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Abstract

Background: Image registration algorithms are frequently used to align the

Engineering, University of Oxford, reconstructed brain PET frames to remove subject head motion. However, in

Oxford, UK occupancy studies, this is a challenging task where competitive binding of a drug
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Hospital, 2nd Floor, Burlington can further reduce the available signal for registration. The purpose of this study is to
Danes Building, London, UK evaluate two kinds of algorithms—a conventional frame-by-frame (FBF) registration
Full list of author information is and a recently introduced groupwise image registration (GIR), for motion correction

avallable at the end of the article of a dopamine D3/D2 receptor occupancy study.

Methods: The FBF method co-registers all the PET frames to a common reference
based on normalised mutual information as the spatial similarity. The GIR method
incorporates a pharmacokinetic model and conducts motion correction by
maximising a likelihood function iteratively on tracer kinetics and subject motion.
Data from eight healthy volunteers scanned with [11C]-(+)-PHNO pre- and
post-administration of a range of doses of the D3 antagonist GSK618334 were
used to compare the motion correction performance.

Results: The groupwise registration achieved improved motion correction results, both
by visual inspection of the dynamic PET data and by the reduction of the variability in
the outcome measures, and required no additional steps to exclude unsuccessfully
realigned PET data for occupancy modelling as compared to frame-by-frame
registration. Furthermore, for the groupwise method, the resultant binding potential
estimates had reduced variation and bias for individual scans and improved half
maximal effective concentration (ECsp) estimates were obtained for the study as a
whole.

Conclusions: These results indicate that the groupwise registration approach can
provide improved motion correction of dynamic brain PET data as compared to
frame-by-frame registration approaches for receptor occupancy studies.
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Background

Dynamic PET brain scans are susceptible to head motion that distorts the tissue-to-
voxel mapping, and this leads to degraded PET images from acquisitions that can last
up to 2 h. If uncorrected, motion-induced attenuation correction mismatch, inter-
frame misalignment and intra-frame blurring in the PET data will make the quantifica-
tion of the tracer kinetic data unreliable [1]. Previous approaches to the motion prob-
lem have included the use of head restraints or external motion tracking systems that
have been developed to try to record the motion parameters [2—5]. However, these
methods have limitations either due to patient discomfort, accuracy or ease of use.

Meanwhile, image-based computational methods have been developed to establish
the spatial correspondences between PET data at different time frames [6-8], allowing
for post-acquisition corrections to be applied. Such methods perform a rigid frame-by-
frame (FBF) image registration of PET time frames to a common reference image,
which is usually a PET image derived from a single frame, a weighted sum of frames or
an associated magnetic resonance (MR) image for the subject. The FBF registration
methods have been widely used for motion correction in recent studies [9-12] due to
the ease of implementation based on existing publicly available image registration soft-
ware packages, such as Statistical Parametric Mapping (SPM) (used in [13]), AIR (used
in [14]), FLIRT (used in [15]) and the commercial software PMOD. FBF methods are
shown to improve the integrity of PET data but have potential limitations that need
consideration. For example, the FBF registration is solely based on maximising the
spatial similarities between images and it can converge to inaccurate solutions in the
presence of noise [16].

Recently, a groupwise image registration (GIR) framework for dynamic PET data has
been introduced for motion correction [17, 18]. The GIR method enables noise model-
ling and accounts for tracer kinetics by incorporating a pharmacokinetic model with ei-
ther an arterial input function (AIF) [18] or a reference tissue input function [17].
Improved registration results as compared to FBF methods have been demonstrated in
simulation-based validations. This work aims to evaluate the motion correction per-
formance of these image-based methods on an occupancy study where the competitive
binding can impose further challenges for conducting image registration on the PET
images. Data from a dopamine D3/D2 receptor occupancy study with [11C]-(+)-PHNO
were used. The study was designed to measure the half maximal effective concentration
(ECsp) of the D3 antagonist GSK618334. For the reconstructed PET time frames, three
separate approaches to motion were applied: (1) no motion correction, (2) frame-by-frame
motion correction and (3) groupwise image registration motion correction with a reference
tissue input. Following motion correction, kinetic analysis was applied to each dataset to
derive regional binding potential estimates for each scan and then modelling of the com-
petitive binding of the drug to derive its ECs, was performed using all scans in the study.

