ k

k–

∣∣h(r)
∣∣γ dr

r

)/γ(∫ k

k–

∣∣∣∣
∫

Sn–
�
(
y′)e–iφ(r)y′·ξ dσ

(
y′)∣∣∣∣

γ ′
dr
r

)/γ ′

≤ ‖h‖�γ

(∫ k

k–

∣∣∣∣
∫

Sn–
�
(
y′)e–iφ(r)y′·ξ dσ

(
y′)∣∣∣∣

 dr
r

) 
max(,γ ′)

= ‖h‖�γ

(∫ φ(k )

φ(k–)

∣∣∣∣
∫

Sn–
�
(
y′)e–iry′·ξ dσ

(
y′)∣∣∣∣


φ(φ–(r))

φ–(r)φ′(φ–(r))
dr
r

) 
max(,γ ′)

≤ ‖h‖�γ ‖ϕ‖L∞(R+)

(∫ φ(k )

φ(k–)

∣∣∣∣
∫

Sn–
�
(
y′)e–iry′·ξ dσ

(
y′)∣∣∣∣

 dr
r

) 
max(,γ ′)

= ‖h‖�γ ‖ϕ‖L∞(R+)

×
(∫

Sn–

∫
Sn–

�
(
y′)�(z′)∫ φ(k )

φ(k–)
e–ir(y′–z′)·ξ dr

r
dσ
(
y′)dσ

(
z′)) 

max(,γ ′)
.

We see that
∣∣∣∣
∫ φ(k )

φ(k–)
e–ir(y′–z′)·ξ dr

r

∣∣∣∣≤ log
φ(k)

φ(k–)
≤ log c.

We see also
∣∣∣∣
∫ φ(k )

φ(k–)
e–ir(y′–z′)·ξ dr

r

∣∣∣∣≤ 
φ(k–)|ξ ||ξ ′ · (x′ – y′)| .

So, as in [], p. (using Lemma . in []), we have for β > ,

∣∣∣∣
∫ φ(k )

φ(k–)
e–ir(y′–z′)·ξ dr

r

∣∣∣∣
≤ C

logβ (log c)eφ(k–)|ξ | logβ e
|(y′ – z′) · ξ ′| for φ

(
k)|ξ | ≥ c

log c
.

Hence we have

∣∣σ̂k(ξ )
∣∣≤ ‖h‖�γ (WFβ (�))/max{γ ′ ,}‖�‖–/max{γ ′ ,}

L(Sn–)

(log(e(log c)φ(k)|ξ |/c))β/max{γ ′ ,} (.)

for φ(k)|ξ | ≥ c
log c

≥ e.
On the other hand, using the cancelation property of �, we get easily
∣∣σ̂k(ξ )

∣∣≤ ‖h‖�‖�‖L(Sn–)φ
(
k)|ξ |. (.)

Now we can estimate the L norm of Q̃jf :

‖Q̃jf ‖Ḟ
,(Rn) =

(∫
Rn

∣∣∣∣∣
∑
k∈Z

∑
�=–

Sj–k+�(σ�,h,φ,k ∗ Sj–kf )(x)

∣∣∣∣∣


dx

)/

=

(∫
Rn

∣∣∣∣∣
∑
k∈Z

∑
�=–

ψj–k+�(ξ )σ̂�,h,φ,k(ξ )ψj–k(ξ )f̂ (ξ )

∣∣∣∣∣


dξ

)/

.
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Note that φ(k)|ξ | = |ξ |/a–k ≥ aj|ξ |/aj–k ≥ aj for aj–k ≤ |ξ | ≤ aj–k+ and j ≥ , where
a�+/a� ≥ a = /‖ϕ‖L∞(R+) . So, for j ≥  loga(c/ log c) and aj–k ≤ |ξ | ≤ aj–k+, we have

