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Abstract

Background: Growing evidence demonstrates subtle left ventricular myocardial dysfunction in patients with
metabolic syndrome (MetS), with central obesity, glucose intolerance and inflammation emerging as important
contributors. Whether these results can be translated to the right ventricle (RV) is not yet fully elucidated.
Furthermore, although lifestyle intervention favorably impacts MetS components and inflammatory biomarkers,
its effect on RV myocardial function remains unknown today.

Methods: Thirty-nine MetS adults free of diabetes were enrolled in a three month lifestyle intervention program
including diet and physical exercise, and compared with forty healthy controls. Blood biochemistry,
echocardiography including tissue Doppler imaging (TDI), and vector velocity imaging of the RV free wall to
assess global longitudinal strain (GLS) and strain rates (SR) were obtained at baseline and after the intervention.

Results: Compared with controls, MetS patients presented similar right atrial and RV morphology but reduced
systolic (P = 0.04) and early diastolic (P = 0.02) velocities of the tricuspid annulus. They showed attenuated RV GLS
(−21.4 ± 4.5vs-25.7 ± 4.9%, P < 0.001) as well as early diastolic (P = 0.003) and systolic (P < 0.001) SR. Multiple
regression analyses revealed log PAI-1 active, (P < 0.001), log adiponectin, (P = 0.01), LV mass indexed (P = 0.004)
and central fat (P = 0.03) as independent predictors of RV GLS (R2 = 0.46, P < 0.001). Biological markers of MetS
and inflammation as well as RV GLS (−21.8 ± 3.8vs-24.3 ± 3.0%, P = 0.009) and systolic (P = 0.003) and early diastolic
(P = 0.01) SR, but not TDI indexes, significantly improved after diet and exercise training, and vector velocity
imaging data in MetS following the lifestyle intervention no longer differed from controls.

Conclusions: MetS is associated with subtle impairments in both RV free wall diastolic and systolic myocardial
function which could be partly related to central-obesity induced changes in pro- and anti-inflammatory cytokines
and left ventricular remodeling. The favorable impact of healthy dieting and physical activity on RV free wall
mechanics indicates that cellular and sub-cellular alterations responsible for the RV myocardial abnormalities are
probably not permanent and modifiable throughout adequate interventional strategies.

Trial registration: American National Institutes of Health database NCT00917917.
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Background
The metabolic syndrome (MetS) is a cluster of cardio-
metabolic risk factors predisposing the development of
cardiovascular pathologies [1]. It is a low grade inflamma-
tory disease [2] associated with potentially adverse effects
on cardiac remodeling and function [3,4].
Speckle tracking echocardiography is a highly sensitive

technique used to detect subtle myocardial dysfunction
at the preclinical stage of systolic abnormalities [5,6].
Recent studies using this technique have reported both
systolic and diastolic myocardial abnormalities in MetS
patients, affecting the left ventricle predominantly in its
longitudinal axis [3,7]. Abdominal obesity, glucose intoler-
ance and systemic inflammation biomarkers have emerged
as important contributors to the depressed left ventricular
longitudinal strain in MetS individuals [3,8]. Whether
right ventricular (RV) free wall mechanics are also altered
in MetS remains not yet fully understood, as existing
results maybe confounded by the presence of diabetes
[9-12]. Diabetes is indeed a clinical entity, associated
with altered left ventricular and RV free wall mechanics
[13-18]. However, diabetes corresponds to an advanced
stage of metabolic disorders with further potential
cardiac complications due to chronic hyperglycemia, mi-
crovascular disease and autonomic neuropathy [19]. What
remains to be clarified is whether MetS in the absence
of diabetes leads to the development of RV myocardial
dysfunction and, if present, whether these myocardial
abnormalities are associated with metabolic risk and
inflammatory markers. To our knowledge, only Tadic
et al. [20] recently demonstrated depressed RV free wall
deformations by speckle tracking imaging in non-dia-
betic MetS patients. The deformations were partially
accounted for by hypertension, fasting glucose and ab-
dominal obesity.
Lifestyle intervention based on dietary management

and physical activity is a well-established approach to
the management of various cardiometabolic diseases,
including diabetes, obesity and MetS. Increasing evidence
reports favorable and specific effects of lifestyle interven-
tions on central obesity, insulin-resistance, glucose intoler-
ance and inflammation [21-23]. To our knowledge, no
previous studies have examined the impact of such non-
pharmacological approaches on RV myocardial function
in a MetS population.
Accordingly, the aims of the present study were firstly

to compare RV free wall mechanics using vector velocity
imaging in asymptomatic MetS adults free from type-2
diabetes, with healthy age and gender-matched controls
and to evaluate in the MetS group the impact of a life-
style intervention focused on dietary management and
increased physical activity. Furthermore, we also aimed
to observe relationships between RV myocardial func-
tion and metabolic risk and inflammatory markers as
well as their changes consecutive to the life style
intervention.

