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Abstract

Background: The large amount of data used in genomic analysis has allowed geneticists to achieve some
understanding of the genetic architecture of complex traits. Although the information gathered by molecular
markers has permitted gains in predictive accuracy and gene discovery, epistatic effects have been ignored based
on exhaustive searches requesting estimates of its effects on the whole genome. In this work, we propose the
reversible-jump technique to estimate epistasis in the genome without drastically altering the model dimension.
To this end, we used a real maize dataset based on 256 F2:3 progenies plus a simulation data set based on 300 F2
individuals. In the simulation scenario, six QTL presenting main effects (additive and dominance) were combined
with seven other epistatic effects totaling 13 QTL controlling the trait.

Results: Our model explored 18,624 candidate epistases, but even in this vast space, only one spurious interaction was
found. The three epistases selected by our model, named here as 18x26, 56x68 and 59x93, were very close to
simulated ones (19x25, 54x72, 59x91 and 59x94). In the real dataset, we estimate 33,024 epistatic effects, and
several minor epistatic combinations were found to explain a significant proportion of the genetic variance.
The broad participation of epistasis in the real dataset may indicate the presence of pervasive epistasis acting
on maize grain yield.

Conclusions: The power of selecting true epistasis in thousands of possible combinations suggests the
attractiveness of our model to handle genomic data
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Background
The contribution of epistasis on the genetic architecture
of complex traits has been the focus of recent research
in genetics, animals and plant breeding [26]. It has been
widely discussed by Carlborg and Haley [5] and Mackay
[20, 21] that there is evidence of strong participation of
epistasis on the inheritance of quantitative traits. How-
ever, as emphasized by these authors, the search for stat-
istical models that depict this genetic phenomenon in an
efficient way is very challenging, whether by the suppos-
ition about the epistasis distribution in the genome or
by its definition, which is exceptionally controversial [6].
Regarding the definition of epistasis, this term was

initially described by Bateson [2] to explain the observed
deviation from the expected Mendelian segregation, where

an allele from a particular locus might interact with other
alleles at different loci. In other words, instead of occur-
ring only in intra-locus interactions, Bateson suggested
that alleles from different loci may interact with each
other to under- or overexpress particular genes. Although
the above definition is very simple, it was critical in genet-
ics research, and starting from this claim, several others
definitions emerged [29].
Currently, there are different interpretations of epistasis,

and these divergences have caused some confusion [6].
For example, geneticists have used the term “epistasis” to
describe three different events: i) the functional relation
among two or more genes, ii) genetic ordering in regula-
tory pathways and iii) deviation from the additivity in the
effect of alleles at different loci in relation to their contri-
bution to a quantitative phenotype. In a similar way,
Phillips [29] classified three types of epistasis: i) functional
or molecular epistasis, where proteins or other gene
products from different genes interact with each other
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in metabolic pathways, ii) compositional epistasis, which
is related to the classical view of epistasis, where one allele
from a specific locus can interfere with the expression
of other loci, namely, it is individual-specific, and iii)
statistical epistasis, which Sir Ronald Fisher adopted as
an average deviation from allelic combination expected
by Mendelian segregation for different loci in a popula-
tion. This last one is the most studied in quantitative
genetics due to the high genetic complexity involving
quantitative traits, and therefore, the estimates of compos-
itional epistasis become unfeasible in traits controlled by
several loci [29].
Regarding the distribution of epistasis in the genome, it

has been suggested that there is a “universal epistasis”; in
other words, gene interactions could be more pervasive
than supposed by quantitative geneticists, playing an im-
portant role in the genetic control of the traits [3]. For
example, these authors observed that more than half of
the QTL effects found in yeast mapping were modified
by other QTL, presenting marginal or non-significant
effects. This result indicates that mapping studies may
underestimate the real role of epistasis in complex
traits [17].
Mackay [20, 21] presented a similar discussion about

the importance of epistasis, highlighting the hypoth-
esis of “universal epistasis” as a nuisance for specific
epistasis detection in statistical models. In both works,
Mackay suggests the influence of “pervasive” epistasis
on so-called “missing heritability”; namely, considering
only additive effects and their interactions, the ob-
served broad-sense heritability may be much higher
than expected. In this case, artificial selection could be
challenging, and the introduction of new alleles in a
new background may lead to results that are contrary
to those expected [21]. Moreover, the genome selec-
tion based on the prediction of additive effects may
not be useful if the allelic frequencies in the reference
population are different from those in the test
population.
In this sense, it becomes evident that quantification

of epistatic effects plays a fundamental role in genomic
studies. Phillips [29] suggested that epistatic effects
could be investigated over the full genome, i.e., take
into account exhaustive pairwise combinations of
genes. The biggest problem with this approach is re-
lated to the number of epistatic combinations when
there are several candidate loci, i.e., considering n QTL,
one can expect [n(n - 1)/2] epistatic combinations of
first order without taking into account its interaction
type (additive-additive, additive-dominant, dominant-
additive and dominant-dominant). In other words, if
the geneticist works with 100 QTL, it is necessary to
exploit 4,950 interactions and to take into account all
types of epistasis, this number rises to 20,000 allelic

interactions. Currently, genome-wide studies have used
a significant number of data points (usually 5 K to 1 M
markers), which makes it difficult to exploit universal
epistasis in multiple marker models.
Although methods to estimate major effects of QTL

or markers in oversaturated maps has increased in the
last few years, models considering the inclusion of
marker interactions in the genomic analysis are scarce
[28, 39, 40]. Learning strategies have been applied for
epistasis estimates in the context of big data, such as
Machine Learning (ML) decision trees [4, 14], informa-
tion theory [8, 25] and multifactor dimensionality re-
duction (MDR) [28]. In the statistical framework,
mixed models based on likelihood inference have been
used to estimate epistatic effects using animal models
and epistatic G-BLUP based on genomic additive and
dominant matrices. In these models, the pairwise epis-
tasis effects are ignored, and only the genomic epistatic
values are taken into account for genomic prediction
[13, 22, 27, 35]. Other approaches have estimated epis-
tasis using markers with high marginal effects, which
cannot explore minor epistatic interactions and the uni-
versal epistasis hypothesis [16].
Another interesting approach to estimate epistasis was

proposed by Ronnegard and Valdar [31] and Ronnegard
and Lee [30] using double hierarchical generalized linear
models (DHGLM) to capture vQTL. These vQTL can
partially retrieve epistasis signals, but it is not sufficiently
informative about which loci are involved in the interac-
tions controlling the traits or what type of epistasis is
present in each interaction.
Using Bayesian inference, Xu [38] and Xu and Jia

[40] studied first-order epistasis in multiples markers
and showed the power of empirical Bayes approach to
identify QTL. However, the exhaustive pairwise com-
bination proposed by these authors is feasible only by
a small number of markers and may be computation-
ally intractable in a genome-wide context. Because the
actual statistical models can easily handle a high num-
ber of markers, the main challenge is to include epi-
static interactions without strongly altering the model
dimension. An alternative is the use of Bayesian strat-
egies, which enable us to identify epistatic interactions
without severely changing the model size. In other
words, the model dimension could be modified during
the Monte Carlo Markov Chain process (MCMC) ra-
ther than considering all epistatic interactions in a
final oversaturated model. In this scenario, the model
dimension can be increased or decreased in each sam-
pling cycle by inserting or deleting epistasis using
probability rules. In this context, the reversible-jump
[10] method could be used as a powerful tool for epis-
tasis scans in the genome-wide analysis, mainly, when
the model dimension is truncated over the markers but
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the number of epistatic loci is allowed to vary in its
space.
The reversible-jump Monte Carlo Markov Chain

(RJMCMC) technique has been successfully applied in
genome studies when the number of QTL is unknown
[41, 43–45, 47]. However, none of these works use
RJMCMC to exhaustively determine epistatic interactions.
Thus, this work was proposed to examine the efficiency of
reversible-jump when there are thousands of candidate
epistases in the genome analysis using simulated and real
datasets.