log c

c
φ
(
k)|ξ | ≥ a

j
 ≥ ,

and hence we have

‖Q̃jf ‖Ḟ
,(Rn) ≤ C

(∑
k∈Z

∫
aj–k≤|ξ |≤aj–k+

∣∣σ̂�,h,φ,k(ξ )f̂ (ξ )
∣∣ dξ

)/

≤ C‖h‖�γ

(∑
k∈Z

∫
aj–k≤|ξ |≤aj–k+

(


 + j

)β/ max(γ ′ ,)∣∣f̂ (ξ )
∣∣ dξ

)/

≤ C‖h‖�γ

(


 + j

)β/ max(γ ′ ,)(∑
k∈Z

∫
aj–k≤|ξ |≤aj–k+

∣∣f̂ (ξ )
∣∣ dξ

)/

≤ C‖h‖�γ

(


 + j

)β/ max(γ ′ ,)(∫
Rn

∣∣f̂ (ξ )
∣∣ dξ

)/

≤ C
(


 + j

)β/ max(γ ′ ,)

‖f ‖Ḟ
,(Rn).

For j ≤ –, we have φ(k)|ξ | = |ξ |/a–k ≤ a+j for aj–k ≤ |ξ | ≤ aj–k+. So, using (.) we get
as before

‖Q̃jf ‖Ḟ
,(Rn) ≤ C

(∑
k∈Z

∫
aj–k≤|ξ |≤aj–k+

∣∣σ̂�,ψ ,h,k(ξ )f̂ (ξ )
∣∣ dξ

)/

≤ C‖h‖�γ

(∑
k∈Z

∫
aj–k≤|ξ |≤aj–k+

a+j∣∣f̂ (ξ )
∣∣ dξ

)/

≤ Caj
(∑

k∈Z

∫
aj–k≤|ξ |≤aj–k+

∣∣f̂ (ξ )
∣∣ dξ

)/

≤ Caj
(∫

Rn

∣∣f̂ (ξ )
∣∣ dξ

)/

≤ Caj‖f ‖Ḟ
,(Rn).

For – ≤ j <  loga(c/ log c), using (.), we get

‖Q̃jf ‖Ḟ
,(Rn) ≤ C

(∑
k∈Z

∫
aj–k≤|ξ |≤aj–k+

∣∣f̂ (ξ )
∣∣ dξ

)/

≤ C‖f ‖Ḟ
,(Rn).

Thus we have (.) for j ∈ Z. Now, let Q = ( max(γ ′ ,)
β

, max(γ ′ ,)
β

), Q = ( 
γ ′ + max(γ ′ ,)

β
( 

 –

γ ′ ), max(γ ′ ,)

β
),P = ( 

 + 
max(γ ′ ,) – 

β
, 

 ),Q = (– max(γ ′ ,)
β

, – max(γ ′ ,)
β

),Q = ( 
γ

– max(γ ′ ,)
β

( 
γ

–

 ),  – max(γ ′ ,)

β
), P = ( 

 – 
max(γ ′ ,) + 

β
, 

 ), R = ( – 
γ

– max(γ ′ ,)
βγ ′ , 

γ
+ max(γ ′ ,)

βγ ′ ), and
R = ( 

γ
+ max(γ ′ ,)

βγ ′ ,  – 
γ

– max(γ ′ ,)
βγ ′ ). Then, for ( 

p , 
q ) belonging to the interior of the oc-

tagon QQRPQQRP (hexagon QQPQQP in the case  < γ ≤ ), we can
find ( 

p
, 

q
) in the interior of the octagon QQRPQQRP (hexagon QQPQQP
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in the case  < γ ≤ ) such that 
p = θ

 + –θ
p

, 
q = θ

 + –θ
q

, and  > θ > max(γ ′ ,)
β

. Hence, for
α ∈ R, taking α with α = ( – θ )α and interpolating between (.) and (.), we obtain
the desired estimate

‖Q̃jf ‖Ḟα
p,q(Rn) ≤ C

(
 + |j|)–θβ/max{γ ′ ,}‖f ‖Ḟα

p,q(Rn). (.)

Summing up this with respect to j, we finish the proof of Theorem .(i). The proof of (ii)
is the same as in Theorem .(i).