Methods
Study population
This study formed part of the RESOLVE trial [24]. The
present experiment included 39 patients with clinically
diagnosed MetS [25]. Participants with incompatible dis-
eases such as cardiopathy, type-2 diabetes and sleep apnea
syndrome were excluded. Participants with pulmonary
diseases were excluded by medical history analyses, spir-
ometry and arterial blood gas analyses. Pulmonary hyper-
tension was excluded by verifying the absence of clinical
symptoms, examination of pulmonary systolic flow profile
and, in patients with detectable tricuspid regurgitation,
normal pulmonary artery systolic pressure gradient [26,27].
Coronary artery disease was excluded by verifying negative
results on treadmill test and myocardial ischemia from
24-hour electrocardiographic Holter recording. MetS pa-
tients were enrolled in a 3-month lifestyle intervention
program. Six participants withdrew during intervention,
leaving 33 individuals for final analyses. Forty aged and
gender-matched controls with no cardiovascular risk fac-
tors were recruited on a consecutive basis.
Biochemical, clinical and echocardiographic investiga-

tions were performed before and after the intervention in
MetS, and at baseline only for controls. Participants pro-
vided written informed consent. The study was approved
by the human ethics committee from the University
Hospital of Saint-Etienne, France. The study protocol
was registered with the American National Institutes of
Health database N°NCT00917917.

Biochemical, clinical and anthropometric assessment
Anthropometric variables, body composition, blood pres-
sure and routine serum biological analyses plus N-ter-
minal pro-B-type natriuretic peptide (NT-proBNP) were
measured as previously described [3]. Insulin resistance
was estimated from the homeostasis model assessment-
insulin resistance (HOMA-IR) index [28]. Inflammatory
markers included interleukin-6 (IL-6), high sensitivity
C-reactive protein (hsCRP), adiponectin, active plasmino-
gen activator inhibitor-1 (PAI-1 active) and tumor necro-
sis factor α (TNF-α).

Lifestyle intervention
Participants were enrolled in a 3-week residential pro-
gram, before returning home to continue the intervention
on their own accord. Throughout the residential program,
participants received daily individualized meals, planned
by dietitians. Total dietary intake during the intervention
was calculated to reach a 500 kcal/day caloric deficit with
protein accounting for 15 to 20% and lipids 30-35%.
Participants’ physical activity requirements included
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endurance (aquagym, cycling or walking) and resistance
training (90 min, 4 to 5 days/week). Resistance training
consisted of 8 free-weight exercises, performed for 3 sets
of 10 repetitions. Participants were coached individually
and heart rate was monitored by Polar™ S810. Participants
also attended information seminars on MetS, nutrition,
cooking and exercise, to support the sustainability of
their new lifestyle upon returning home. Compliance
to the intervention was monitored by a weekly self-re-
ported questionnaire and phone interview conducted by
dietitians.

Echocardiography
Images were obtained by an experienced operator (GW)
using a commercially available system (MyLab30, Esaote
SpA, Firenze, Italy) equipped with a 3.5 MHz sector scan-
ning electronic transducer in the left lateral decubitus
position. Images at a minimum rate of 60–75 Hz were
acquired in cine loops triggered to the QRS complex and
saved digitally for subsequent off-line analysis with dedi-
cated software (Mylab desk, Esaote, Italy).

Conventional, pulsed Doppler and tissue Doppler
imaging echocardiography
RV and left ventricular images were obtained following
the American Society of Echocardiography guidelines
[29,26]. Left ventricular dimensions were determined
from M-mode echocardiogram as previously described
[3]. Left ventricular ejection fraction was obtained from
the modified monoplane Simpson’s method. Left ven-
tricular mass was calculated by the Devereux formula
and indexed for height (Cornell adjustment). Pulsed-wave
Doppler of mitral as well as tricuspid inflow velocities,
including early (E) and atrial (A) waves, were measured.
Tissue Doppler imaging (TDI) measures of myocardial
systolic, early diastolic and atrial velocities were assessed
at the mitral annulus level (data reported are means from
lateral and septal walls) and on the lateral tricuspid annu-
lus wall. The ratio of peak early filling velocity through the
mitral valve during diastole to peak early diastolic velocity
of the mitral annulus was used as an index of left ventri-
cular filling pressure [30]. The ratio of peak early filling
velocity through the tricuspid valve during diastole to
peak early diastolic velocity of the lateral tricuspid annulus
(E/Etri) and the right atrial area were used as surrogates of
right atrial pressures [31,32]. The isovolumic relaxation
time for the RV was also derived from TDI measurements.
The tricuspid annular plane systolic excursion (TAPSE)
was measured from the difference between the displace-
ment of RV base during systole and diastole. The fractional
shortening, the right atrium area and the RV end-diastolic
diameter at basal level were assessed in the apical four-
chamber view. RV shortening fraction was obtained using
the formula: (end-diastolic area – end systolic area)/end-
diastolic area [9]. The pulmonary flow was recorded using
a parasternal short-axis view at the level of the pulmonary
artery allowing measurement of its acceleration time and
estimation of mean pulmonary artery pressure [26].

