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Abstract 

Noroviruses (NoVs) have high levels of genetic sequence diversities, which lead to difficulties in designing robust uni-
versal primers to efficiently amplify specific viral genomes for molecular analysis. We here described the practicality of 
sequence-independent amplification combined with DNA microarray analysis for simultaneous detection and geno-
typing of human NoVs in fecal specimens. We showed that single primer isothermal linear amplification (Ribo-SPIA) of 
genogroup I (GI) and genogroup II (GII) NoVs could be run through the same amplification protocol without the need 
to design and use any virus-specific primers. Related virus could be subtyped by the unique pattern of hybridization 
with the amplified product to the microarray. By testing 22 clinical fecal specimens obtained from acute gastroen-
teritis cases as blinded samples, 2 were GI positive and 18 were GII positive as well as 2 negative for NoVs. A NoV GII 
positive specimen was also identified as having co-occurrence of hepatitis A virus. The study showed that there was 
100 % concordance for positive NoV detection at genogroup level between the results of Ribo-SPIA/microarray and 
the phylogenetic analysis of viral sequences of the capsid gene. In addition, 85 % genotype agreement was observed 
for the new assay compared to the results of phylogenetic analysis.
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Introduction
Noroviruses (NoVs) are recognized as the leading causa-
tive agents of outbreaks and sporadic cases of nonbac-
terial acute gastroenteritis across all ages in humans, 
resulting in more than 267,000,000 annual infections 
worldwide and over 200,000 deaths each year among 
children under 5 years old in developing countries (Noel 
et al. 1999; Patel et al. 2008; Donaldson et al. 2008). It is 
estimated that 21 million episodes of gastroenteritis are 
caused by NoVs annually in the United States (Scallan 
et al. 2001). NoVs are extremely infectious, and as low as 
18 viral particles can cause disease (Teunis et  al. 2008). 
The viruses most often transmitted through the fecal-oral 
route in semi-closed communities that favor person-to-
person transmission, including schools, nursing homes, 

hospitals, restaurants and cruise ships. NoVs also spread 
by consumption of contaminated foods, making them 
leading causes of food borne disease (FAO/WHO 2007).

NoVs are the members of the genus Noroviruses in the 
family Caliciviridae (Pringle 1999). The viral genome is 
an approximate 7.5-kb positive single-stranded RNA that 
contains three open reading frames (ORFs) with a poly 
(A) tail at 3′ end (Jiang et al. 1990, 1993). The viruses are 
a broad range of enteric pathogens with great genetic and 
antigenic diversity (Wang et  al. 1994; Green et  al. 1995; 
Ando and Noel 2000). They segregate into 5 genogroups 
in which 3 genogroups (GI, GII, and GIV) are associated 
with human infection, with at least 8 genetic clusters in 
GI and 17 in GII (Zheng et al. 2006). Since human NoVs 
cannot be effectively cultivated in cell culture and labo-
ratory animals, molecular methods have been increas-
ingly used for their detection and characterization. 
Recently, reverse transcriptase polymerase chain reac-
tion (RT-PCR) and subsequent genomic sequencing of 
the RT-PCR product have become the major means for 
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detecting and characterizing the viruses. Generally, an 
efficient RT-PCR relies on finding the most conserved 
sequences across all virus genotypes to use as primers 
in order to efficiently amplify the maximum number of 
these diverse genetic variants. However, some sequence 
divergence has been observed even within the most con-
served regions of the viral genome. Moreover, high level 
of genetic sequence variability of the viruses and con-
tinuous emergence of new virus variants (Siebenga et al. 
2009) have complicated the design of robust universal 
primers for RT-PCR amplification of that many genetic 
variants for subsequent molecular analysis. Sequence-
independent amplification methods (Wang et  al. 2002; 
Berthet et  al. 2008; Chen and Wang 2012) appear to 
be attractive alternatives to amplify diverse viruses for 
downstream applications including microarray analysis 
in that they do not require the prior sequence informa-
tion of viral pathogens to guide to design virus-specific 
primers for amplification. This permits amplification of 
viral genomes from highly divergent viruses for which 
robust consensus primers focus on conserved regions are 
difficult to design.