4 Proof of Theorem 1.2
In this section we shall give the proof of Theorem ..

(A) L log L case. Let � ∈ L log L(Sn–) satisfying the cancelation property. Then let-
ting Am = ‖�χm–≤|�(y′)|<m‖L(Sn–) and � = {m ∈ N : Am > –m}, we can construct �m ∈
L(Sn–) (m ∈ �) and � ∈⋂<r< Lr(Sn–) such that

‖�m‖L(Sn–) ≤ Cm, ‖�m‖L(Sn–) ≤ C, (.)
∑
m∈�

mAm ≤ C‖�‖L log L(Sn–), (.)

∫
Sn–

�m
(
y′)dσ

(
y′) =  (m = , m ∈ �), � = � +

∑
m∈�

Am�m. (.)

From the above, we see that

T�,ψ ,hf = T�,h,φ f +
∑
m∈�

AmT�m ,h,φ f . (.)

So, we consider T�m ,h,φ . We use the notations in Section  with minor change such as Q̃m,j

for �m instead of Q̃j for �. Since ‖�m‖L(Sn–) ≤ C, we have as in Section  that

‖Q̃m,jf ‖Ḟα
p,q(Rn) ≤ C‖f ‖Ḟα

p,q(Rn) (.)

if α ∈ R and ( 
p , 

q ) belongs to the interior of the octagon QQRPQQRP (hexagon
QQPQQP in the case  < γ ≤ ).

About L estimate, we have

‖Q̃m,jf ‖Ḟ
,(Rn) ≤ Ca– β

m |j|‖f ‖Ḟ
,(Rn) (.)

for some β with  < β < /. In fact, let σm,k = σ�m ,h,φ,k . Since ‖�m‖L(Sn–) ≤ C and
‖�m‖L(Sn–) ≤ Cm, we get by Lemma . in [], p.,

∣∣σ̂m,k(ξ )
∣∣≤ C‖h‖� , (.)

∣∣σ̂m,k(ξ )
∣∣≤ C

‖h‖�γ ( + ‖ϕ‖∞)

|φ(k–)ξ | β
m

, (.)

∣∣σ̂m,k(ξ )
∣∣≤ C‖h‖�

∣∣φ(k)ξ ∣∣ β
m , (.)
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where β is a fixed constant with  < β < /. Using Plancherel’s theorem, (.), the support
property of ψj, and ak+/c ≤ ak ≤ ak+/a, we get for j ≥ ,

‖Q̃m,jf ‖Ḟ
,(Rn) ≤ C

(∑
k∈Z

∫
aj–k≤|ξ |<aj–k+

∣∣σ̂m,k(ξ )f̂ (ξ )
∣∣ dξ

) 


≤ C
(∑

k∈Z

∫
aj–k≤|ξ |<aj–k+



|φ(k–)ξ | β
m

∣∣f̂ (ξ )
∣∣ dξ

) 


≤ Ca– β
m j
(∑

k∈Z

∫
aj–k≤|ξ |<aj–k+

∣∣f̂ (ξ )
∣∣ dξ

) 


≤ Ca– β
m j‖f ‖Ḟ

,(Rn).

For j < , using (.) in place of (.), we get

‖Q̃m,jf ‖Ḟ
,(Rn) ≤ Ca

β
m j‖f ‖Ḟ

,(Rn).

This shows (.). Interpolating (.) and (.), we obtain for some  < θ < ,

‖Q̃m,jf ‖Ḟα
p,q(Rn) ≤ Ca– βθ

m |j|‖f ‖Ḟα
p,q(Rn) (.)

provided α ∈ R and ( 
p , 

q ) belongs to the interior of the octagon QQRPQQRP

(hexagon QQPQQP in the case  < γ ≤ ).
From (.) and the definition of Q̃m,j it follows

‖T�m ,h,φ f ‖Ḟα
p,q(Rn) ≤ C

∑
j∈Z

a– βθ
m |j|‖f ‖Ḟα

p,q(Rn) ≤ C

 – a– βθ
m

‖f ‖Ḟα
p,q(Rn) ≤ C

m
βθ

‖f ‖Ḟα
p,q(Rn).