Vector velocity imaging
Velocity vector imaging is a method used to quantify
myocardial wall motion through the combination of
speckle tracking, tissue-blood border detection and myo-
cardial shape [33]. It is an angle-independent measure-
ment technique validated against sonomicrometry [33]
and magnetic resonance imaging [34] which has been
largely used to investigate left ventricular [3] but also RV
[15,35-37] mechanics in health and disease. The RV free
wall longitudinal myocardial function was assessed from
2-D harmonic grey scale images in the apical 4-chamber
view. The imaging sector was narrowed to optimal view
and the frame rate was kept higher than 60 Hz in each
case. Longitudinal strains and strain rates were mea-
sured at the basal, mid and apical segments of the free
wall and averaged to give global strain (GLS) and strain
rates (Figure 1). Diastolic strain rate was obtained from
the peak value observed during the early filling period.
To adjust all vector velocity imaging data for inter-
subject differences in heart rate, a specific toolbox was
used to normalize time sequence as a percentage of sys-
tolic duration calculated from the timing of pulmonary
valve closure. The reproducibility of strain and strain
rates (intra-observer variability: 7.8 and 8.2%, respectively)
has been reported elsewhere [38].

Statistical analysis
Statistical analyses were performed using SPSS 20.0
for Windows (SPSS Inc). Statistical significance was
set a priori at P < 0.05. Variables are presented as mean ±
standard derivation and skewed data were log-trans-
formed. Appropriated unpaired and paired t-tests were
used to evaluate the differences between MetS (at baseline
and after the lifestyle intervention) and controls and the
effect of the lifestyle intervention within the MetS pa-
tients, respectively. Mann–Whitney U-test and Wilcoxon
test were used for abnormally distributed variables. For
categorical variables, a χ2 test was used. Correlations using
Pearson’s correlation coefficient or Spearman coefficient
of rank correlation for abnormally distributed variables
were used to identify associations between RV longi-
tudinal myocardial deformation and clinical as well as
biological parameters or their changes after the lifestyle
intervention. Multiple stepwise linear regression analyses
were performed to assess variables that were independ-
ently associated with RV free wall GLS. Biometric, meta-
bolic and inflammatory biomarkers that correlated with
RV free wall GLS with a P value <0.05 during the first
univariate analysis were entered into the model.



Figure 1 Representative curves for RV global longitudinal strain (%): one control (top left) and one MetS patient (top right), one MetS
patient before (bottom left) and after (bottom right) the 3-month life style intervention program.
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Results
For all parameters presented in this section, no signifi-
cant differences were observed between the whole MetS
group (n = 39) and the MetS subgroup (n = 33) involved
in the lifestyle intervention program at baseline.
All anthropometric, biological and clinical data except

height, LDL-cholesterol and NT-proBNP differed sig-
nificantly between MetS and controls (Table 1). Values,
excluding diastolic blood pressure, HDL-cholesterol,
NT-proBNP, IL-6 and adiponectin, were reduced fol-
lowing the intervention program. Among biological data,
glucose metabolism blood markers as well as hsCRP and
TNF-α were no more significantly different from controls
after the intervention program.
Structure and function of the left ventricle are pre-

sented in Table 2. Increased posterior wall thickness,
intra-ventricular septum thickness and left ventricular
mass index were observed in MetS compared with con-
trols. Regarding left ventricular function, mitral E/A
ratio and ejection fraction were statistically lower in MetS,
but the latter remained within non-pathological ranges.
TDI data showed decreased early diastolic mitral annular
velocity and unaltered filling pressures in MetS individ-
uals. The lifestyle intervention program did not affect left
ventricular dimensions or function in MetS, except for
ejection fraction which improved after the intervention
and was no longer different from controls.
Structure and function of the RV are presented in
Table 3. Regarding conventional data, MetS patients pre-
sented with similar right atrial and RV morphology as well
as estimated mean pulmonary artery pressure, reduced
TAPSE and tricuspid E/A ratio as well as greater tricuspid
A compared with controls. TDI data in MetS showed
decreased systolic and early diastolic tricuspid annular
velocities and increased E/Etri as well as isovolumic
relaxation time. All these RV parameters, except RV
end-diastolic dimensions, tricuspid A and E/A ratio
were unaltered by the lifestyle intervention. Differences in
tricuspid A and E/A ratio were no longer apparent be-
tween MetS and controls after the intervention.
Peak and time to peak values of the RV free wall longi-

tudinal strains and strain rates are presented in Table 4.
Regardless of the segments, RV free wall strains and sys-
tolic and early diastolic strain rates were lower in MetS
than controls, even after control for heart rate. The
intervention program not only significantly improved
strains and strain rates, except for basal segment strains
which failed to reach statistical significance, but reversed
all data to normal control values. Timing events were
similar between groups at baseline and were unaltered
by the intervention.
Significant correlations were obtained between RV