Methods

Human [11C]-(+)-PHNO PET study

The motion correction algorithms were evaluated on [11C]-(+)-PHNO PET occupancy
data involving a range of doses of the antagonist GSK618334. Data from eight subjects,
from a previously reported study [19], were used here. All subjects were healthy, males,
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drug-free, non-smoking volunteers, aged between 25 and 55 years and with body
weights and BMI in the normal range. All subjects gave written informed consent,
and their eligibility was confirmed via medical history, physical examinations and
standard tests. Further details of the inclusion and exclusion criteria can be found on
www.clinicaltrials.gov by reference to NCT00814957, and the study was approved by
East of England Hatfield REC (known as NRES Committee East of England—Welwyn at
the time of the study). Each subject received a baseline PET scan, then a single oral dose of
5-550 mg of GSK618334 followed by two further PET scans performed between 1.5 and
29 h post-administration of GSK618334. Venous blood was sampled for measurements of
GSK618334 plasma concentration. The [11C]-(+)-PHNO PET scans were acquired using a
Siemens Biograph 6 PET-CT with Truepoint gantry in 3D mode and then reconstructed
using filtered back projection with corrections for dead time, random coincidences,
variations in detector sensitivity, attenuation (based on a low-dose CT acquisition) and
scatter. The reconstruction had the measured resolution of 9 mm (transaxial) and 7 mm
(axial) in full width at half maximum at the centre of the field of view, and after reconstruc-
tion, the PET images were filtered with a Gaussian filter of 5 mm in full width at half
maximum in the three orthogonal planes. Dynamic data were acquired using 26 frames
(durations 8 x 15 s, 3 x 1 min, 5x 2 min, 5x 5 min, 5 x 10 min). Arterial blood data was
also acquired and enabled plasma input-based modelling to be applied for determination of
the final binding potential BPyp regional outcome measures of interest. Each subject also
received a high-resolution T1-weighted MR scan with a Siemens Tim Trio 3T scanner
(Siemens Healthcare, Erlangen, Germany). A U-shaped head holder with foam padding
designed to snugly hold the subject’s head in place laterally, with a soft Velcro strap across
the forehead to aid as a reminder to the subject, was used in this study.

FBF motion correction

The FBF method co-registers all the PET frames to a common reference based on
spatial similarity. The PET frame acquired between 13 and 15 min in the scan was used
as the reference frame, and normalised mutual information (NMI) was used as the cost
function. The settings of the FBF method used in this work have been optimised in our
previous internal investigations. Frames 13—-15 min were selected based on previous
(unpublished) work which optimised the method by evaluating the performance using a
range of possible reference frames for [11C]-(+)-PHNO. The image of [11C]-(+)-PHNO
at this time in the scan contains features that are common to both early distribution and
later binding phases. Although the duration of this frame (2 min) is short, it balances the
desire to select a frame with minimal motion whilst capitalising on the high imaging
statistics at this time in conjunction with representation of all the key image features. The
FBF algorithm was implemented in MATLAB 7.7, using functions available within the
Statistical Parametric Mapping (SPM8, http://www.filion.ucl.ac.uk/spm/) with the default
settings for the optimisation, interpolation, image smoothing and histogram smoothing.

GIR motion correction

The proposed GIR algorithm conducts motion correction by solving the maximum
likelihood problem. Assuming the measurement is distributed as a multivariate Gauss-
ian, the likelihood of the measured dynamic PET data Y can be formulated as
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= TIT 1 (Y (T, (%), t6) Yo (x; tk))z)
L(®D,T;Y) H 11 e exp( 2102 (. K) (1)
where Y, is the predicted PET data determined by the tracer kinetic parameter @, Ty is
the spatial transformation that corrupts the voxel-to-tissue mapping for the kth frame,
o‘z(xj, k) is the variance term describing the measurement noise level and M and F are
the numbers of voxels and time frames, respectively.

The unknown T and @ can be optimised iteratively until convergence. For brain im-
ages, T describes the rigid head motion using three translations and three rotations. Y¢
can be described by the generalised reference tissue model embedded in a basis func-
tion framework and solved by the method of basis pursuit denoising [20] as follows.