Results
Simulated study
The results related to the simulated study revealed that
our model presents a good ability to find QTL with gen-
etic additive and dominant effects (Fig. 1). In this study,
the QTL were named according to the marker interval
where they were identified or simulated. Two out of six

principal QTL were found on the exact simulated pos-
ition (second and third red dots); one was found at
19 cM away from the simulated QTL (the first red dot),
and one marker presented a non-significant peak. Actu-
ally, the LOD = 2.89 at the fourth red dot. Our analysis
did not find two out of the six simulated QTL in linkage
groups 5 and 6. One epistatic QTL was identified pre-
senting as a principal effect; in other words, this QTL
was simulated presenting only epistatic effects and null
for additive and dominant ones. Thus, the false discov-
ery rate (FDR) in our study for QTL could be considered
1 out of 104 because the single peak showing one false
discovery for principal QTL was actually an epistatic
one. The same pattern was observed for the epistatic
QTL localized at the intervals 91 and 94, but the ob-
served peak was not significant. The strong shrinkage ef-
fect observed in our method can be verified by the
number of peaks (5) in a total of 104 simulated markers
(Fig. 1). The larger peak shown in this figure could be

Fig. 1 Genomic profile for QTL in seven simulated linkage groups using RJMCMC (upper graph) and empirical Bayes (lower graph). Red dots
represent the non-epistatic QTL, and blue dots represent the simulated epistatic QTL. The dotted line represents the LOD criterion (LOD = 3)
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considered a spurious QTL because none of the simu-
lated QTL were simulated in that position.
When the simulated example was analyzed by the

PROC QTL program based on empirical Bayes, the
results were very different from our methodology. Al-
though both methods found some simulated QTL, the
empirical Bayes captured more epistatic QTL in the
genomic profile than that of non-epistatic QTL, pre-
senting two false positives. Our method presented the
opposite result, highlighting non-epistatic QTL in the
genome profile. On the other hand, the empirical Bayes
showed a highlighted peak in a true QTL, whereas our
method was in a false positive. Thus, both methods
showed different genomic profiles, but RJMCMC was
more efficient in the control of false positives.
In Fig. 2, one can observe the heat-map for the length

of the RJMCMC chain in epistatic QTL. All epistatic in-
teractions were visited at least once, but one QTL pre-
sented a prominent chain size (the highlighted red
point). In other words, this QTL was included during
the MCMC process, and practically, it was not deleted
in further MCMC sampling. This pair of QTL, named
18x26, was very close to true QTL, names here named
as 19x25; the QTL peaks were 8.2 and 3.4 cM away from
QTL 19 and 25, respectively. The other five green dots
represent the QTL with larger chains when compared to
other candidates.
To summarize the heat-map, we selected the epista-

ses presenting final chain length up to 400 and found
that four of these epistases presented LOD > 5 (Fig. 3).
Furthermore, only one spurious epistasis was found,

but the marker interval representing this false epistasis
(91x95) was practically that determined individually for
other true simulated epistases (59x91 and 59x94). In this
figure, the estimate of epistasis, which was closer to the
true simulated epistases (59x91 and 59x94) was that rep-
resented by the combination interval 59x93, presenting a
genetic distance of 0.3 and 13.6 cM from simulated 59x91,
respectively, and 1.2 and 5.96 cM from 59x94, respect-
ively. Furthermore, estimated epistasis 52x68 was very
close to the simulated 54x72, presenting a distance of 10.5
and 6.05 cM.
Figure 4 represents the raw 3D plot for all retained

epistases. In this figure, it is possible to observe that all
epistatic interactions were visited at least once. How-
ever, this graph is not reliable because the epistases
were compared only with their LOD magnitude and
not by their constancy in the model. To avoid false
epistasis discovery, we used a 3D plot weighted by the
length of the chain. Using the weighted LOD, we ob-
tained a high-resolution graph (Fig. 5). In this figure,
the symmetry is evident between the simulated epistasis
19x25, 54x72, 59x91 and 59x94 and the estimated one
18x26, 56x68, and 59x93. However, “ghost” epistases
were also observed (76x84). Overall, by the results from
the simulated data, we can infer that our method was
satisfactory for the identification of major QTL and
presented a real ability to identify epistasis.
On the other hand, the Xu [38] and Xu and Jia [40]

method was not effective for finding true epistasis. Several
false positives were found, although no false negatives
were observed (Fig. 5).

Fig. 2 Heat map for epistatic QTL and chain size in the reversible jumping process. The more red the epistatic intensity is, the more time the QTL
was retained in the MCMC process, meaning its effect on the epistatic complex is more likely
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Real maize dataset
In the real maize dataset, eight QTL of larger principal
effect were found (Fig. 6). These QTL are distributed
across five linkage groups and, in general, presented
higher dominance effects over the additive ones (Table 1).
It is evident that the dominance effects were superior to
the additives ones, indicating a possible effect of heterosis
acting on the grain yield in maize. Although the number
of major QTL was relatively small, the number of epistatic
QTL found was slightly higher (ten QTL acting in five
epistatic combinations) (Table 2). Again, the dominance
effects were highlighted in the epistasis interactions, and it

becomes more evident when we observe the magnitude of
dominant-dominant epistasis acting in the control of this
trait. Most of the epistatic interactions were concentrated
in the 1st, 2nd, and 5th linkage groups. The 8th linkage
group also presented a high QTL epistatic effect related to
additive-dominant and additive-additive interactions.
In Fig. 6, one can observe eight main QTL peaks. Clearly,

not all linkage groups showed any major or epistatic QTL.
In other words, in this study, linkage groups 3, 4, 6 and 10
showed no QTL.
Several epistatic QTL presented constancy in the

model during the RJMCMC process. However, contrary

Fig. 3 Selected epistatic effects based on chain length (>400). The simulated QTL were 19x25, 54x72, 59x91 and 59x94

Fig. 4 3D plot for raw epistatic effects of each QTL in the simulated study
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to the LOD scores observed in the simulation study, the
LOD scores for these QTL were very low. Thus, among
all epistatic effects found in our model applied to the
real dataset, only five epistases had a chain length larger
than 400 and an LOD score greater than 3. No QTL
with smaller chain size presented LOD scores greater
than 3 (Fig. 7).
In Fig. 8, one can observe the full picture regarding

the length of chains in the RJMCMC process. A different
scenario was noted from the simulated study concerning
the chain length. In other words, in the simulated study,
we observe few epistatic QTL presenting a long chain
and a small number of red dots in the heat map. In the
real dataset, on the other hand, the heat map showed
several hot spots, indicating that various epistatic QTL

of lower effect may act in the genetic control of maize
grain yield. For example, the significant QTL presented
dominant-by-dominant epistatic variance equal to 0.028,
and the non-significant epistatic variance was 0.010. The
additive variance was, by magnitude, only 30% of this
amount (0.003). This magnitude may be compared to
other variance components. For example, the dominance
variance in this study was 0.196, and epistatic additive-
additive, additive-dominant and dominant-additive were
0.001, 0.002 and 0.000, respectively. The total genetic vari-
ance was 0.2395, and the residual variance was 0.068.
More than five epistatic combinations presented

LOD > 3. Fourteen epistatic interactions and 19 different
QTL were related to these orange/red peaks. However,
only five interactions presented a chain length >400. In

Fig. 5 3D plot resolution for weighted epistatic effects obtained by RJMCMC (upper graph) and empirical Bayes (lower graph). The green peak on
the left side of the 3D plot represents the simulated epistatic effect, and right size represents the estimated epistatic effect
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this figure, it is evident that all epistatic combinations
were visited and incorporated at least once into the model
during the RJMCMC process (Fig. 9). In the weighted 3D
plot (Fig. 10), it is possible to observe five high interac-
tions based on their red/orange peaks. Differing from that
observed in the simulated dataset, the shrinkage effect
related to maize data was not as intense as that observed
in simulated data; because of this, several minor epistatic
effects could be observed in this plot. Additionally, the
same epistatic interactions previously identified as promis-
ing (Figs. 7, 8, 9, and 10) were also established in this plot
(highest peaks).
Figure 11 presents the final estimate of the genetic

architecture and the results of the 5-fold analysis. Obvi-
ously, this naïve network does not represent the real
scenario of the genetic architecture for maize grain
yield. However, it is useful for observing the QTL pre-
senting high importance and their relation to other sig-
nificant QTL. For example, QTL 70 is related to three

different epistatic interactions, and although it has no
significant major effect (additive and dominance), its
importance for grain yield is evident because it appeared
in all cross-validation analyses. The only QTL showing
relevant epistatic and high main effects was “QTL 19”,
localized in linkage group 1, but this QTL did not appear
in all cross-validation scenarios.

Discussion
The main challenge in genome-wide models is dealing
with high dimension matrices related to marker infor-
mation. In other words, if n is related to the number of
phenotyped individuals and p is related to the number
of markers, it is evident that, if p > = n, a simple regres-
sion analysis is restrictive to estimate marker effects.
The inclusion of two-way epistasis makes p≫ n, and the
analysis becomes prohibitive by classical least square
methods and computationally intractable by multiple
markers approaches. In our simulation study, even using
only 104 markers, the number of additive and dominant
effects in regression models was 194 in each interval
(each linkage group present k - 1 intervals). Further-
more, for each type of epistasis, there are 4,656 possible
interactions, and using all combinations, i.e., additive-
additive, additive-dominance, dominance-additive and
dominance-dominance, there are a total of 18,624 epista-
ses plus 194 main effects, totaling 18,818 estimates. For
the real dataset, we explore 33,024 epistatic effects plus
258 additive and dominant.
Because this space is not so high in our models, it was

possible to visit all candidate interactions and select
marker intervals very close to the simulated epistatic
QTL. In addition, the maximal model dimension observed

Fig. 6 Genomic profile for QTL across the 10 linkage groups for grain yield in real maize data. The LOD score criterion was LOD = 3