GLS and markers of central obesity, glucose intolerance
and inflammation as well as left ventricular hypertrophy



Table 1 General characteristics and clinical data

Variables Controls (n = 40) MetS (n = 39) MetS

Baseline (n = 33) Follow-up (n = 33)

Age (y) 58.0 ± 4.2 59.6 ± 4.6 59.4 ± 4.4

Sex (female,%) 20 (50.0) 20 (51.2) 17 (51.5)

MetS criteria

Increased blood pressure (n,%) 8 (20.0) 31 (79.4)*** 27 (81.8) 21 (63.6)#***

Reduced HDL (n,%) 6 (15.0) 29 (74.3)*** 23 (69.7) 22 (66.6)***

Increased fasting glucose (n,%) 0 (0.0) 10 (25.6)** 7 (21.2) 2 (6.1)

Increased TG (n,%) 4 (1.0) 32 (82.0)*** 27 (81.8) 22 (66.6)***

Height (cm) 169.2 ± 8.4 165.6 ± 8.2 166.1 ± 8.7

Body weight (kg) 68.1 ± 12.4 85.9 ± 9.9*** 86.0 ± 10.2 79.5 ± 9.1###***

BMI (kg.m−2) 23.9 ± 3.1 32.8 ± 3.5*** 31.9 ± 3.5 28.8 ± 3.2###***

Waist circumference (cm) 81.9 ± 8.0 99.3 ± 7.9*** 98.4 ± 7.6 91.0 ± 6.8###***

Central Fat (kg) 1.2 ± 0.5 3.0 ± 0.6*** 3.0 ± 0.7 2.3 ± 0.6###***

Systolic blood pressure (mmHg) 116 ± 11 130 ± 15* 132 ± 14 120 ± 15#***

Diastolic blood pressure (mmHg) 73 ± 8 77 ± 10 76 ± 9 70 ± 9***

Heart rate (bpm) 61 ± 4 71 ± 10*** 69 ± 10 65 ± 12##**

LDL-cholesterol (mmol.l−1) 3.6 ± 0.7 3.5 ± 0.8 3.5 ± 0.9 3.1 ± 0.8##**

HDL- cholesterol (mmol.l−1) 1.6 ± 0.5 1.2 ± 0.3*** 1.2 ± 0.3 1.3 ± 0.4**

TG (mmol.l−1) 1.1 ± 0.4 2.0 ± 1.0*** 1.9 ± 1.0 1.5 ± 0.6###**

Fasting glucose (mmol.l−1) 4.2 ± 0.5 5.0 ± 0.9*** 4.9 ± .7 4.1 ± 0.6###

Fasting insulin (mIU.l−1) 30.2 ± 15.1 40.5 ± 13.9** 39.7 ± 14.3 35.0 ± 12.3#

HbA1C (%) 5.4 ± 0.4 5.9 ± 0.4*** 5.9 ± 0.3 5.7 ± 0.3###**

HOMA-IR 2.2 ± 1.3 3.6 ± 1.4*** 3.5 ± 1.3 2.6 ± 1.1###

NT-proBNP (pg.ml−1) 22.4 ± 37.7 33.6 ± 51.3 34.3 ± 52.5 44.7 ± 79.3

IL6 (pg.ml−1) 1.2 ± 1.1 3.0 ± 3.5* 2.7 ± 2.8 1.9 ± 2.7

PAI-1 active (pg.ml−1) 7.7 ± 4.9 14.0 ± 7.1*** 12.7 ± 6.4 9.5 ± 4.1##*

Adiponectin (μg.ml−1) 32.8 ± 22.0 17.3 ± 12.0*** 17.2 ± 13.0 15.8 ± 10.6***

hsCRP (mg.l−1) 1.72 ± 2.77 4.03 ± 3.37*** 4.12 ± 3.37 3.08 ± 3.89#

TNF-α (pg.ml−1) 3.5 ± 3.0 11.7 ± 8.0*** 12.0 ± 8.3 5.1 ± 4.1###

Routine medication:

Arterial hypertension (n,%) 0 (0.0) 27 (67.5)*** 26 (78.8) 22 (66.7)***

ACE-I/ARBs (n,%) 0 (0.0) 20 (51.3)*** 16 (48.4) 15 (45.5)***

Calcium antagonist (n,%) 0 (0.0) 3 (7.5) 3 (9.1) 3 (9.1)