We can see that the same estimate holds for �. Thus, by (.) we have

‖T�,h,φ f ‖Ḟα
p,q(Rn) ≤ C

(
 +

∑
m∈�

Amm
)

‖f ‖Ḟα
p,q(Rn) ≤ C‖f ‖Ḟα

p,q(Rn)

provided α ∈ R and ( 
p , 

q ) belongs to the interior of the octagon QQRPQQRP

(hexagon QQPQQP in the case  < γ ≤ ). This completes the proof of Theorem .
in the case � ∈ L log L(Sn–).

(B) Block space case. Let r > . Then if � ∈ B(,)
r (Sn–) and satisfies the cancelation con-

dition, it can be written as � =
∑∞

�= λ��̆�, where λ� ∈ C and �̆� is an r-block supported
on a cap B� = B(x�, τ�) ∩ Sn– on Sn– and

∞∑
�=

|λ�|
{

 + log
(|B�|–)} < ‖�‖B(,)

r (Sn–) < ∞. (.)

To each block �̆�, we define

��

(
y′) = �̆�

(
y′) –


|Sn–|

∫
Sn–

�̆�

(
x′)dσ

(
x′).
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Let � = {� ∈N; |B�| ≤ /} and set

� = � –
∑
�∈�

λ���. (.)

Then there exists a positive constant C such that the following hold for all � ∈ �:

∫
Sn–

��

(
x′)dσ

(
x′) = , (.)

‖��‖Lr(Sn–) ≤ C|B�|–/r′ , (.)

‖��‖L(Sn–) ≤ , (.)

� = � +
∑
�∈�

λ���. (.)

Moreover, from (.) and the definition of �� it follows that

‖�‖Lr (Sn–) ≤ C
∑

�∈N\�
–/r′ |λ�| ≤ C‖�‖B(,)

r (Sn–), (.)

∫
Sn–

�
(
x′)dσ

(
x′) = . (.)

By (.), we have

T�,h,φ f (x) =
∑

�∈�∪

λ�T�� ,h,φ f (x). (.)

So, we have only to show the boundedness of T�� ,h,φ f . We use the notations in Section 
with minor change such as Q̃�,j for �� instead of Q̃j for �. Since ‖��‖L(Sn–) ≤ C, we have
as in Section  that

‖Q̃�,jf ‖Ḟα
p,q(Rn) ≤ C‖f ‖Ḟα

p,q(Rn) (.)

if α ∈ R and ( 
p , 

q ) belongs to the interior of the octagon QQRPQQRP (hexagon
QQPQQP in the case  < γ ≤ ).

About L estimate, we have

‖Q̃�,jf ‖Ḟ
,(Rn) ≤ Ca– β

m�
|j|‖f ‖Ḟ

,(Rn) (.)

for some β with  < β < r. In fact, let σ�,k = σ�� ,h,φ,k . For � ∈ � ∪ {}, we set m� =
[log |B�|–/r′ ] + , where [ · ] denotes the greatest integer function.

Since ‖��‖L(Sn–) ≤  and ‖��‖L(Sn–) ≤ Cm� , we get by Lemma . in [], p.

∣∣σ̂�,k(ξ )
∣∣≤ C‖h‖� , (.)

∣∣σ̂�,k(ξ )
∣∣≤ C

‖h‖�γ ( + ‖ϕ‖∞)

|φ(k–)ξ | β
m�

, (.)

∣∣σ̂�,k(ξ )
∣∣≤ C‖h‖�

∣∣φ(k)ξ ∣∣ β
m� , (.)
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where β is a fixed constant with  < β < r. Using Plancherel’s theorem, (.), the support
property of ψj, and ak+/c ≤ ak ≤ ak+/a, we get for j ≥ ,

‖Q̃�,jf ‖Ḟ
,(Rn) ≤ C

(∑
k∈Z

∫
aj–k≤|ξ |<aj–k+

∣∣σ̂�,k(ξ )f̂ (ξ )
∣∣ dξ

) 


≤ C
(∑

k∈Z

∫
aj–k≤|ξ |<aj–k+



|φ(k–)ξ | β
m�

∣∣f̂ (ξ )
∣∣ dξ

) 


≤ Ca– β
m�

j
(∑

k∈Z

∫
aj–k≤|ξ |<aj–k+

∣∣f̂ (ξ )
∣∣ dξ

) 


≤ Ca– β
m�

j‖f ‖Ḟ
,(Rn).