We recently described RNA-based single primer iso-
thermal linear amplification (Ribo-SPIA) of three diverse 
human enteric viruses including hepatitis A virus (HAV), 
NoV and coxsackievirus B2 (CXKV B2) from minute 
amount of starting viral RNAs without using any virus-
specific primers. The amplified products were correctly 
identified by subsequent microarray analysis, display-
ing high level of reproducibility and fidelity in appropri-
ate sensitivity ranges (Chen et al. 2013). In this study, we 
evaluated the utility of this sequence-independent RNA 
amplification method in combination with microarray 
analysis for detection and genotyping of the genetically 
diverse NoVs in fecal specimens.

Materials and methods
Viral RNA extraction
Twenty two fecal specimens from acute gastroenteritis 
were used in this study with approval of the FDA RIHSC. 
For control purpose, RNA of Norwalk virus (GI.1, 
accession #M87661) and a NoV #186 (GII.8, accession 
#HQ169542) were used as reference positive materials. 
Viral RNA was isolated using QIAamp viral RNA mini kit 
(Qiagen; Valencia, CA) per manufacturer’s instruction.

Sequence‑independent amplification of viral RNA
Viral RNA amplification was performed using a previ-
ously described Ribo-SPIA method (Richards et al. 2004) 
which is powered by NuGEN Ovation ® pico WTA sys-
tem (NuGEN Technologies; San Carlos, CA) following 
the manufacturer’s directions. The Ribo-SPIA includes 3 
sequential reactions: first a reverse transcription reaction 

to generate first strand cDNA using a combination of 
random hexamers and poly-T chimeric primer; secondly 
a synthesis of DNA/RNA heteroduplex double strand 
cDNA with DNA polymerase; and thirdly a linear iso-
thermal DNA amplification process in the presence of 
RNAse H, DNA polymerase, and a SPIA DNA/RNA chi-
meric primer. The final amplification product is single-
strand cDNA (sscDNA) with sequence complementary 
to the original RNA.

Quantification of amplified viral RNA by real‑time RT‑PCR
For the quantification of virus before and after Ribo-SPIA 
amplification, NoV GI- and GII- specific real-time RT-
PCR (rRT-PCR) assays were performed on Norwalk and 
186, respectively, in a SmartCycler instrument (Cepheid, 
Sunnyvale, CA). The GI- and GII-specific primers and 
probes were used in reactions as previously described 
(Kageyama et al. 2003). Amplification data were collected 
and analyzed with the SmartCycler system software.

Microarray design, hybridization and data analysis
Virus detection and genotyping were assessed using the 
FDA_EVIR microarray chips described in previous study 
(Chen et al. 2011). The microarray, which was customer 
ordered to be manufactured by Affymetrix Inc (Affy-
metrix, Santa Clara, CA), interrogates approximately 
91,000 25-mer oligonucleotide probes that derive from 
genomes of major human enteric viruses including NoV, 
HAV, CXKV, rotavirus, sapovirus, astrovirus, hepati-
tis E virus, and adenovirus. For each probe, there is a 23 
base-pair overlap between consecutive probes within the 
same virus strain. The purified Ribo-SPIA products were 
treated with DNAse I (Invitrogen) at 37 °C for 1 min, and 
then were labeled with biotin-11-ddATP (PerkinElmer, 
Waltham, MA) in the presence of Terminal Transferase 
(Invitrogen) at 37  °C for 4  h. Microarray hybridization, 
washing, and staining were conducted following the 
standard procedure described in the GeneChip® Expres-
sion Analysis Technical Manual (Affymetrix).

The microarray chips were scanned with GeneChip® 
scanner (Affymetrix). The primary microarray data were 
analyzed with a script based on Affymetrix power tools 
as described previously (Chen et  al. 2011). The results 
were considered positive for virus detection when the 
normalized hybridization signal intensities from the 
virus-specific array elements were three times greater 
than the background signal intensity. The background 
signal intensity was defined as the mean signal intensity 
for all the probe sets on the array.