Beta-blockers (n,%) 0 (0.0) 6 (15.0)* 5 (15.1) 4 (12.1)*

Diuretics (n,%) 0 (0.0) 11 (27.5)*** 7 (21.2) 7 (21.2)*

Lipid lowering agents (n,%) 0 (0.0) 21 (52.5)*** 16 (48.4) 15 (45.5)***

BMI: body mass index, LDL: low-density lipoprotein, HDL: high-density lipoprotein. TG: triglycerides, HbA1C: glycated hemoglobin, HOMA-IR: homeostatic model
assessment of insulin resistance, NT-proBNP: N-terminal pro-B-type natriuretic peptide, IL6: interleukin-6, PAI-1 active: plasminogen activator inhibitor-1, hsCRP:
high sensitivity C-reactive protein, TNF-α: Tumor necrosis factor α, ACE-I/ARBs: angiotensin receptor blockers and the angiotensin converting enzyme inhibitors.
Significantly different from controls: *P < 0.05, **P < 0.01, ***P < 0.001. Significantly different from baseline in MetS: # P < 0.05, ## P < 0.01, ### P < 0.001.
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(Table 5). Log PAI-1 active (β = 0.51, P < 0.001), Log adipo-
nectin, (β = −0.27, P = 0.01), left ventricular mass indexed
(β = 0.34, P = 0.004) and central fat (β = 0.29, P = 0.03)
emerged as independent predictors of RV GLS, explaining
46% of its variance (P < 0.001). However, no relationships
were observed between delta changes of RV GLS with
other MetS components or inflammatory markers follow-
ing the lifestyle intervention (data not shown).

Discussion
We provide evidence for the first time of non-diabetic
MetS patients exhibiting subtle RV free wall systolic and



Table 2 Left ventricle conventional echocardiography and tissue Doppler data

Variables Controls (n = 40) MetS (n = 39) MetS

Baseline (n = 33) Follow-up (n = 33)

LVED diameter (mm) 47.6 ± 4.9 48.9 ± 4.5 49.1 ± 4.6 49.1 ± 4.7

LVES diameter (mm) 28.9 ± 4.7 28.9 ± 4.4 28.9 ± 4.3 29.2 ± 3.7

Posterior wall thickness (mm) 9.9 ± 1.1 11.5 ± 1.6*** 11.4 ± 1.4 10.9 ± 0.8***

IV septum thickness (mm) 9.9 ± 1.4 11.2 ± 1.5*** 11.1 ± 1.3 10.8 ± 0.9**

LV mass indexed (g.m-2.7) 48.1 ± 11.9 66.1 ± 13.5*** 63.7 ± 14.3 61.0 ± 10.9***

LVEF (%) 64.1 ± 5.3 61.0 ± 4.1** 61.0 ± 4.1 63.0 ± 3.1#

Doppler data

Mitral E velocity (cm.s−1) 66.0 ± 12.2 64.4 ± 14.4 66.0 ± 11.9 64.5 ± 13.0

Mitral A velocity (cm.s−1) 50.4 ± 12.2 60.9 ± 15.0** 61.4 ± 15.6 57.7 ± 12.4*

Mitral E/A 1.3 ± 0.3 1.0 ± 0.2*** 1.1 ± 0.2 1.1 ± 0.2*

Tissue Doppler imaging

Em (cm.s−1) 10.5 ± 2.0 9.6 ± 1.9* 9.6 ± 1.9 9.2 ± 1.0*

E/Em 5.9 ± 1.5 6.1 ± 1.6 6.1 ± 1.5 5.7 ± 0.9

LVED: Left ventricular end-diastolic, LVES: Left ventricular end-systolic, IV: inter-ventricular, LV: Left ventricular, EF: ejection fraction, Em: peak early diastolic velocity
of the mitral annulus. Significantly different from controls: *P < 0.05, **P < 0.01, ***P < 0.001. Significantly different from baseline in MetS: # P < 0.05.

Serrano-Ferrer et al. Cardiovascular Diabetology 2014, 13:116 Page 6 of 11
http://www.cardiab.com/content/13/1/116
diastolic dysfunction that was significantly improved fol-
lowing a 3-month lifestyle intervention based on healthy
dieting and increased physical activity.
Currently, a large body of evidence associates MetS

with adverse effects on left ventricular myocardial func-
tion assessed using tissue deformation imaging tools [3].
Table 3 Right ventricle conventional echocardiography and t

Variables Controls (n = 40)

RA area (cm2) 12.9 ± 2.0

RVED diameter (mm) 38.8 ± 5.0

RV FS (%) 46 ± 5

TAPSE (mm) 24.5 ± 2.4

Doppler data

Tricuspid E velocity (cm.s−1) 45.1 ± 7.4

Tricuspid A velocity (cm.s−1) 29.2 ± 5.9

Tricuspid E/A 1.6 ± 0.3

Pulmonary acceleration time (ms) 157 ± 28

Estimated mean PA pressure (mmHg) 8.4 ± 12.8

Tissue Doppler imaging

Stri (cm.s−1) 13.5 ± 2.3

Etri (cm.s−1) 12.6 ± 2.3

Atri (cm.s−1) 14.4 ± 2.3

Etri/Atri 0.87 ± 0.2

Tricuspid E/Etri 3.7 ± 0.8

IVRT (ms) 16.3 ± 15.9

RA: right atrium, RVED: right ventricular end-diastolic, RV FS: RV fractional shortenin
peak systolic velocity of the tricuspid annulus, Etri: peak early diastolic velocity of th
IVRT: isovolumic relaxation time. Significantly different from controls: *P < 0.05, **P <
## P < 0.01.
However, far less information is available on RV myo-
cardial function and whether the latter is sparse in the
settings of MetS remains largely unresolved. Most of the
available studies refer to assessment of RV free wall vel-
ocities by TDI and report inconclusive results, especially
for longitudinal systolic velocities [9-11,20]. Our data of
issue Doppler data