Table 1 Principal QTL effect with LOD > 3 for grain yield in real
maize data

QTL Interval d Bin a d

1 umc1177/bnlg1178 0.30 1.00–1.01 0.00 0.71

19 bnlg1720/umc1737 2.65 1.10 −0.01 0.10

39 umc1042/ umc1560 2.06 2.07–2.08 0.00 0.12

72 bnlg105/umc1879 0.37 5.03 0.00 0.56

77 mmc0282/umc1524 1.01 5.05–5.06 0.18 −0.68

94 phi034-bnlg657 1.38 7.02 0.00 0.70

95 bnlg657-umc1112 1.52 7.02−7.03 0.00 0.84

120 umc1576-bnlg1716 0.17 10.02–10.03 0.00 −0.06

d Genetic distance from the first marker, a additive effect, d dominant effect
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during the MCMC process corresponded to 226 effects,
that is, the highest number of epistatic interactions run-
ning simultaneously on the model was equal to eight,
allowing a high computational efficiency, presenting a
computational difference from the model without epistasis
for only 360 s.
In the simulation study, the power of our analysis to

find the main QTL was satisfactory in the sense that
our model had overlooked only two out six simulated
principal QTL (two false negatives). An interesting re-
sult is the presence of peaks in the genomic profile
where the simulated epistatic QTL did not present any
principal effect. This type of “cloud effect” is discussed
extensively by Carlborg and Haley [5], and it is defined
as “co-adaptative epistasis”, i.e., the pairs of epistatic
markers present some biological advantage when the
loci are in homozygosis, although the individual
markers do not present a significant effect per se. This
QTL (19) localized on chromosome 2 was not simu-
lated with this intent. However, because we simulated

high negative dominant epistasis and low additive-
additive, when the individuals were homozygous, it
presented some advantages for this locus, and for this
reason, this locus was identified as a “true” principal
QTL. This “cloud effect” was observed (although not
as evident) for other epistatic QTL across the genomic
profile.
The success of the analysis could be evaluated by the

length of the chains for the simulated epistatic QTL, i.e.,
whether the true QTL are retained in the model during
the MCMC process. In our study, the simulated QTL
were well represented by their neighboring markers,
which in turn presented a long chain compared to other
candidate intervals. The only spurious epistatic inter-
action (91x95) actually captured the simulated epistatic
QTL 91 and 94. This “ghost effect” is expected because
these markers are very close each other; actually, the
average distance between these markers is approximately
7.8 cM. These also explain the significant epistasis 59x93
instead of the simulated ones 59x91 and 59x94.

Table 2 Decomposing the epistasis for grain yield in the real maize dataset with epistatic markers selected based on LOD criterion
(LOD > 3)

Epistasis Qi Qj

Interval 1 Bin1 Interval 2 Bin2 aa ad da dd

6×25 bnlg439/bnlg1203 1.03 umc1227/mmc0111 2.01 0.025 0.055 0.000 0.120

7×70 bnlg1203/bnlg1917 1.03–1.04 umc1365/bnlg1660 5.01–5.03 0.005 0.024 −0.001 0.042

9×11 umc1558/bnlg2295 1.04 umc1811/bnlg2025 1.04–1.05 0.008 −0.005 0.032 0.457

19×70 bnlg1720/umc1737 1.10 umc1365/bnlg1660 5.01–5.03 0.002 −0.038 0.007 0.125

70×105 umc1365/bnlg1660 5.01–5.03 bnlg1056/phi080 8.08 −0.057 −0.076 0.015 0.013

aa, ad, da and dd represent additive-additive, additive-dominant, dominant-additive and dominant- dominant epistatic effects, respectively; Qi represents the first
QTL, and Qj represents the second QTL

Fig. 7 Selected epistatic effects based on chain length for grain yield in real maize data (>400)

Balestre and de Souza BMC Genomics  (2016) 17:1012 Page 8 of 22



As mentioned above, the raw LOD score presents a
low resolution to identify the epistatic pattern. It may
occur when the pairwise QTL effects present a high
LOD score but, on the other hand, a small chain and a
poor mixture in the posterior. Thus, high values of LOD
could exhibit a leverage effect on the LOD means. In

this regard, our ad hoc approach was effective for clean-
ing spurious epistatic effects on the model, achieving a
better resolution in the LOD plot. Furthermore, this
“trick” presents a special concordance with the results
presented in Figs. 3 and 7. Consequently, we recom-
mended the two stage plot, that is, to first use the

Fig. 8 Heat map for epistatic QTL and chain size in the reversible jumping process for grain yield trait in real maize data. The redder the epistatic
intensity is, the more time the QTL was retained in the MCMC process, meaning its participation in the epistatic complex is more likely

Fig. 9 3D plot for raw LOD epistatic effects for the grain yield in the maize data set
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Fig. 10 3D plot resolution for weighted LOD epistatic effects for the grain yield in the maize data set

Fig. 11 Complex epistatic network for grain yield (y) in maize considering principal and epistatic QTL (Q). The top principal graph was built by
the full dataset, and the five sub-graphs were built by 5-fold analysis
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truncated graph based on chain size (Fig. 3) and further
select markers presenting with LOD above 3 instead of
using the LOD score and further weighting these LOD
by chain size.
The empirical Bayes approach proposed by Xu [38] was

utilized for comparison because it is one of the few that
performs exhaustive searching in the epistatic space and
estimates all epistasis combinations (additive-additive,
additive-dominant, dominant-additive and dominant-
dominant). Although empirical Bayes and RJMCMC
present similar proposals, our method performs particu-
larly better than Xu’s [38] method for searching epistatic
effects. The differences in power and false positive rate in
major QTL analyses were marginal between these two ap-
proaches. However, the superiority of our technique for
finding true epistasis using the LOD over the chain size is
evident. Both methods found several false peaks in the
raw analysis, but given that in RJMCMC the size of the
chain is determinant and can be used as probabilistic cri-
terion to select epistasis, a high-resolution analysis could
be obtained (the larger the chain size, the more likely the
permanence of the epistasis in the model).
Other methods could also be used to compare with

RJMCMC, but most of them do not follow our proposal,
that is, they do not estimate all candidate epistases and/
or do not operate effectively in the interaction space. If
so, they need to use ad hoc procedures, such as multi-
stage analysis, by screening major markers [16].
Although the Xu [38] method is very attractive to the

user because it is available in a friendly SAS macro and
any programmer with basic knowledge of SAS can easily
operate the program, it is very restrictive when several
markers are included in the analysis. For example, when
we used 400 markers in our simulation, the program did
not work properly, and it was not possible to estimate
the 319,000 epistases. For this reason, it was not pos-
sible to compare it with our method, which worked
very well in this scenario. Therefore, all results related
to this simulation were inserted as supplemental material
(Additional file 1: Figures Sl; Additional file 2: Figures S2
Additional file 3: Figures S3 Additional file 4: Figures S4
and Additional file 5: Tables S1; Additional file 6:
Tables S2). Some observations can be drawn from
this simulation scenario with 400 markers: 1) most
of the simulated epistases were found with low gen-
etic distance from the simulated ones, but the sizes
of the chains were not safely high enough to make
inferences because it presented as a poor mixture
during MCMC (Additional file 5: Tables S1 and
Additional file 6: Tables S2); 2) using 100,000 itera-
tions, it was possible to explore 86% of the 319,000 pos-
sible epistases, which shows that the number of sampling
in RJMCMC can be a limiting factor (Additional file 2:
Figures S2); 3) among the epistases selected by the same

aforementioned criteria, some had low genetic distance
from the simulated epistasis (Additional file 5: Table S1); 4)
the model was very effective for finding the principal QTL
(additive and dominant). Therefore, these results show that
it is possible to estimate major and epistatic effects in a
one stage model, but some precautions are necessary to
regulate the number of iterations in RJMCMC.
An issue of our method that must be discussed refers

to the inclusion or deletion of full epistatic terms in the
decision rules (24 and 25) instead of the isolated epi-
static effects in the model. We think sampling isolated
effects may be less efficient for RJMCMC because some
QTL can be true epistatic, with at least one epistatic ef-
fect as true, but present a null effect for an isolated
interaction. In this scenario, more rounds of MCMC
could be necessary. In addition, given that the whole epi-
static effect in the pair of QTL presents a Bayes factor of
less than one, there is no reason to test the isolated
effects.
In the real dataset, although LOD scores selected only

five epistasis effects, some epistases presenting minor
importance were kept in the model. This result confirms
the complexity involving the epistasis related to grain
yield in maize and the difficulty of finding pairwise
markers controlling this trait [9]. For example, the most
important marker interval found in our work was related
to QTL 19 and QTL 70. QTL 19 is localized inside the
marker interval bnlg1720-umc1737 localized on linkage
group 1. This marker is localized on chromosome 1 in the
maize genome, and its interval ranges from 274,684,822
to 290,556,990 bp (http://www.maizegdb.org/data_center/
locus/144977 and http://www.maizegdb.org/data_center/
locus/292557). Several QTL have been reported in this
bin. For example, Frascaroli et al. [9] found some epistatic
effects among intervals including the marker bnlg1720.
The more relevant epistatic interval was related to

umc1365-bnlg1660. Although this result could be con-
sidered as encouraging, it is evident that the genomic
window between these markers is vast, ranging from
bins 5.01 to 5.03 and presenting approximately 34 cM of
distance [19]. The genetic distance between the found
QTL and the umc1365 marker was approximately 4.3 cM;
using a naïve approach, it corresponds to a physical
distance of 1.3 Mpb [19]. Therefore, the corresponding
region for this QTL in chromosome 5 is approxi-
mately 6.18 Mpb. It is worth highlighting that, between
the regions 6.105 and 6.18 Mbp, several genes are
found to be expressed in different cycles of maize crops
[33] (http://www.maizegdb.org/gbrowse/maize_v2/?name =
Chr5:5,377,553..5,473,955;a =Chr5 ± LOCUS_LOOKUP ±
umc1365 ± 5377553..5473955; style = LOCUS_LOOKUP±
glyph = span ± fgcolor = green ± height = 30 ± description =
%22The%20estimated%20region%20for%20umc1365%20
based%20on%20locus%20lookup%22 ± hilite = yellow).
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The k-fold analysis of the real dataset revealed what
was expected, that is, that the RJMCMC method finds a
local maximum in the epistatic space, which becomes
evident when we look at the different interrelations
among the QTL and phenotypes across the CV analysis
(Fig. 11). However, an encouraging result is that the
most important QTL were very stable over the unbal-
anced process.
The “pervasive epistasis” hypothesis suggested by