Let C7{¢) be the tracer concentration time course in the target tissue, then C{(f) can be

expressed as an expansion on a basis as Cr(t) = ¢yCr(¢) +Zil¢i%’ where

Y = e 9%t ®Cr(t) and Cg(?) is the tracer concentration time course in the reference tissue.
A discrete set of values can be selected for 6; from a physiologically plausible range spaced
in a logarithmic manner to elicit a suitable coverage of the kinetic spectrum. The measured
PET data Y(x, £) corresponds to C{(t) as

1 (%
Y(x,tx) = o | Cr(t)dt =Yy, (2)
L=t Je

where £; and t{ are the start and end times for the kth frame (k=1 --- F). Accordingly,
the basis functions can be written as

1 G
Vo / Crlt)dt
' &

T,

(3)

Vik =
"

&
/ eIt QCr(t)dt, i=1N
b
The unknown tracer kinetic parameter matrix of the image @ can then be deter-
mined by solving Y = ¥®. In practice, to account for the uncertainty of the measure-
ments, the weighted least squares problem

WIY=W: ¥ D (4)

can be considered, where W is the inverse of the covariance matrix corresponding to the
noise variance term ¢” in Eq. 1. The noise variance for decay-corrected PET data can be

modelled as o?(k) = ZY(X}, tr)/ (t6~t;) x dcf (k), derived from the variance model 1
J

in [21], where dcf (k) = A(ti-t},)/ [exp(-At}) —exp(-Ats)] is the decay correction func-
tion and A is the decay constant of the isotope. Given the independence of the frames, W
is diagonal and can be calculated as Wy = 1/0*(k).

The basis is typically overcomplete (N > F - 1), leading to an under-determined set of
equations that basis pursuit denoising solves with the addition of a 1-norm penalty
term [20]
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Here, 4 > 0 is a regularisation parameter which balances the approximation error and
sparseness of @ and imposes a unique solution. To avoid the difference in the scales,
the basis functions are normalised here so that [|¥ll, =1 for all i. We previously pro-
posed an efficient way to determine the value for u [17], and based on this approach,
we use a value of y = 8.69 for [11C]-(+)-PHNO.

This general reference tissue kinetic model is used as the pharmacokinetic model in
the GIR method. It constrains the registration in a groupwise fashion by using the tem-
poral information. The complete algorithm is summarised in Fig. 1. Step 1 initialises
the algorithm using the identity function for T. In step 2, the discrete reference data is
first extracted from the motion-corrected PET data Y(T™ '(x), ¢) as a regional time ac-
tivity curve from the anatomical reference region of choice, and the reference input
function Cg(£) is generated using linear interpolation. For the purpose of describing the
tracer kinetics, rather than estimating the absolute parameters for binding or uptake, a
region with low specific binding is mathematically appropriate for deriving the refer-
ence input. Step 3 calculates the basis functions which are convolutions of the refer-
ence tissue input and the pre-defined exponentials. Step 4 solves the kinetic model
fitting via basis pursuit denoising. In step 5, the original motion-corrupted PET data
Y(x, t) is registered to the model-predicted PET data Y4 to update the motion estima-
tion T and motion-corrected PET data Y(T™ '(x), £). Steps 2—5 repeat until convergence,
and the algorithm returns the motion-corrected PET data Y(T™ '(x), £) in step 6.

4D PET data Exponentials

Input data

@ | L

Input function

Motion correcting

Intermediate

® ‘. @ | =

< ~ Basis functions

£ ®

&c

Motion corrected Model predicted

Fig. 1 Schematic illustration of the proposed groupwise image registration (GIR) algorithm for motion
correction. With the initialisation in step 7, the algorithm repeats steps 2-5 until convergence and returns
the final motion corrected dynamic PET data in step 6
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In this work, for kinetic modelling in the GIR motion framework, the reference input
function was derived from the grey matter of the cerebellum for the [11C]-(+)-PHNO
PET data. The reference region was delineated via nonlinear registration using SPM8
(http://www.fil.ion.ucl.ac.uk/spm) of a predefined brain atlas [22] to the subject’s MRI
(aligned to the PET image) to propagate the segmentation.