MetS (n = 39) MetS

Baseline (n = 33) Follow-up (n = 33)

13.0 ± 2.4 12.5 ± 1.9 12.7 ± 1.7

40.5 ± 5.7 39.0 ± 4.4 40.7 ± 4.5#

44 ± 5 43 ± 5 44 ± 4

22.5 ± 2.5*** 22.4 ± 2.2 22.8 ± 2.1**

46.1 ± 8.0 46.4 ± 8.0 46.6 ± 8.3

33.1 ± 7.5* 33.0 ± 8.0 29.2 ± 5.1#

1.4 ± 0.3* 1.4 ± 0.31 1.6 ± 0.40##

151 ± 30 150 ± 30 154 ± 20

10.8 ± 13.6 9.5 ± 12.7 8.7 ± 11.2

12.6 ± 2.0* 12.2 ± 2.0 11.9 ± 1.6**

11.3 ± 2.3* 11.6 ± 2.2 11.0 ± 2.3*

14.2 ± 2.4 14.1 ± 2.6 13.3 ± 3.0*

0.82 ± 0.2 0.85 ± 0.2 0.88 ± 0.2

4.2 ± 1.1* 4.1 ± 1.0 4.3 ± 1.2*

41.1 ± 26.0*** 39.6 ± 23.1 33.8 ± 21.9***

g, TAPSE: tricuspid annular plane systolic excursion, PA: pulmonary artery, Stri:
e triscupid annulus, Atri: peak late diastolic velocity of the tricuspid annulus,
0.01, ***P < 0.001. Significantly different from baseline in MetS: # P < 0.05,



Table 4 Right ventricle free wall longitudinal strains and strain-rates

Variables Controls (n = 40) MetS (n = 39) MetS

Baseline (n = 33) Follow-up (n = 33)

RV strain (%)

RV GLS −25.7 ± 4.9 −21.4 ± 4.5*** −21.8 ± 3.8 −24.3 ± 4.0##

Basal segment −27.1 ± 7.1 −23.4 ± 5.1* −23.7 ± 4.7 −24.7 ± 7.0

Mid segment −25.4 ± 5.4 −20.9 ± 5.0*** −21.1 ± 4.7 −23.6 ± 4.2#

Apical segment −24.7 ± 6.1 −19.7 ± 6.0*** −20.1 ± 5.8 −23.7 ± 5.4##

RV GLS TTP (ms) 94 ± 6 92 ± 10 93 ± 10 93 ± 8

RV global systolic SR (.s−1) −1.8 ± 0.4 −1.2 ± 0.4*** −1.2 ± 0.4 −1.5 ± 0.4##

RV global systolic SR TTP (ms) 51 ± 6 50 ± 9 48 ± 9 50. ± 10

RV global diastolic SR (.s−1) 1.7 ± 0.5 1.3 ± 0.3** 1.3 ± 0.3 1.6 ± 0.4##

RV global diastolic SR TTP (ms) 123 ± 10 121 ± 16 122 ± 16 118 ± 14

GLS: global longitudinal strain calculated from the mean of the basal, mid and apical segments of the right ventricle free wall, RV: right ventricular, SR: strain rate,
TTP: time to peak. Significantly different from controls: *P < 0.05, **P < 0.01, ***P < 0.001. Significantly different from baseline in MetS: # P < 0.05, ## P < 0.01.

Table 5 Relationship between RV free wall global strain
and clinical, biological and echocardiographic data