Direct sequencing and phylogenetic analysis
All virus samples used for the validation of the micro-
array genotyping results were sequenced directly. NoV 
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capsid region was amplified by RT-PCR using primer 
sets of G1SK and G2SK described in a published lit-
erature (Kojima et  al. 2002). HAV nested RT-PCR was 
performed on the sample 106 to amplify VP1/P2A junc-
tion region as described in previous studies (Robertson 
et  al. 1992; Bower et  al. 2000) using primer sets +2799 
(5′ ATTCAGATTAGACTGCCTTGGTA 3′)/−3375 (5′ 
AGTAAAAACTCCAGCATCCATTTC 3′), and +2891 
(5′ GGTTTCTATTCAGATTGCAAATTA 3′)/−3288 (5′ 
AACTTCATTATTTCATGCTCCT 3′) in the first and 
second around amplification, respectively. The RT-PCR 
products were purified and sequenced in both orienta-
tions using BigDye terminator chemistry on automated 
ABI Prism DNA analyzer (Applied Biosystems, Fos-
ter City, CA). Sequence analysis was conducted using 
ClustalX algorithm (Thompson et  al. 1997), which was 
followed by phylogenetic analysis using neighbor-joining 
method as implemented in MEGA5 program.

Nucleotide sequence accession numbers
The nucleotide sequences are deposited in NCBI Gen-
Bank under accession number KJ415779–KJ415798, and 
KJ437448.

Results
Quantification of amplified viral RNA
Quantitative analysis of amplified viral RNA was per-
formed on Nowalk (GI) and 186 (GII), respectively, using 
rRT-PCR. Fold change was measured from ∆Ct value 
obtained from rRT-PCR results before and after Ribo-
SPIA amplification, combined with dilution factor of 10 
for each sample tested. As shown in Fig.  1, Ribo-SPIA 
amplification performed on Norwalk (Fig.  1a) and 186 
(Fig.  1b) resulted in smaller Ct-values, indicating more 
target viral materials generated. Compared to non-ampli-
fication, approximately 5000-fold and 40,000-fold signal 
increases were achieved in Norwalk and 186, respec-
tively. This process enabled amplifying both GI and GII 
NoV RNAs through the same amplification protocol 
without using multiple GI and GII-specific primer sets.

Microarray analysis of clinical fecal specimens
Evaluation of discriminatory efficiency of the Ribo-SPIA/
microarray system was accomplished by using a blinded 
panel of 22 RNA samples which were isolated from fecal 
specimens. Two positive reference strains of Norwalk 
and 186 were also included in the test. The results of 
microarray analysis are shown in Fig. 2. Of the 22 speci-
mens tested, 20 gave patterns for specific hybridization 
to the probe elements derived from either NoV GI or 
GII genomic sequences, indicating positive results for 
clear NoV detection. The rest of two samples (10,016 
and 184) serving as negative controls lacked detectable 

hybridization signal to all NoV-derived probes as well 
as the probes derived from other virus families, show-
ing that no virus including NoV was detected in them. 
Two positive samples (120 and 101), together with a 
reference strain of Norwalk, hybridized strongly to the 
probes derived from NoV GI genome. Strong hybridiza-
tions to the NoV GII-derived probes were observed in the 
rest of positive 18 samples. By visual inspection, sample 
142, 195, 165, 162, 216, 1013027, 1013149, 116 and 108 
displayed similar hybridization pattern. So did sample 
160 and 132 as well as reference strain 186. As shown 
in Table 1, a total of seven genotypes (GI.1, GII.2, GII.3, 
GII.4, GII.5, GII.8 and GII12) was identified, among 
which GII.4 was the most predominant genotype (11/20, 