Mackay [20, 21] may explain the result observed in
Figs. 8 and 9 and also the importance of epistatic effects
on the genetic variance in this study. When pervasive
epistasis is present on a quantitative trait, Mackay notes
the so-called missing heritability acting on the trait,
hampering the genetic progress in artificial selection
[48]. Thus, using a model that simultaneously includes
additive, dominant and epistatic effects on all pairwise
markers, geneticists can exploit the genetic architecture
to avoid poor genomic predictions.
The searching strategy for epistasis has been proposed

by several authors in genome-wide studies to incorpor-
ate its effects into the model [16, 28, 31, 32, 38, 40].
However, several of these methods are based on undir-
ected epistasis estimates for multistage strategies; in
these circumstances, the genetic architecture may not be
correctly depicted. Xu [38] and Xu and Jia [40] proposed
an epistatic model where additive marker effects and
epistasis are incorporated into the model. In a total of
121 and 127 markers used by these authors, the Xu
method recovered only 7,260 and 8,001 pairs of epistatic
interactions, respectively. Our method presents some
similarities to the Xu approach in the sense that all pair-
wise epistasis interactions are estimated. However, our
model may be more desirable because all pairs of epista-
sis may be visited without significantly increasing the
model. The method applied here could be extended to
other branches of genomics. For example, in microarray
models, independence is assumed among the genes
across the data, which forces a sparse matrix to facilitate
estimates of case–control contrasts. One strategy would
be to apply RJMCMC in the sparse covariance matrix
relaxing to an assumption of independence among
genes.
The main difficulty related to our analysis was separat-

ing the principal and epistatic QTL in a marker interval;
specifically, the QTL position in the epistasis marker
interval was not always the same as that of the principal
one. For example, for QTL 19, the main effect was
4.8 cM away from umc1365, and the epistatic one
was 4.3 cM away from this marker. This difficulty
may be overcome with an oversaturated genome as
obtained in genome-wide studies; in other words,
using the markers per se instead of the marker inter-
vals. In this situation, the epistasis might be obtained

by pairwise markers, and the problem of QTL position
could be avoided. However, as more markers are inserted
into the model, the length of the MCMC chain necessary
to visit all pairs of epistasis becomes enormous and,
in this case, markers bins may be requested for epistasis
estimates [39].

Conclusions
Our work provides useful results related to epistasis
studies using statistical models. It is evident that, in
a saturated genomic framework (where there are
thousands of markers), the results could be more
practical, for example, in the genome-wide selection or
GWAS context. However, because the QTL searching
models are more sophisticated than genome-wide re-
gression models, a slight change in our approach
could enable it to be applied in genome-wide association
studies or genome scanning for QTL in structured
populations.

Methods
Statistical genetic model
Genome-wide searching requires that several candidate
regions be mapped simultaneously. In this context,
the multiple marker interval methods are very attractive
because all minor and major QTL are considered
jointly in the model to recover the genetic variance.
Considering all unobserved QTL and their possible
interactions at the same time, the theoretical linear
model, including all first-order epistasis for QTL mapping,
is given by

yi ¼ μþ
Xp
k¼1

xikak þ
Xp
k¼1

wikdk þ
Xt
k′≠k

ηik′aakk′

þ
Xt
k′≠k

γ ik′adkk′ þ
Xt
k′≠k

ϖ ik′dakk′

þ
Xt
k′≠k

φik′ddkk′ þ ei ð1Þ

where yj is the phenotypic value at the jth individual, μ
is the vector of the general mean, ak and dk are the addi-
tive and dominant effects of the kth QTL, respectively,
and aakk´, adkk´, dakk´, and ddkk´ are related to additive-
additive, additive-dominant, dominant-additive and
dominant-dominant epistatic effects, respectively, for
loci k and k`. The residual is assumed as Gaussian dis-
tributed with a mean of 0 and variance equal to σ2. The
unobserved QTL variables xik and wik were assumed
under F2 metric, presenting orthogonal contrasts for all
effects [23, 42, 46]. Thus, it was assumed that
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xik ¼
1 if QQ
0 if Qq
−1 if qq

8<: and wik ¼
−1=2 if QQ
1=2 if Qq
−1=2 if qq

8<:
ð2Þ

It is evident that the random variables xik and wik

are unobserved, which can be inferred from neighbor-
ing markers and their relative positions in the gen-
ome. Considering the orthogonal model, the epistatic
variables ηik´, γik´, ϖik´ and φik´ are obtained by the
element-wise product of the additive and dominant
matrices, i.e., they were built by dot product given by
(xik, wik) ∘ (xik´, wik´) [23, 42, 46]. The model (1) takes
into account all epistatic interactions and, as men-
tioned above, might become overparameterized given
the small number of markers used for QTL mapping.
Thus, it is necessary to set up an algorithm that
starts with an additive-dominant model and further
makes insertions or deletions of epistatic effects
across the model.
Under the overparameterized model, the t-index on

the top of the summation may range from 0 to (p2 − p)/2.
Because t is unknown, the size of the genetic model
is missing information. However, t can be inferred
by reversible-jump Monte Carlo Markov Chain
(RJMCMC), building an epistatic model presenting
with variable dimensions. The main idea of
RJMCMC is to find a model in which the number of
variables is unknown. Because a Poisson process can
model the number of variables (t), RJMCMC uses
this distribution plus the likelihood given t to decide
the number of parameters in the model. However,
given that the size model can increase to (p2 − p)/2
or even to lower dimension models that include
spurious variables, the reversible process is necessary
to arrive at a maximum local. For this, the Hastings
correction becomes necessary. In this context, details
of the full conditional and RJMCMC algorithm plus
the decision rule to include or delete an epistatic ef-
fect in the model will be presented in next.

Likelihood function
Assuming that the t-index (number of epistatic effects
on the architecture of the trait) is an unknown variable,
the likelihood might be described as below.
To simplify the statistical notation, we will con-

sider the following vector correspondence: y = yi,
where {i = 1,2,3,…,n}. Additionally, we will also as-
sume that Ωk = [ηik ´, γik, ϖik, φik] and Θk = [aakk ´,
adkk ´, dakk ´, ddkk ´]

T. On the assumption of residual
normal distribution, one can assume that the condi-
tional distribution of y is given by

p yjb; a; d; x;w; σ2� �
¼ N μþ

Xp
k¼1

xkak þ
Xp
k¼1

wkdk þ
Xt
k¼1

ΩkΘk ; σ
2

 !
ð3Þ

Alternatively, it can be presented in mathematical
terms by

p yjλ; b; a; d;Θ; x;w;Ω; σ2
� �

∝ σ2
� �−n=2

� exp −
1
2σ2

y−μ−
Xp
k¼1

xkak−
Xp
k¼1

wijdj−
Xt
k¼1

ΩkΘk

 !2( )
ð4Þ

The parameters of interest will be taken as θ = {μ, a, d,
Θk, σ

2}. For the classical Bayesian shrinkage model, the
number of possible QTL is conditioned to the number
of potential marker intervals [1]; consequently, for m
markers in each linkage group, there are m - 1 possible
QTL. All of these QTL are retained in the model using
multiple interval methods with a constant number p of
markers [1]. However, the number of epistatic terms (t)
is unknown and must be estimated by the data at hand.