Variables Univariate analysis

r P

Age (Years) 0.15 ns

Systolic blood pressure (mmHg) 0.12 ns

Diastolic blood pressure (mmHg) 0.14 ns

Central fat 0.32 **

Waist circumference 0.45 ***

BMI 0.39 ***

HDL −0.39 ***

LDL −0.05 ns

Triglycerides 0.12 ns

HbA1C 0.36 **

Fasting glucose 0.35 **

HOMA-IR 0.22 *

TNF-α 0.31 *

PAI-1 active 0.52 ***

IL-6 0.30 **

Adiponectin −0.53 ***

Left ventricular mass indexed 0.43 ***

Etri −0.37 **

Stri −0.26 *

E/Etri 0.39 **

BMI: Body mass index, LDL: low-density lipoprotein, HDL: high-density lipoprotein,
HbA1C: glycated hemoglobin, HOMA-IR: homeostatic model assessment of insulin
resistance, TNF-α: Tumor necrosis factor α, PAI-1 active: plasminogen activator
inhibitor-1, IL6: interleukin-6, Etri: peak early diastolic velocity of the tricuspid
annulus, Stri: peak systolic velocity of the tricuspid annulus. Significant differences
categorized as: *P < 0.05, **P < 0.01, ***P < 0.001. ns: non-significant.
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reduced systolic and early diastolic longitudinal veloci-
ties agree with some of these works [10,11] but not all
[9,20]. A major limitation of TDI over speckle tracking
imaging is however, its lack of sensitivity (dependency
on loading conditions, tethering effect, translational car-
diac movement) in detecting subtle myocardial changes
[3,37,39]. This is of particular concern when evaluating
systolic abnormalities but also the impact of interven-
tional strategies (see paragraph below). Additionally, due
to insonation angle-dependency, TDI data are usually re-
stricted generally to basal and sometimes mid segments
of the left or right ventricle. Subsequently, only a partial
understanding is permitted of the effect of MetS on
regional myocardial performance. Using sensitive echo-
cardiographic tolls such as speckle tracking imaging sur-
passes most of the TDI aforementioned limitations [39].
Speckle tracking imaging is feasible and applicable to the
RV and has been shown to provide extensive informa-
tion about RV myocardial function in various cardiomet-
abolic disease [15,20,37,40]. In the present study, we
used vector velocity imaging, a technique that has been
validated for accurate assessment of myocardial deform-
ation [33,41] to fully explore the entire RV free wall
mechanics. We demonstrated subtle alterations of both
systolic and diastolic linear deformations encompassing
all segments of the RV free wall in MetS patients free of
type 2 diabetes. These results agree with those recently
published by Tadic et al. [20] in MetS individuals also
free of diabetes.
Abdominal obesity, a key component of MetS, is

consistently associated with major increases in pro-in-
flammatory adipocytokines, such as TNF-α, IL-6, hsCRP
or PAI-1 active, as well as reduced protective cytokines,
such as adiponectin, agreeing with our data [42-44].
Growing evidence suggests a pivotal role of visceral adi-
pose tissue to the left ventricular myocardial dysfunction
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observed in various metabolic diseases, postulated to occur
via a low-grade state of inflammation [45-47]. Whether this
is also true for RV myocardial dysfunction in MetS remains
largely unknown. To our knowledge, only Tadic et al. [20]
documented from univariate and multivariate regression
analysis independent associations between global RV free
wall deformations and some MetS criteria including waist
circumference, fasting glucose and systolic blood pressure
in MetS individuals free of diabetes. The results of the
present study confirm and extend these results by demon-
strating significant relationships between RV GLS and ab-
dominal obesity as well as inflammatory biomarkers. From
multivariate analysis, central fat, PAI-1 active as well as
adiponectin, appeared as significant contributors to RV free
wall dysfunction. Central adipose tissue-induced inflamma-
tion might have precipitated the RV free wall myocardial
abnormalities reported here via enhanced oxidative stress,
adversely affecting coronary endothelial function as well as
impairing cardiomyocyte calcium handling and increasing
fibrosis [47-49]. Of note, adiponectin exerts cardiovascular
protective effects via its ability to limit apoptosis, oxidative
stress and inflammation in cardiomyocytes and endothelial
cells [42]. Nonetheless, the depressed RV GLS may also be
explained by ventricular interdependence, and specifically,
left ventricular hypertrophic remodeling, through direct
mechanical interactions between the two chambers. As
previously demonstrated, left ventricular hypertrophy and
dilation (a remodeling classically observed in MetS [3] and
in the present population), result in RV compression lead-
ing in turn to impaired function [50]. Supporting this
assumption, not only indexed left ventricular mass corre-
lated with RV GLS but also appeared as one of its main
contributors from stepwise multiple regression analysis.
To the best of our knowledge, no studies have examined

the effect on RV myocardial function of non-pharmaco-
logical interventional strategies in MetS populations. The
other major novel finding from the present study was that
a 3-month lifestyle intervention comprising nutrition and
exercise training was able to fully restore RV GLS to
normal values of age-matched healthy controls. Of note,
improvements in RV free wall function were evidenced
only using sensitive tools such as vector velocity imaging,
as TDI indices were not changed. RV myocardial function
enhancements have also been reported with obesity
following interventions involving low calorie diet [51].
Agreeing with previous data [22], the lifestyle intervention
favorably impacted on abdominal obesity, glucose intoler-
ance and most biomarkers of inflammation. Despite signifi-
cant relationships between RV GLS and most of MetS
components at univariate analysis, no correlations were
noticed between relative change data after the intervention.
This could be due in part to the low magnitude of changes
observed and a relatively small sample size, although pa-
tients acted as their own controls. Accumulation of ectopic
fat to the heart is emerging as the key component of
myocardial dysfunction in metabolic diseases [12,47,52].
Increased epicardial fat, as established in MetS [53] is a
local source of pro- and anti-inflammatory cytokines
whereas visceral abdominal fat is mainly responsible for
the increased systemic inflammation [42,44]. Although
not measured in the present study, observed improve-
ments in the present study could be attributed to diet and
exercise-induced reduction in cardiac adiposity, in turn
lowering local inflammation and oxidative stress. Of note,
a low calorie diet program in 20 severely obese patients
[54] decreased epicardial fat more than in other sites of
adipose tissue and improvement in LV diastolic function
was more strongly related with epicardial fat changes than
with other adiposity indices.
Despite its key role in left ventricular filling, RV function