Regional calculation of [11C]-(+)-PHNO BPyp
Regional analysis of BPyp and occupancy analysis were performed after (1) no motion
correction, (2) FBF motion correction and (3) GIR motion correction with reference
tissue input. The [11C]-(+)-PHNO kinetics were analysed for six regions-of-interest
(ROIs): substantia nigra (SN), globus pallidus (GP), ventral striatum (VST), dorsal
caudate (CD), dorsal putamen (PU) and thalamus (TH). These target ROIs were de-
fined manually according to guidelines described previously [22]. GP, VST, CD, PU and
TH were drawn on each subject’s structural T1-weighted magnetic resonance imaging
(MRI). The MR T1-weighted image was registered to the time-weighted integral of the
dynamic PET images following motion correction using the rigid registration function
in SPM8 with a mutual information cost function. SN was defined on each subject’s
baseline PET integral image given the insufficient contrast available from MRI data. Re-
gional time-activity curves (TACs) were then derived for each ROL

Subsequently, a two-tissue compartmental (2TC) plasma input model was applied to
the regional time activity curves to appropriately quantify regional [11C]-(+)-PHNO
volume of distribution (V) estimates in the basal ganglia ROIs [19]. This included a
fixed blood volume correction of 5 %. Regional BPRY! estimates were then derived for

each of the target regions using the cerebellum as the reference region,
ROI _1,CER
BPROI o VT _VT
ND — 1/ CER
T

Competitive binding of drug and PHNO
The [11C]-(+)-PHNO occupancy study was designed to measure the dopamine D3 and
D2 receptor occupancy of GSK618334 and requires the application of a two-site com-

petitive binding model [19]. Given the baseline binding potential, BPX3¢, the binding
potential following drug administration, BPifBg, and the plasma concentration of the
drug (GSK618334), C)™¢, then,

d D3 1 fDB
rug base PHNO ~J PHNO
BI)ND - BPND g + Clre ’ (6)
1 + ECd’;ug‘DS 1 + Ecd[;ug,DZ
50 50

where f?fmo is the regional fraction of baseline [11C]-(+)-PHNO BPyp corresponding
to D3 binding with values of 0.87 for SN, 0.66 for GP, 0.39 for VST, 0.69 for TH, 0.21
for CD and 0.14 for PU [19], ECg(r)ug’D3 and Ecg(r)ug,DZ are the plasma concentrations of
the drug (GSK618334) that would result in 50 % occupancy of the D3 and D2 recep-
tors, respectively.

Recent work has demonstrated that for true quantification, it is necessary to account
for mass effects of [11C]-(+)-PHNO itself and a small displaceable specific signal in the
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cerebellum in addition to competitive binding of the drug at D3 and D2 sites [19]. For
the actual fitting of the [11C]-(+)-PHNO BPyp data, we used an extension of the com-
petitive binding model in Eq. 6 that includes corrections for PHNO mass dose effect at
the D3 sites and cerebellum specific binding [19]. This model is given in Additional file 1.
Note that when modelling the competitive binding, all regions were fitted simultaneously

and the ECI¢™* and ECH"¢P? parameters assumed constant across all regions and
subjects [19].

Results

Motion correction of [11C]-(+)-PHNO data

The GIR and FBF motion correction algorithms were applied on reconstructed [11C]-
(+)-PHNO PET data to address inter-frame misalignment caused by subject motion.
PET data that had already been attenuation corrected was used due to the clinical pipe-
line and the use of PET data without attenuation correction will be considered in the
“Discussion” section. Firstly, visual inspection using the movie mode in FSLview
(http://fsl.fmrib.ox.ac.uk/fsl/fslview/) was performed on the 24 scans obtained from the
eight healthy subjects without motion correction to derive an initial qualitative assess-
ment of motion. In four scans, there was severe motion with up to 10° rotations or
40 mm translations. In eight scans, there was motion at the level of the voxel size
(2 mm), and in 12 scans, the motion was difficult to detect. For the motion correction
algorithms, a metric summarising the displacement was calculated for each time frame

by using the estimated translation and rotation parameters,

‘ 1 M 2
Displacement = \/M Z}.ZI T (%) @)