For j < , using (.) in place of (.), we get

‖Q̃�,jf ‖Ḟ
,(Rn) ≤ Ca

β
m�

j‖f ‖Ḟ
,(Rn).

This shows (.). Interpolating (.) and (.), we obtain for some  < θ < ,

‖Q̃�,jf ‖Ḟα
p,q(Rn) ≤ Ca– βθ

m�
|j|‖f ‖Ḟα

p,q(Rn) (.)

provided α ∈ R and ( 
p , 

q ) belongs to the interior of the octagon QQRPQQRP

(hexagon QQPQQP in the case  < γ ≤ ).
From (.) and the definition of Q̃�,j it follows

‖T�� ,h,φ f ‖Ḟα
p,q(Rn) ≤ C

∑
j∈Z

a– βθ
m�

|j|‖f ‖Ḟα
p,q(Rn) ≤ C

 – a– βθ
m�

‖f ‖Ḟα
p,q(Rn) ≤ C

m�

βθ
‖f ‖Ḟα

p,q(Rn).

We can see that the same estimate holds for �. Thus, by (.) we have

‖T�,h,φ f ‖Ḟα
p,q(Rn) ≤ C

(
 +

∑
�∈�

λ�m�

)
‖f ‖Ḟα

p,q(Rn) ≤ C‖f ‖Ḟα
p,q(Rn)

provided α ∈ R and ( 
p , 

q ) belongs to the interior of the octagon QQRPQQRP

(hexagon QQPQQP in the case  < γ ≤ ).
This completes the proof of Theorem ..

Appendix
In this section we shall prove Lemma .. Let {aj}j∈Z, ψj, j, and Sj be the same as in
Lemma .. Set ηj(ξ ) = η(ξ /aj+) and �̂j(ξ ) = ηj(ξ ). Then we have

(–ix)α�j(x) = cn

∫
Rn

∂αηj(ξ )eix·ξ dξ ,

so we have

∣∣xα
∣∣∣∣�j(x)

∣∣≤ C
∫
Rn

∣∣∂αηj(ξ )
∣∣dξ ≤ C

∫
supp ∂αηj

∣∣∂αηj(ξ )
∣∣dξ .
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From this and the definition of ηj we get

∣∣�j(x)
∣∣≤ Canan

j+, (A.)

and for N ∈N,

|x|N ∣∣�j(x)
∣∣≤ C


((a – )aj+)N

(∫ aaj+

aj+

rn– dr
)

≤ C
(aaj+)n

((a – )aj+)N . (A.)

Thus, for N ∈N we have

∣∣�j(x)
∣∣≤ C

(
a

a – 

)n ((a – )aj+)n

( + |(a – )aj+x|)N . (A.)

Next we have

(–ix)α∂xk �j(x) = cn

∫
Rn

∂α(iξkηj)(ξ )eix·ξ dξ ,

so we have

∣∣xα
∣∣∣∣∂xk �j(x)

∣∣≤ C
∫
Rn

∣∣∂α(ξkηj)(ξ )
∣∣dξ ≤ C

∫
supp ∂α (ξkηj)

∣∣∂α(ξkηj)(ξ )
∣∣dξ .

From this and the definition of ηj we get

∣∣∇�j(x)
∣∣≤ C(aaj+)n+, (A.)

and for N ∈N,

|x|N ∣∣∇�j(x)
∣∣≤ C


((a – )aj+)N–

∫ aaj+

aj+

rn– dr + C


((a – )aj+)N

∫ aaj+

aj+

rn dr

≤ C
(aaj+)n

((a – )aj+)N– + C
(aaj+)n+

((a – )aj+)N . (A.)