has been insufficiently investigated in cardiometabolic
diseases. With prevalence reaching alarming proportions
worldwide, MetS is now considered to be the driving force
for a cardiovascular disease epidemic. In this context, the
present study underlines the necessity for a close clinical
RV monitoring in MetS patients even when type 2 dia-
betes is not associated. Moreover, this study underlines
the importance of central obesity and its associated
inflammation as independent factors explaining RV
mechanical abnormalities, highlighting the need for
treatment of central fat and inflammation to decrease
or prevent the deleterious impact of MetS on RV function.
Finally, the present work emphasizes the importance of
lifestyle changes since the RV dysfunction can be correc-
ted even only three months after an exercise and nutrition
intervention.

Study limitations
A first limitation of the present study is its relatively small
sample size. Additionally, most of our MetS patients pre-
sented with arterial hypertension and half were on ACE-I/
ARBs, which considering previous studies [18,20,55] could
have confounded our results on RV free wall function.
However, blood pressure did not correlate with RV GLS,
nor did it emerge as an independent contributor in multi-
variate analysis. Additionally, there were no differences in
RV free wall mechanics indices between subgroups of
MetS treated or not for hypertension. Interestingly,
Gökdeniz et al. [12] did not shown in MetS patients any
contributing effect of coexisting hypertension to RV free
wall longitudinal strain by speckle tracking imaging. In
contrast, systolic blood pressure emerged as an independ-
ent contributor to the altered global RV free wall strains
reported by Tadic et al. [20] in non-diabetic MetS patients.
Further studies will therefore be needed to clarify the
independent effect of mild to moderate hypertension, as
encountered in MetS, on RV free wall mechanics. Ma-
nipulation of the renin-angiotensin-aldosterone system
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via ACE-I/ARBs has been shown to affect RV remodel-
ing and possibly RV function [55,56]. It is however,
unlikely that ACE-I/ARBs influenced our results since
no differences in RV GLS were observed between the
subgroups of MetS patients taking or not ACE-I/ARBs
medication. Right atrial pressure is an important com-
ponent of RV function [32]. In our study, right atrial
pressures were not invasively measured through right
heart catheterization due to ethical considerations. Spe-
cifically, pressures were estimated from E/Etri and right
atrial area. Although significant, the differences between
the 2 groups in E/Etri were low (3.7 ± 0.8 vs 4.2 ± 1.1,
P = 0.02) and most importantly only one MetS patient
out of 39 presented with a ratio greater than 6; a cut-off
value proposed by Nagueh et al. [31] that can be consid-
ered to be a marker of RA pressures greater than
10 mmHg. Furthermore, no right atrial remodeling was
observed in our MetS patients and E/Etri failed to correlate
with right atrial area (r = 0.06 P = 0.62). Collectively, these
results favor the absence of elevated right atrial pressures
in our MetS patients. Subsequently it is unlikely that
increased right atrial pressures could have accounted for
their reduced RV GLS. Of note, stepwise multiple regres-
sion results indicated that E/Etri was not a significant con-
tributor to the RV GLS. Additionally, no changes in E/Etri
ratio but also right atrial area were noticed following the
lifestyle intervention program while at the same time, the
latter fully restored RV GLS to normal values, demonstrat-
ing that variables were not independently associated. As
previously noted, cardiac adiposity was not measured and
whether it is involved in the RV myocardial abnormalities
reported here and whether improvement in RV function
after lifestyle intervention are linked to favorable impacts
on myocardial steatosis and/or epicardial fat remains to be
determined. Of note, Gökdeniz et al. [12] recently demon-
strated in MetS patients using speckle tracking imaging,
that epicardial fat was independently associated with RV
free wall global longitudinal strain.
In conclusion, RV myocardial systolic and diastolic ab-

normalities in MetS patients free of type-2 diabetes were
partially accounted for by central adiposity-induced changes
in pro- and anti-inflammatory cytokines as well as ven-
tricular interdependence, through direct mechanical inter-
actions between the RV and left ventricular chambers. A
lifestyle intervention based on healthy dieting and physical
activity was associated with fully restored RV free wall me-
chanics to healthy control level; indicating probably that
cellular and sub-cellular alterations were not permanent
but still modifiable throughout adequate interventional
strategies. Special attention should be paid to this specific
population in clinics, as earlier identification of asymp-
tomatic patients at high risk of evolution to RV failure is
of primary importance because it may facilitate timely and
more effective intervention.
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