1. after Ribo-SPIA
2. before Ribo-SPIA
3. neg ctrl Ribo-SPIA
4. neg ctrl RT-PCR

1

2

3 4

1 2

43

1. after Ribo-SPIA
2. before Ribo-SPIA
3. neg ctrl Ribo-SPIA
4. neg ctrl RT-PCR

Fig. 1 Ribo-SPIA method amplified both NoV GI and GII genomes. a 
NoV GI-specific real-time RT-PCR on Norwalk virus before (undiluted) 
and after Ribo-SPIA (10-fold dilution); ∆Ct = 9 which equals a 5120-
fold increase in signal. b NoV GII-specific real-time RT PCR on NoV 186 
before (undiluted) and after Ribo-SPIA (10-fold dilution). ∆Ct = 12 
which equals 40960-fold increase in signal. Negative control for both 
Ribo-SPIA and PCR was nuclease free water
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55 %). Furthermore, sample 106 tested positive for NoV 
GII was identified to have co-occurrence of HAV as 
subgenotype IA. The result here demonstrated that this 
amplification protocol coupled with microarray analysis 
was able to detect not only individual NoV but also co-
occurrence of NoV and HAV present within the same 
sample.

Phylogenetic analysis
The RT-PCR detected GI or GII NoV in 20 specimens 
except in 10,016 and 184. This was in line with the posi-
tive microarray results. With 20 NoV-positive samples, 
partial viral capsid genes were amplified by RT-PCR and 
sequenced. Based on the phylogenetic result, samples 
120 and 101 were clustered to genotype GI.8 and GI.1, 
respectively. The remaining 18 samples were categorized 
into 5 GII genotypes including GII.4 (11), GII.8 (2), GII.1 
(2), GII.5 (2) and GII.2 (1) as shown in Fig. 3. As a result, 
there was 100 % concordance for positive NoV detection 
at genogroup level between the results of microarray and 
phylogenetic analysis (Table  1). Three samples 120,123 
and 102 which were genotyped as GI.1, GII.12 and GII.3, 
respectively, in microarray analysis were identified as 
GI.8, GII.1 and GII.1 in the phylogenetic result. Thus, 
85 % (17/20) genotype agreement was observed between 
the results of Ribo-SPIA/microarray and phylogenetic 
analysis (Table  1). No statistically significant difference 
was detected between the two results (McNemar’s test; 
P =  0.2482). In addition, HAV RNA was also detected 
by nested RT-PCR in 106 which was NoV GII positive. 
Sequence comparison between the nested RT-PCR prod-
uct with other HAV strains revealed that the virus dis-
played the highest sequence similarity to a subgenotype 
IB strain HM175/18f (Fig. 4).

Discussion
Reverse transcription followed by PCR reaction with 
primer sets designed to amplify specific viral RNA 
regions is the method of choice to amplify human NoVs 
prior to downstream molecular analysis. However, high 
sequence variability of the viral agents posts a challenge 
to the design of robust universal virus-specific primer 
sets to amplify various virus variants. Recent studies 
described the use of multiple GI and GII-specific degen-
erate primer sets for rRT-PCR to detect a wide range of 
GI and GII NoVs (Kageyama et  al. 2003; Kojima et  al. 
2002; Richards et al. 2004). Those degenerate primer sets 
targeted either ORF1-ORF2 junction or RNA-dependent 
RNA polymerase region encoded by ORF1of the viral 
genome, indicating their design still relied on the virus 
sequence knowledge. In present study, we sought to 
establish a universal sequence-independent amplification 
procedure suitable for the highly divergent infectious 