Thus, for N ∈N we have

∣∣∇�j(x)
∣∣≤ C

(
a

a – 

)n+ ((a – )aj+)n+

( + |(a – )aj+x|)N . (A.)

Let b = a –  and B = ( a
a– )n+. Taking N = n +  and using (A.) and (A.), we obtain

I :=
∫

|x|>|y|

(∑
k∈Z

∣∣�k(x – y) – �k(x)
∣∣
)/

dx

≤
∫

|x|>|y|

∑
k∈Z

∣∣�k(x – y) – �k(x)
∣∣dx

≤
∑

ak+<|by|–

∫
|x|>|y|

∣∣�k(x – y) – �k(x)
∣∣dx
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+
∑

ak+≥|by|–

∫
|x|>|y|

∣∣�k(x – y)
∣∣ +
∣∣�k(x)

∣∣dx

≤
∑

ak+<|by|–

∫
|x|>|y|

|y|∣∣∇�k(x – θy)
∣∣dx

+
∑

ak+≥|by|–

∫
|x|>|y|

∣∣�k(x – y)
∣∣ +
∣∣�k(x)

∣∣dx

≤ CB
∑

ak+<|by|–

|bak+y|
∫
Rn

(bak+)n

( + |bak+x|)n+ dx

+ CB
∑

ak+≥|by|–

∫
|x|>|y|

(bak+)n

(|bak+x|)n+ dx

≤ CB
∑

ak+<|by|–

|by|ak+

∫
Rn


( + |x|)n+ dx

+ CB
∑

ak+≥|by|–

∫ ∞

|bak+y|

r dr

≤ CB
∑

ak+<|by|–

|by|ak+ + CB
∑

ak+≥|by|–


|by|


ak+

.

Let k be the integer satisfying ak < |(a – )y|– ≤ ak+. Then we have

I ≤ CB
ak

∑
k≤k–

ak+ + CBak+
∑
k≥k


ak+

.

From ak+/ak ≥ a it follows that ak+ ≤ a–ak+ ≤ · · · ≤ ak–k+ak for k ≤ k. Hence we get

∑
k≤k–

ak+ ≤
∑

k≤k–

ak ak–k+ = ak

∞∑
k=


ak = ak

a
a – 

.

From ak+/ak ≥ a it follows that ak+ ≥ aak ≥ · · · ≥ ak–k ak+ for k ≥ k. Hence we get

∑
k≥k


ak+

≤
∑
k≥k


ak+


ak–k

=


ak+

∞∑
k=


ak =


ak+

a
a – 

.

Thus we have

I ≤ C
(

a
a – 

)n+

.

If we define �
j by �̂

j (ξ ) = η(ξ /aj), we get �
j = �j–. So, for �

j we have the same estimate
as for �j. Therefore, we obtain

∫
|x|>|y|

(∑
k∈Z

∣∣k(x – y) – k(x)
∣∣
)/

dx ≤ C
(

a
a – 

)n+

. (A.)
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Now let B = C, B = �, define an �-valued function �K(x) by �K(x) = {k(x)}k∈Z, and the
linear operator �T by �T(f ) = �K ∗ f for f ∈ L∞(Rn) with compact support. Then we have
‖‖�T(f )‖B‖Lr(Rn) = ‖(

∑
k∈Z |k ∗ f |) 

 ‖Lr (Rn), and so by Littlewood-Paley theory this is
equivalent to ‖f ‖Lr (Rn) for any  < r < ∞. By (A.), the kernel �K(x) satisfies the Hörmander
condition. Thus, we can apply Proposition .. in Grafakos [], and get the conclusion
of Lemma ..

Competing interests
The author declares that he has no competing interests.

Author’s contributions
The author contributed to the writing of this paper. He read and approved the final manuscript.

Acknowledgements
The work is partially supported by Grant-in-Aid for Scientific Research (C) (No. 23540228), Japan Society for the Promotion
of Science.