Prior distribution
Each parameter of the model (1) has a specific prior
distribution. The general mean is assumed by Jeffrey’s
prior given by p(μ) ∝ k. For additive, dominant and
epistatic effects, normal prior distributions are given

by p akð Þ ∝N 0; σ2
ak

� �
; p dkð Þ∝N 0; σ2dk

� �
, p aakð Þ ∝N

0; σ2aak

� �
; p adkð Þ ∝N 0; σ2adk

� �
; p dakð Þ ∝N 0; σ2dak

� �
; p

ddkð Þ ∝N 0; σ2ddk

� �
. The specific variance for each

effect presents prior information specified by p σ2ak

� �
¼ p σ2dk

� �
¼ p σ2aak

� �
¼ p σ2adk

� �
¼ p σ2dak

� �
¼ p σ2ddk

� �
∝

inv−scaledχ2 v ¼ 1; s2 ¼ 0ð Þ . These priors have been
described in detail by Xu [37].
Analytically, these priors result in improper marginal

posterior distributions, as also verified by Ter Braak et
al. [36] in Xu’s shrinkage model with specific variances.
For dealing with this problem, the extended prior pre-
sented by Ter Braak et al. [36] was adopted, correcting
the degrees of freedom to obtain a proper posterior
distribution. Therefore, the prior distribution for
the specific variance is as follows: Assuming s2 = 0

and v ¼ nλk−1 ¼ −2Δ , we have p σ2
ak

� �
∝ σ2

ak

� �Δ−1
,

where Δ ¼ −
nak −1ð Þ

2
, such that 0 < nak < 1 and, con-

sequently, 0 < Δ < 1/2. Here, nak is an arbitrary value. In

Balestre and de Souza BMC Genomics  (2016) 17:1012 Page 13 of 22



this study, we assumed nak ¼ 0:95 from our previous
experience with Bayesian shrinkage models ([1, 7]).
We have assumed the prior p(λk) relative to the QTL

position in the genome as uniform, specifically taking
Mk

L and Mk
R as the bordering markers related to QTL

Qk, Lk and Uk as the distances between Mk
L↔Qk and

Qk↔ Mk
R; the uniform prior for each interval is given

by a set of ordering numbers presenting equal probabil-
ity ranging from Lk to Uk. Thus, the joint prior distribu-
tion could be given by

p θð Þ ¼ p μð Þp σ2
� �Yp

k¼1

p λkð Þp akð Þp dkð Þp σ2ak

� �
p σ2

dk

� �
Yt
k¼1

p aakð Þp adkð Þp dakð Þp ddkð Þp σ2
aak

� �
p σ2adk

� �
p σ2dak

� �
p σ2ddk

� �
ð5Þ

In this prior, the p-index is given as known, and it is a
function of the number of markers intervals used for
mapping. However, the number of epistatic interactions
(t) is unknown. Thus, we can assume that the number of
epistatic interactions is modeled by a truncated Poisson
distribution given by

p tjϕð Þ∝ϕ
te−ϕ

t!
ð6Þ

where ϕ is the Poisson mean related to the number of
epistases controlling the trait. In hierarchical modeling,
the prior for ϕ can be assumed as a gamma(τ = 1, υ = 1),
where τ is the shape parameter and υ is the rate param-
eter [39].

Joint posterior distribution and full conditional
distributions
On the basis of prior and likelihood distributions, the
joint posterior distribution is given by

p θ; x;w;Ω; t;ϕjyð Þ∝p yjb; a; d;Θ; x;w; σ2
� �

p x;wjλð Þp θð Þp tjϕð Þp ϕð Þ
ð7Þ

Below, we present the full conditional for RJMCMC
using Gibbs sampler for most of the posterior parame-
ters instead the Metropolis–Hastings (M-H) algorithm
as proposed in Sillanpää and Arjas [34]. The M-H
algorithm will be used here only for sampling the QTL
position.

Full conditional posterior for the reversible-jump algorithm
Given all priors and likelihood described previously, the
conditional posterior distribution of the general mean
can be obtained by

p μj…ð Þ ¼ p μð Þp yjb; a; d;Θ; x;w; σ2ð Þ

p μj…ð Þ∝e

−n μ−
1
n

Xnj
i¼1

yi−
Xp
k¼1

xikak−
Xp
k¼1

wikdk−
Xt
k¼1

ΩikΘk

 !" #
2σ2

2

ð8Þ
Therefore, the overall mean can be sampled from a

normal distribution presenting a mean equal to

1
n

Xnj
i¼1

yi−
Xp
k¼1

xikak−
Xp
k¼1

wikdk−
Xt
k¼1

ΩikΘk

 !
and variance

of σ2

n , where p( |....) means conditional on others
parameters.
The conditional posterior for the kth additive effect

can be given by

p ak j…ð Þ ¼ p akð Þp yjb; a; d;Θ; x;w; σ2ð Þ

p ak j…ð Þ∝e−0:5σ−2
"
ak−

Xn
i¼1

x2ik þ σ−2
akσ

2

 !−1

Xn
i¼1

xik yi−μ−
Xp
k�≠k

xik�ak�−
Xp
k¼1

wikdk−
Xt
k¼1

ΩikΘk

 !#
T

Xn
i¼1

x2ik þ σ−2akσ
2

 !"
ak−

Xn
i¼1

x2ik þ σ−2
akσ

2

 !−1

Xn
i¼1

xik yi−μ−
Xp
k�≠k

xik�ak�−
Xp
k¼1

wikdk−
Xt
k¼1

ΩikΘk

 !#
ð9Þ

Thus, the posterior distribution for the additive effect
is normally distributed, presenting a mean equal toXn

i¼1

x2ik þ σ−2akσ
2

 !−1Xn
i¼1

xik yi−μ−
Xp
k′≠k

xik′ak′−
Xp
k¼1

wikdk−
Xt
k¼1

ΩikΘk

 !

and variance equal to
Xn
i¼1

x2ik þ σ−2akσ
2

 !−1
σ2 . For the

dominance effect, the same normal posterior distribu-
tion is obtained, but presenting a mean equal toXn

i¼1

w2
ik þ σ−2

dkσ
2

 !−1Xn
i¼1

wik yi−μ−
Xp
k¼1

xikak−
Xp
k′≠k

wik′dk′−
Xt
k¼1

ΩikΘk

 !
and variance equal to

p dk j…ð Þ ¼ N

� Xn
i¼1

w2
ik þ σ−2dkσ

2

 !−1

Xn
i¼1

wik yi−μ−
Xp
k¼1

xikak−
Xp
k′≠k

wik′dk′−
Xt
k¼1

ΩikΘk

 !
;

Xn
i¼1

w2
ik þ σ−2dkσ

2

 !−1

σ2
�
ð10Þ

Balestre and de Souza BMC Genomics  (2016) 17:1012 Page 14 of 22



The conditional posterior related to additive-additive
epistasis is given by

p aak j…ð Þ∝e
−0:5σ−2

�
aak−

Xn
i¼1

η2ik þ σ−2aakσ
2

 !−1

Xn
i¼1

ηik

�
yi
^ −

Xt
k¼1: aak¬∍ Ω;Θf g

ΩikΘk

	�T Xn
i¼1

η2ik þ σ−2
aakσ

2

 !

½aak− Xn
i¼1

η2ik þ σ−2
aakσ

2

 !−1Xn
i¼1

ηikðyi^ −
Xt

k¼1: aak¬∍ Ω;Θf g
ΩikΘkÞ�

ð11Þ

where y
^ ¼ yi−μ−

Xp
k¼1

xikak−
Xp
k¼1

wikdk and ¬ ∍ {Ω,Θ}

mean aak is not contained as a member of the Ωk matrix
and Θk vector. The additive-additive epistasis is also
normally distributed, presenting a mean equal toXn

i¼1

η2ik þ σ−2aakσ
2

 !−1Xn
i¼1

ηikðyi^ −
Xt

k¼1: aak¬∍ Ω;Θf g
ΩikΘkÞ

and variance equal to
Xn
i¼1

η2ik þ σ−2aakσ
2

 !−1

σ−2 . The

conditional posterior distributions for the others epi-
static effects are also Gaussian distribution, as given by

p adk j…ð Þ∝e−0:5σ−2
�
adk−

Xn
i¼1

γ2ik þ σ−2adkσ
2

 !−1

Xn
i¼1

γ ik

�
yi
^ −

Xt
k¼1: adk¬∍ Ω;Θf g

ΩikΘk

	�T Xn
i¼1

γ2ik þ σ−2adkσ
2

 !

adk−
Xn
i¼1

γ2ik þ σ−2
adkσ

2

 !−1Xn
i¼1

γ ik yi
^ −

Xt
k¼1: adk¬∍ Ω;Θf g

ΩikΘk

!#0@24
ð12Þ

p dak j…ð Þ ¼ e−0:5σ
−2

�
dak−

Xn
i¼1

ϖ2
ik þ σ−2dakσ

2

 !−1

Xn
i¼1

ϖ ik

�
yi
^ −

Xt
k¼1: dak¬∍ Ω;Θf g

ΩikΘk

	�T Xn
i¼1

ϖ2
ik þ σ−2dakσ

2

 !
�
dak−

Xn
i¼1

ϖ2
ik þ σ−2dakσ

2

 !−1Xn
i¼1

ϖ ik yi
^ −

Xt
k¼1: dak¬∍ Ω;Θf g

ΩikΘk

!#0@
ð13Þ

p ddk j…ð Þ∝e−0:5σ−2
�
ddk−

Xn
i¼1

φ2
ik þ σ−2ddkσ

2

 !−1

Xn
i¼1

φik

�
yi
^ −

Xt
k¼1: ddk¬∍ Ω;Θf g

ΩikΘk

	�T Xn
i¼1

φ2
ik þ σ−2ddkσ

2

 !