agent to prepare sufficient amounts of target nucleic acids 
for microarray analysis. By using Ribo-SPIA, both NoV 
GI and GII viral RNA could be run through the same 
amplification protocol without the need to design and 
use any virus-specific primers. Ribo-SPIA amplification 
resulted in ~5000-fold and ~40,000-fold increase in RT-
PCR signal for reference strains of Norwalk (GI) and 186 
(GII), respectively (Fig.  1). Since GI and GII have been 
found to contain at least 8 and 17 genotypes, respectively 
(Zheng et al. 2006), ideal diagnostic tests for NoV should 
display strong discriminatory power in detecting such a 
wide variety of NoV genotypes. In this study, a panel of 
22 fecal specimens was used to assess the reactivity of the 
system. Of them, 20 samples were observed positive NoV 
detection on the microarray showing positive hybridiza-
tion signals (Fig.  2). The clinical sensitivity of the Ribo-
SPIA/microarray system, determined by comparison 
with the detection rate by virus-specific RT-PCR with the 
same specimens, was 100 % at genogroup level. The spec-
ificity of the system was calculated to be 100  % as well. 
This indicates that Ribo-SPIA is readily applicable to the 
amplification of multiple sample types of the viruses for 
microarray analysis.

In comparison to RT-PCR based assays, which require 
the design and optimization of virus-specific primers for 
target amplification and only provide presumptive results 
for the presence or absence of the queried viruses, this 
sequence-independent amplification method offers sev-
eral advantages. It obviates the need for an assumption 
to guild testing suspected viral pathogens with multiple 
viral-specific primers to amplify targets present in a sam-
ple, thus does not require prior sequence knowledge of 
the viral agent for primer design. Furthermore, a number 
of viruses cause similar clinical symptoms which make it 
difficult to choose correct diagnostic analysis under cer-
tain clinical hypothesis. In such case, the lack of virus-
specific primer sets enables detection of viral agents that 
might not be found with virus-specific RT-PCR assays. 
Sample 106 that was presumed negative for HAV infec-
tion went merely under NoV RT-PCR test initially. But 
the microarray analysis here revealed that a subgenotype 
IA HAV and a GII NoV were simultaneously identified 
in this sample after Ribo-SPIA amplification (Fig. 2). The 
presence of HAV was further confirmed as subgenotype 
IB by phylogenic analysis of the sequence of the HAV-
specific RT-PCR product. This parallel detection of 
mixed agents present in a specimen would benefit a bet-
ter understanding of etiology of viral disease. Although 
there was an identification discrepancy at subgenotype 
level between the microarray and phylogenetic results, 
the HAV was indeed identified as the same genotype I. 
The discrepant results could be attributed to cross-reac-
tivity between the probes targeting IA and IB genomes 
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due to high level of genetic sequence similarity shared by 
the two groups of subgenotype strains (Robertson et  al. 
1992). Certain levels of cross-reactivity between IA and 

IB of HAV have been observed in previous studies (Chen 
et al. 2011, 2013). Similar false genotypic identification of 
NoV was also observed in 3 specimens when comparing 
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Fig. 3 Phylogenetic dendrogram of NoV strains based on partial nucleic acid sequences of capsid region was generated using neighbour-joining 
method with ClustalX algorithm and MEGA5 program. Numbers on each branch indicate supporting bootstrap value of 1000 resampled data sets. 
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to the results obtained in phylogenetic analysis, although 
they all fell within the same genogroups. These could be 
associated with cross-hybridization due to a combination 
factors such as the level of sequence variability, viral load, 
and amplification efficiency, which have an impact to the 
cross-hybridization pattern of the viruses (Boriskin et al. 
2004). Future refinement to the current probe design 
involving the selection of only those probes that convey 
the highest discriminatory value in identifying viruses 
may help address the cross-reactivity issue as described 
here.

This study represents the first effort to describe the 
application of Ribo-SPIA method to amplify the geneti-
cally diverse NoVs without using any virus-specific prim-
ers for microarray-based detection and genotyping. This 
sequence-independent amplification linked to DNA 
microarray analysis allowed identification of multiple 
NoV genotypes tested in current study. It is expected 
that this system will also be able to detect other NoV 
genotypes not examined here since the probe elements 

derived from those respective viral genomes have already 
been printed on the microarray chips. Moreover, the 
use of the sequence-independent amplification protocol 
eliminates the need for a priori genomic sequence knowl-
edge of the viral agents and thus can extend the range of 
applications to other RNA viruses.
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