Received: 12 December 2014 Accepted: 12 March 2015

References
1. Stein, EM: Problems in harmonic analysis related to curvature and oscillatory integrals. In: Proceedings of the

International Congress of Mathematicians, Berkley, pp. 196-221 (1986)
2. Stein, EM, Wainger, S: Problems in harmonic analysis related to curvature. Bull. Am. Math. Soc. 84, 1239-1295 (1978)
3. Kim, W, Wainger, S, Wright, J, Ziesler, S: Singular integrals and maximal functions associated to surfaces of revolution.

Bull. Lond. Math. Soc. 28, 291-296 (1996)
4. Fan, D, Pan, Y: A singular integral operator with rough kernel. Proc. Am. Math. Soc. 125, 3695-3703 (1997)
5. Fan, D, Pan, Y, Yang, D: A weighted norm inequality for rough singular integrals. Tohoku Math. J. 51, 141-161 (1999)
6. Xue, Q, Yabuta, K: On the boundedness of singular integrals with variable kernels. Tohoku Math. J. 61, 41-65 (2009)
7. Chen, J, Zhang, C: Boundedness of rough singular integrals on the Triebel-Lizorkin spaces. J. Math. Anal. Appl. 337,

1048-1052 (2008)
8. Chen, Y, Ding, Y: Rough singular integrals on Triebel-Lizorkin space and Besov space. J. Math. Anal. Appl. 347, 493-501

(2008)
9. Chen, Y, Ding, Y, Liu, H: Rough singular integrals supported on submanifolds. J. Math. Anal. Appl. 368, 677-691 (2010)
10. Grafakos, L, Stefanov, A: Lp Bounds for singular integrals and maximal singular integrals with rough kernels. Indiana

Univ. Math. J. 47, 455-469 (1998)
11. Fan, D, Sato, S: A note on singular integrals associated with a variable surface of revolution. Math. Inequal. Appl. 12(2),

441-454 (2009)
12. Li, W, Si, Z, Yabuta, K: Boundedness of singular integrals associated to surfaces of revolution on Triebel-Lizorkin

spaces. Forum Math. (2014). doi:10.1515/forum-2014-0066
13. Bergh, J, Löfström, J: Interpolation Spaces: An Introduction. Springer, Berlin (1976)
14. Triebel, H: Theory of Function Spaces. Monogr. Math., vol. 78. Birkhäuser, Basel (1983)
15. Xue, Q, Yabuta, K: L2 Boundedness Marcinkiewicz integrals along surfaces with variable kernels. Sci. Math. Jpn. 63,

369-382 (2006)
16. Jiang, Y, Lu, S: Lp Boundedness of a class of maximal singular integral operators. Acta. Math. Sin. Chin. Ser. 35, 63-72

(1992) (in Chinese)
17. Lu, S, Taibleson, M, Weiss, G: Spaces Generated by Blocks. Publishing House of Beijing Normal University, Beijing

(1989)
18. Lu, S: Applications of some block spaces to singular integrals. Front. Math. China 2(1), 61-72 (2007)
19. Colzani, L: Hardy spaces on sphere. PhD thesis, Washington University, St. Louis, MO (1982)
20. Ding, Y, Xue, Q, Yabuta, K: Boundedness of the Marcinkiewicz integrals with rough kernel associated to surfaces.

Tohoku Math. J. 62, 233-262 (2010)
21. Grafakos, L: Classical and Modern Fourier Analysis. Pearson Education, Upper Saddle River (2004)
22. Sawano, Y, Yabuta, K: Fractional type Marcinkiewicz integral operators associated to surfaces. J. Inequal. Appl. 2014,

232 (2014)
23. Li, W, Yabuta, K: Rough singular integrals associated to submanifolds. Taiwan. J. Math. 16, 1557-1587 (2012)

http://dx.doi.org/10.1515/forum-2014-0066

	Triebel-Lizorkin space boundedness of rough singular integrals associated to surfaces
	Abstract
	MSC
	Keywords

	Introduction
	Proof of Theorem 1.1
	Some lemmas
	Proof of Theorem 1.1

	Proof of Theorem 1.3
	Proof of Theorem 1.2
	Appendix
	Competing interests
	Author's contributions
	Acknowledgements
	References