ddk−
Xn
i¼1

φ2
ik þ σ−2

ddkσ
2

 !−1Xn
i¼1

φik yi
^ −

Xt
k¼1: ddk¬∍ Ω;Θf g

ΩikΘk

	�0@24
ð14Þ

The conditional distributions related to the variance
components related to additive, dominant and epistatic
effects are given by

p σ2ak j…
� �

¼ p σ2ak

� �
p ak jσ2ak
� �

∝ σ2ak

� �− na
2 −1ð Þ

e
−

ak
2

2σ2ak

ð15Þ

p σ2dk j…
� �

¼ p σ2dk

� �
p dk jσ2

dk

� �
∝ σ2dk

� �− na
2 −1ð Þ

e
−

dk
2

2σ2
dk

ð16Þ

p σ2aak j…
� �

¼ p σ2
aak

� �
p aak jσ2aak
� �

∝ σ2
aak

� �− na
2 −1ð Þ

e
−

aak
2

2σ2aak

ð17Þ

p σ2adk
j…

� �
¼ p σ2adk

� �
p adk jσ2adk

� �
∝ σ2

adk

� �− na
2 −1ð Þ

e
−

adk
2

2σ2
adk

ð18Þ

p σ2dak j…
� �

¼ p σ2dak

� �
p dak jσ2dak
� �

∝ σ2
dak

� �− na
2 −1ð Þ

e
−

dak
2

2σ2
dak

ð19Þ

p σ2ddk
j…

� �
¼ p σ2ddk

� �
p ddk jσ2ddk

� �
∝ σ2ddk

� �− na
2 −1ð Þ

e
−

ddk
2

2σ2
ddk

ð20Þ

where na is the corrected degree of freedom related to
the Xu [37] model. These distributions can be recog-
nized as inverse-scaled chi-square distributions with na
degrees of freedom and scale equal to the square of the
QTL effect, that is, ak

2, dk
2, aak

2, adk
2, dak

2, ddk
2 for principal

and epistatic effects, respectively.
Given the kk` pair of QTL, the epistatic combination

could be sampled (without replacement) from a uniform
distribution ranging from 0 to p (number of marker inter-
vals). After sampling the pair of QTL responsible for the
candidate epistasis, the variables ηik´, γik´, ϖik´ and φik´ are
obtained by the element-wise product of the additive and
dominant matrices considering the respective QTL, i.e., it
was built by the dot product given by (xik,wik) ∘ (xik´,wik´),
where k ≠ k `.
In RJMCMC for QTL analysis, the change of variable

is unnecessary because the determinant is equal to one
[41, 43–45]. Thus, the decision rule to add a new epi-
static interaction in the model is given by the decision
rule min[1, α(t, t + 1)], where
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α t; t þ 1ð Þ ¼

Yn
i¼1

p yjt þ 1ð Þp t þ 1jϕð Þξ t; t þ 1ð Þ
Yn
i¼1

p yjtð Þp tjϕð Þξ t þ 1; tð Þ
ð21Þ

Here, t is the current number of epistases in the
model, t + 1 is the candidate model with the new
epistatic interaction added, and p(t|ϕ) is the prior
truncated Poisson distribution given previously by eq
(6). The Hastings-proposed distribution ξ(t, t + 1) is
necessary to allow the reversible process in the
model during the MCMC process. It is given by ξ(t,
t + 1) = pa and ξ t þ 1; tð Þ ¼ 1

tþ1 pd , where the prior
probability to add, delete or keep the number of epi-
static terms in the model is pa = pd = p0 = 1/3, respect-
ively [39]. The term 1

tþ1 is the probability that the kth
candidate epistasis would be deleted after being included
in the model (the reverse probability). If the candidate
epistasis is included in the model, the conditional distribu-
tion of the data (likelihood) described in the numerator of
the decision rule that includes the new epistasis p(y|t + 1)
is given by

p yjt þ 1ð Þ∝e−0:5σ−2 yi−μ−
Xp
k¼1

xik′ak′−
Xp
k¼1

wikdk−
Xt
k¼0

ΩikΘk þ ωtþ1ρtþ1

 !T

yi−μ−
Xp
k¼1

xik′ak′−
Xp
k¼1

wikdk−
Xt
k¼0

ΩikΘk þ ωtþ1ρtþ1

 !

ð22Þ
where ωtþ1ρtþ1 ¼ ηtþ1 γtþ1ϖ tþ1φtþ1

� �
aatþ1 adtþ1datþ1ddtþ1ð ÞT .

The likelihood given the unchanged dimension p(y|t) is
provided by

p yjtð Þ∝e−0:5σ−2 yi−μ−
Xp
k¼1

xik′ak′−
Xp
k¼1

wikdk−
Xt
k¼0

ΩikΘk

 !T

yi−μ−
Xp
k¼1

xik′ak′−
Xp
k¼1

wikdk−
Xt
k¼0

ΩikΘk

 !
ð23Þ

Thus, the Bayes factor criterion [α(t, t + 1)] to accept
the new epistasis is given by

α t; t þ 1ð Þ ¼

Yn
i¼1

p yjt þ 1ð Þ
Yn
i¼1

p yjtð Þ
ϕ

t þ 1
pd

t þ 1ð Þpa
ð24Þ

where ϕ is the Poisson mean in p tjϕð Þ∝ϕt e−ϕ

t! .
Therefore, if α(t, t + 1) is greater than a random variable

sampled from a uniform distribution [0, 1], then the new
epistasis is accepted in the model; otherwise, the epistasis
number is maintained.

After deciding whether to insert a new QTL, we could
decide if the current epistasis dimension of the model
could decrease from t to t − 1. For this, we sample a can-
didate epistasis in the model ranging from 1 to t, and
the kth epistasis is deleted from the model using the fol-
lowing decision rule:

α t; t−1ð Þ ¼

Yn
i¼1

p yjtð Þp tjϕð Þξ t; t−1ð Þ
Yn
i¼1

p yjt−1ð Þp t−1jϕð Þξ t−1; tð Þ
ð25Þ

where p(y|t) has been described previously.
Here, p(y|t − 1) is a data conditional distribution given

the deleted epistasis. It can be described by

p yjt−1ð Þ∝e−0:5σ−2 yi−μ−
Xp
k¼1

xik′ak′−
Xp
k¼1

wikdk−
Xt−1
k¼0

ΩikΘk

 !T

yi−μ−
Xp
k¼1

xik′ak′−
Xp
k¼1

wikdk−
Xt−1
k¼0

ΩikΘk

 !
ð26Þ

Therefore, the Bayes factor for the decision rule is pro-
vided by

α t; t−1ð Þ ¼

Yn
i¼1

p yjtð Þ
Yn
i¼1

p yjt−1ð Þ
t
ϕ

pat
pd

ð27Þ

Therefore, if α(t, t − 1) is greater than a random
variable sampled from a uniform distribution [0, 1],
then the current sampled epistasis is deleted from
the model; otherwise, the number of epistases is
maintained. Here, given any epistatic QTL pair in t,
the proposed probability of deleting a specific pair is
1
t � pd , and the reversible term is given by pa.
The next step is to sample the residual variance from

p σ2j…� � ¼ p σ2
� �

p yjb; a; d;Θ; x;w; σ2
� �

∝ σ2
� �− na−1þn

2 −1ð Þe− e′e
2σ2

ð28Þ

This probability is also an inverse-scaled chi-square
distribution with na + n − 1 degrees of freedom and
scale equal to the residual sum square e´e, where

e ¼ yi−μ−
Xp
k¼1

xik′ak′−
Xp
k¼1

wikdk−
Xt
k¼0

ΩikΘk

Given the new parameters sampled from their condi-
tional distribution, the next step is to sample the QTL
genotype from it posterior given by
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p xik j…ð Þ ¼ p xik ¼ gð ÞHkL g;mlð ÞHkR g;mRð Þp yjb; a; d;Θ; x;w; σ2ð ÞX3
z¼1

p xik ¼ gz
� �

HkL gz; ;ml
� �

HkR gz; ;mR
� �

p yjb; a; d;Θ; x;w; σ2
� �

ð29Þ

where p(xik = g) is the prior probability of the segregating
QTL genotype in a structured population. For ex-
ample, in F2:3, as used in the presented study, p(xik =
1) = p(xik = − 1) = 3/8 and p(xik = 0) = 1/4 or 1/4, 1/4
and 1/2 for F2 populations, respectively. HkL(g,ml)
and HkR(g,mR) are Markov transitional matrices
between the markers Mk

L and Mk
R and the QTL Qk.

These matrices are built based on the conditional
posterior of QTL given the marker genotype. For
example, in the F2:3 data given the marker coded as
1 (MM), the conditional probability of obtaining the
QTL coded as 1 (QQ) in F2:3 is (1 − r)2 + 0.5r(1 − r).
The position of the QTL in the genome does not

present a closed-form; consequently, the Metropolis–
Hastings (M-H) algorithm is requested. For this, we
used a uniform distribution as the proposed distribu-
tion to sample λ.
The M-H algorithm does not require that the par-

ameter has a known probability function and, instead,
makes use of an auxiliary function that can be sam-
pled and where the candidate values can be accepted
with α probability. In the case of interval mapping, a
uniform distribution can be used as an auxiliary func-
tion that is sampled across each interval delimited by
max(λj − 1, λj + d) and min(λj + 1, λj − d), where d is a
constant that defines the tuning within the interval j,
usually fixed between 1 and 2 cM. The Hastings correc-
tions are denoted by u(λ*, λ), and the new position will be
accepted in the kth iteration with probability min(1, α),
where α is given by

α ¼
p λ�j jy; b; a; d;Θ; x;w; σ2
� �

u λ�j ; λj
� �

p λ0j jy; b; a; d;Θ; x;w; σ2
� �

u λj; λ
�
j

� � ð30Þ

Finally, the posterior conditional probability distribution
for the average number of epistatic effects (ϕ) in the
model can be given by

p ϕj…ð Þ ¼ p ϕð Þp tjϕð Þ∝ϕte−2ϕ ð31Þ

This function could be recognized as a gamma distri-
bution presenting a shape parameter equal to t + 1 and a
rate equal to 2.

The RJMCMC algorithm
The reversible-jump Monte Carlo Markov Chain
(RJMCMC) algorithm is given as follows:

Initiate the RJMCMC algorithm using only the
additive-dominant model (t = 0) and using the
following initial guess (a1

0, a2
0.... ap

0, d1
0, d2

0… dp
0,Θ0 = 0),

σ2
a10; σ

2
a20; ::::σ

2
ap0; σ

2
d10; σ

2
d2
0…σ2

dp
0 ¼ var yð Þ�1−5

p

� �
,

σ2
0 ¼ var yð Þ;ϕ0 ¼ p

2

� 	
� 0:01 and var Θ0

� � ¼ σ2aak

n
;

σ2adk
; σ2dak ; σ

2
ddkg ¼ var yð Þ � 1−5 . It is worth highlighting

that the initial guess for the epistasis Θ = 0 and the
variance of epistatic effects [var(Θ)] are used only
when t ≥ 1. The variances of the additive, dominant
and epistatic effects were initiated with values near
to 0 heritability. The initial guess for ϕ0 is based on
1% of all pairwise epistasis. For the QTL additive
matrix xik, the initial guess is based on the position
λ taken as the midpoint of the interval; ignoring the
likelihood, that is

p xik j…ð Þ ¼ p xik ¼ gð ÞHkL g;mlð ÞHkR g;mRð ÞX3
z¼1

p xik ¼ gz
� �

HkL gz;ml
� �

HkR gz;mR
� �

This conditional is slightly different from (30) because
all genetic parameters in the likelihood are assumed as 0
in the first MCMC round.

1) First, we started the RJMCMC using a non-epistatic
model (t = 0). The global mean was sampled from a
normal distribution presenting the following
parameters:

p μj ::::ð Þ∝N 1
n

Xnj
i¼1

yi−
Xp
k¼1

xikak−
Xp
k¼1

wikdk−
Xt
k¼1

ΩikΘk

 !
;
σ2

n

" #
ð32Þ

where p(|....) means conditional on others parameters
2) Using the new value of general mean, we sampled

the additive effects from a normal distribution
given by

p ak j…ð Þ∝N
� Xn

i¼1

x2ik þ σ−2akσ
2

 !−1

Xn
i¼1

xik yi−μ−
Xp
k′≠k

xik′ak′−
Xp
k¼1

wikdk−
Xt
k¼1

ΩikΘk

 !
;

Xn
i¼1

x2ik þ σ−2akσ
2

 !−1

σ2

�
ð33Þ

3) Next, we sampled the dominant effects from:
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p dk j…ð Þ∝N
� Xn

i¼1

w2
ik þ σ−2dkσ

2

 !−1

Xn
i¼1

wik yi−μ−
Xp
k¼1

xikak−
Xp
k′≠k

wik ′dk′−
Xt
k¼1

ΩikΘk

 !
;

Xn
i¼1

w2
ik þ σ−2dkσ

2

 !−1

σ2

�
ð34Þ

4) Adding the t + 1-th epistatic effect for k ≠ k ` locus
sampling, k and k` from a discrete uniform
distribution ranges from [1 to p]. The use of
sampling without replacement is to guarantee an
exhaustive search in epistatic space. Therefore, for
each pair of QTL, we sampled the following criteria:

kk‘ ¼ uniform 1 to pð Þ; uniform 1 to p‘ð Þ½ � if t ¼ 0
Ikk‘ uniform 1 to pð Þ; uniform 1 to p‘ð Þ if t >¼ 1½



ð35Þ

where the indicator function Ikk ` = 1 if kk ` ¬∍ {1… t}
5) Given the pair kk´, sampling the kth additive-by-

additive, additive-by-dominant, dominant-by-additive
and dominant-by-dominant, respectively, from

p aak j…ð Þ∝N
� Xn

i¼1

η2ik þ σ−2aakσ
2

 !−1

Xn
i¼1

ηik

�
yi
^ −

Xt
k¼1: aak¬∍ Ω;Θf g

ΩikΘk

	
;
Xn
i¼1

η2ik þ σ−2aakσ
2

 !−1

σ2

�
ð36Þ

p adk j…ð Þ ¼ N

� Xn
i¼1

γ2ik þ σ−2adkσ
2

 !−1

Xn
i¼1

γik yi
^
−

Xt
k¼1: adk¬∍ Ω;Θf g

ΩikΘkÞ;
Xn
i¼1

γ2ik þ σ−2adkσ
2

 !−1

σ2

0@ 35
ð37Þ

p dak j…ð Þ ¼ N

� Xn
i¼1

ϖ2
ik þ σ−2dakσ

2

 !−1

Xn
i¼1

ϖik yi
^
−

Xt
k¼1: dak¬∍ Ω;Θf g

ΩikΘkÞ;
Xn
i¼1

ϖ2
ik þ σ−2dakσ

2

 !−1

σ2

0@ 35
ð38Þ

p ddk j…ð Þ ¼ N

� Xn
i¼1

φik

2

þ σ−2ddkσ
2

 !−1

Xn
i¼1

φik yi
^
−

Xt
k¼1: ddk¬∍ Ω;Θf g

ΩikΘkÞ;
Xn
i¼1

φik

2

þ σ−2ddkσ
2

 !−1

σ2

0@ 35
ð39Þ

where y
^¼ yi−μ−

Xp
k¼1

xikak−
Xp
k¼1

wikdk and ¬ ∍ {Ω,Θ}

means it is not contained as a member of the Ωk

matrix and the Θk vector.
6) Acceptance of the new epistatic effect, with

probability ρ, is given by min[1, α(t, t + 1)], where

α t; t þ 1ð Þ ¼

Yn
i¼1

p yjt þ 1ð Þp t þ 1jϕð Þξ t; t þ 1ð Þ
Yn
i¼1

p yjtð Þp tjϕð Þξ t þ 1; tð Þ

¼

Yn
i¼1

p yjt þ 1ð Þ
Yn
i¼1

p yjtð Þ
ϕ

t þ 1
pd

t þ 1ð Þpa

ð40Þ
is the Bayes factor (BF) and ξ(t, t + 1) = pa and ξ
t þ 1; tð Þ ¼ 1

tþ1 pd are proposed probabilities based
on the Hastings’ adjustment. The conditional
distributions presented in the numerator p(y|t + 1),
denominator p(y|t) and p(t| ) of the BF decision
rule are described in (22), (23) and (6), respectively.
If the kth epistasis is accepted, then tnew = told + 1;
otherwise, tnew = told.

7) In the next step, if t > 0, any epistasis present in the
updated model (t = tnew) can be deleted, and the
change in model dimension from t to t - 1 is given
as follows. Given t, the candidate epistasis to be
deleted is labeled from 1 to t and sampled from a
discrete uniform distribution ranging from [1 to t].
Here, the proposed probability is slightly different
from adding the epistatic effects because the
updated epistatic space is now output t from step 5.
Thus, the probability of deleting the kth epistatic effect
is given by the decision rule min[1, α(t, t − 1)], where

α t; t−1ð Þ ¼

Yn
i¼1

p yjtð Þp tjϕð Þξ t; t−1ð Þ
Yn
i¼1

p yjt−1ð Þp t−1jϕð Þξ t−1; tð Þ
¼

Yn
i¼1

p yjtð Þ
Yn
i¼1

p yjt−1ð Þ
t
ϕ
pat
pd

ð41Þ
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and ξ(t, t − 1) = pa, ξ t−1; tð Þ ¼ pd � 1
t and p(y|t − 1)

are described in (26). If α(t, t − 1) is accepted, then
tnew = t − 1; otherwise, tnew = t, where t is the output
from step 5.

8) If any epistatic term is kept in the model, its variance
plus additive, dominance and residual variances
may be sampled from inverted-scale, chi-squared
distribution as follows:

p σ2ak j…
� �eInv−scaled−χ2 na; a

2
k

� � ð42Þ

p σ2dk j…
� �eInv−scaled−χ2 na; d

2
k

� � ð43Þ

p σ2aak j…
� �eInv−scaled−χ2 na; aa

2
k

� � ð44Þ

p σ2adk j…
� �eInv−scaled−χ2 na; ad

2
k

� � ð45Þ

p σ2dak j…
� �eInv−scaled−χ2 na; da

2
k

� � ð46Þ

p σ2ddk j…
� �eInv−scaled−χ2 na; dd

2
k

� � ð47Þ

p σ2j…� �eInv−scaled−χ2 na þ n−1; e�eð Þ ð48Þ
where e´e is the residual sum square and na is
the corrected degree of freedom related to prior
variance distribution.

9) Given the updated values of parameters, the QTL
genotypes (1, 0 and −1) can be updated given the
neighboring markers using the posterior probability

p xik j…ð Þ ¼ p xik ¼ gð ÞHkL g;mlð ÞHkR g;mRð Þpðyi jb; a; d;Θ; x;w; σ2ÞX3
z¼1

p xik ¼ gz
� �

HkL gz;ml
� �

HkR gz;mR
� �

p yi jb; a; d;Θ; x;w; σ2
� �

ð49Þ
where p(xik = g) is the prior probability of
the segregating QTL genotype. HkL(g,ml) and
HkR(g,mR) are Markov transitional matrices
between the markers Mk

L and Mk
R and the

QTL Qk. These matrices are built based on the
conditional posterior of QTL given the marker
genotype.

10) The new QTL position is sampled using the
posterior given in (30). λ does not present a known
position in the genome. Therefore, we can use the
Metropolis–Hastings algorithm [11, 24] instead of
the Gibbs sampler by using a uniform proposed
distribution because λ does not present a known
distribution.

11)Finally, the Poisson mean ϕ is sampled relative to the
number of epistatic effects in the model from (31).
Because the average number of epistatic terms is

critical in the reversible-jump process and unknown,
it is given as a random variable. Thus, the new
average number of epistatic terms is sampled from
a conjugated Gamma–Poisson distribution, i.e.,
p(ϕ|…)∝ gamma(κ = 1 + t, ς = 2).
All RJMCMC processes are summarized in Fig. 12.

Post MCMC sampling
Principal QTL Effects The QTL profile was depicted
according to the conditional posterior related to the pos-
ition f(λ). The length of each linkage group was sepa-
rated into bins of 3 cM and, for each bin f(λ), was
weighted by the LOD of the maximum posterior within
each bin. The LOD posterior was calculated by LOD =
W(λi)/2 ln(10), where W(λi) is the Wald’s statistic for the
λi position, i.e., W(λ) = aTVa

− 1a + dTVd
− 1d.

Epistatic QTL Effects The LODs for epistatic effects
were similar to those for additive-dominant effects.
Here, all epistatic terms, additive-additive, additive-
dominant, dominant-additive and dominant-dominant
effects, were used to compose the epistatic LOD. In
addition to the LOD, the length of the chain for each
epistatic QTL was used as a parameter for selection.
The length of the “chain” is an undirected criterion
to assess the “strength” of a QTL interaction. The
more constant the QTL interaction is in the model
throughout the MCMC process, the higher the Bayes
factor is, and the more evidence there is for this epis-
tasis relative to the null effect. For this, we assume as
reference the final chain length (N) related to the
main effects and weighted each LOD based on LOD *
= n × LOD/N, where n is the chain size for the ith epi-
static effect. In addition, only epistatic QTL present-
ing chains larger than 400 were used for LOD
analysis. This number was the minimum using the
Raftery and Lewis criterion after 10,000 burning and
jumping iterations for each 20 samples. Thus, the
final chain length was 18,000.

Simulated data
The simulated dataset was based on the F2 population
composed of 300 individuals. A total of 104 bi-allelic
markers were simulated in seven linkage groups. Six
QTL presenting main effects were randomly simulated
across the linkage groups. Additionally, seven different
epistatic QTL were simulated, totaling 13 QTL control-
ling the trait. In this scenario, there are 194 additive and
dominant candidate effects to be estimated plus 18,624
candidate epistases considering all combinations (addi-
tive-additive, additive-dominant, dominant-additive and
dominant-dominant). The phenotype was simulated
using a heritability of 0.5 and positive effect equal to 2
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for additive and dominant effects. The epistatic effects
were simulated considering values sampled from a uni-
form distribution ranging from −2 to 2. The epistasis
values were inserted in the Qgene program [15], where
we performed all simulations related to the markers and
principal QTL effects. It is important to note that the
default in the Qgene program for additive and dominant
effects are assumed to be equal to 10, but for epistatic
QTL, these principal effects are taken as 0. On the other
hand, the epistatic effect default is constant and equal to
10; therefore, we prefer to sample the epistasis from an
auxiliary uniform distribution. The values related to
simulated QTL are given in Additional file 7: Table
S3. The residual values were sampled from a Gaussian
distribution with a mean of 0 and variance of σ2. We
compare our method to the Xu and Jia [40] technique
using the program PROC QTL [12], which is available
in http://statgen.ucr.edu/software.html. The SAS code
used in PROC QTL plus our R code and genomic

data are available in the Supporting Information
(Additional file 8: Texts S1, Additional file 9: Texts S2 and
Additional file 10: genomic dataset).

Real dataset
Genetic background
We used 256 F2:3 progenies of a maize population derived
from the cross of two tropical inbreed lines (L20-01 F and
L02-03D). This population, as well as the inbred lines,
were developed in the Maize Breeding Program at the
Department of Genetics of the Agriculture College “Luiz
de Queiroz”. Three F1 plants from the cross of these in-
bred lines were self-crossed to develop the F2 population,
which was further self-crossed to develop the F2:3 progen-
ies. The F2:3 progenies were evaluated for grain yield in
the crop years 2002/2003 and 2003/2004 at the experi-
mental stations of Areão, Caterpillar, Departamento de
Genética, ESALQ/USP and Anhembi, all locations

Fig. 12 Overview of the RJMCMC algorithm

Balestre and de Souza BMC Genomics  (2016) 17:1012 Page 20 of 22

http://statgen.ucr.edu/software.html


scattered across the municipality of Piracicaba-SP in
Brazil. The combination of crop year and location was
considered as an environment. The experimental design
used was a 16x16 lattice with two replicates per environ-
ment. Each plot was 4 m in length and 0.8 m between
rows. Plots were overplanted and thinned to 20 plants per
plot (62,500 plants ha−1). The grain yield mean of each
plot was adjusted to 15.0% of moisture and corrected for
the average stand. In the first stage, the raw data were sub-
mitted to joint analysis considering random blocks within
replication within environments, genotypes, genotype-by-
environment interactions, fixed effects of environments,
and replication within environments. In the second stage,
the corrected phenotypic means were used for QTL map-
ping using 139 markers in 10 linkage groups.
To map the maize progenies, we used 139 microsatel-

lite markers. These markers were used to build the link-
age group using the software Mapmaker 3.0 [18]. The
critical LOD score adopted was equal to 3, and the max-
imal distance between markers was equal to 50 cM. The
frequency of recombination was converted to cM using
the Kosambi function. The 139 microsatellites markers
were distributed through 10 linkage groups that corres-
pond to 10 chromosomes presented in maize species.
The total size of the linkage map was 1,858.61 cM, pre-
senting an average distance between markers of
14.41 cM and chromosome length ranging from 103.62
to 303.36 cM for chromosomes 1 and 10, respectively. A
simple cross-validation (CV) approach was applied in
the real dataset to evaluate the constancy of QTL and its
interaction in the model. For this, a 5-fold analysis was
implemented in the 256 genotypes forming four groups
of 50 entries and one group of 56.

Additional files

Additional file 1: Figure S1. Genomic profile for QTL in seven
simulated linkage groups using RJMCMC for 400 markers. The red dots
represent the non-epistatic QTL, and the blue dots represent the simu-
lated epistatic QTL. The dotted line represents the LOD criterion (LOD=3).
(JPEG 425 kb)

Additional file 2: Figure S2. Heat map for 79,800 epistatic QTL and
chain size in the reversible jumping process. The more red that the
epistatic intensity is, the more time the QTL was retained in the MCMC
process, meaning its effect on the epistatic complex is more likely.
(JPEG 570 kb)

Additional file 3: Figure S3. LOD plot of 79,800 raw epistatic
combinations. (JPEG 864 kb)

Additional file 4: Figure S4. 3D plot resolution for the 79,800
weighted epistatic combinations obtained by RJMCMC. The lower
triangular plot represents the simulated epistatic effect, and the upper
plot represents the estimated epistatic effect. (JPEG 483 kb)

Additional file 5: Table S1. Selected epistases presenting with LOD
scores greater than or equal to 3.00 and with chain sizes larger than 500
obtained in the simulated data from 400 markers. Sixteen QTL were
simulated, and the first eight were combined pairwise, totaling 28

epistatic interactions. The epistatic QTL were named 58, 57, 80, 140, 208,
194, 279 and 389. (DOCX 13 kb)

Additional file 6: Table S2. Estimated epistases presenting with LOD
scores greater than or equal to 3.00, but with chain sizes lower than 500
obtained in the simulated data from 400 markers. This combination was
selected because its average distance from the marker combination was
lower than 0.1 cM. Sixteen QTL were simulated, and the first eight were
combined pairwise, totaling 28 epistatic interaction The epistatic QTL
were named 58, 57, 80, 140, 208, 194, 279 and 389. (DOCX 15 kb)

Additional file 7: Table S3 Simulated QTL effects from the Qgene
program. (DOCX 14 kb)

Additional file 8: Text S1. R-code. (R 23 kb)

Additional file 9: Text S2. SAS code. (PROC QTL) (SAS 64 kb)

Additional file 10: genomic dataset. (ZIP 9 kb)
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