where T is the rigid transformation determined by the translations and rotations, M is
the number of all the voxels and x; is the coordinate of voxel j. Figure 2 shows a
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Fig. 2 Summary of displacements introduced by FBF and GIR MC methods for [11C]-(+)-PHNO PET
occupancy study data. In each box, the central mark denotes the median, the edges of the box are the 25th
and 75th percentiles, the whiskers extend to the most extreme data points not considered to be outliers,
and outliers are plotted individually using the symbol +. Subjects (S1-58) exhibited various degrees of
motion during the scans. The scans marked with grey background had visually negligible motion following
assessment by an observer viewing the data in the movie mode in FSLview. For these scans, the FBF
method introduced up to 5 mm displacement, whereas the displacement introduced by the GIR method
was at a sub-voxel level. Plasma concentration of GSK618334 is also shown for each scan
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summary of the displacements introduced by both FBF and GIR motion correction al-
gorithms for the 24 scans. Whilst the individual reference frames for both the FBF and
GIR methods may be different, we are interested in comparing the distributions of the
displacements which should be insensitive to this.

The computation time of the GIR motion correction algorithm depended on
the amplitude of the motion and the image noise. On a desktop workstation
(CPU 3.20 GHz, 16 GB RAM) with MATLAB 7.7, the GIR algorithm took be-
tween 20 and 90 min of computation time for each 26-frame dynamic image; the
FBF algorithm took in general 60 min. No GPU or parallel computing was ap-
plied in this work.

Figures 3 and 4 illustrate the performance of the GIR and FBF algorithms when
registering [11C]-(+)-PHNO PET data from subjects with visually obvious motion.
The motion artefact was well corrected by the GIR algorithm as indicated by the
sagittal view of the PET data. Furthermore, for the baseline scan, the voxel-based
TACs from dorsal caudate and globus pallidus shown on the sagittal slice are dis-
played before and after GIR motion correction together with the normalised
population TACs for these ROIs. The population TACs were generated by aver-
aging the baseline [11C]-(+)-PHNO PET data after motion correction over the
eight healthy subjects and were scaled according to dose and subject weight. The
consistency with the normalised population data after MC by the GIR algorithm
provides supporting evidence for the successful removal of the inter-frame mis-
alignment caused by motion.

* D ngrsal caudate

Activity (kBq/ml)

0 20 40 60 80

20 40 *’globus pallidus
~ 351+
E 30 ++
15 & Lo, 8398 3
Q2 <20 <
£ '~99%9%
200 000 =e &,
10 »
Ho1s
5 + Before MC
p 10 o  After GIR
5 & s 4 After FBF
‘‘‘‘‘ Population

o 20 40 60 80
Time (min)

Fig. 3 Selected temporal frames from a sagittal slice from subject 2's baseline [11C]-(+)-PHNO data.
Times are mid-frame times. a Before motion correction, b after motion correction by the conventional
FBF algorithm and c after motion correction by the proposed GIR algorithm. Units are kBg/ml. d TACs
from voxels in dorsal caudate and globus pallidus, depicted in colours corresponding to the voxels
shown in a, b and ¢, which are spatially fixed to demonstrate the displacement. The subject exhibited
obvious rotation of ~10° as shown on the sagittal slices in a, which was corrected by the proposed
method, as shown in ¢. The TACs for these regions were also obtained from all eight healthy subjects’
baseline data after motion correction, and the population TACs were generated by averaging TACs normalised
for [11C]-(+)-PHNO dose and subject weight. These population TACs were scaled to match subject 2's baseline
data and are shown in d. The tracer kinetics showed consistency with the population data after GIR motion
correction. The scan had no GSK618334 taken, and the [11C]-(+)-PHNO injected activity was 384.9 MBq
(injected mass 4.24 ug)
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Fig. 4 Selected temporal frames from a sagittal slice from subject 2's follow-up [11C]-(+)-PHNO data. Times are
mid-frame times. a Before motion correction, b after motion correction by the conventional FBF algorithm and
c after motion correction by the proposed GIR algorithm. Units are kBg/ml. The GSK618334 plasma
concentration in the scan was 58.2 ng/ml, and the [11C]-(+)-PHNO injected activity was 139.8 MBq
(injected mass 2.35 ug)

Binding potential of [11C]-(+)-PHNO

Regional estimates of [11C]-(+)-PHNO BPyp were derived for baseline and post-
GSK618334 PET scans for SN, GP, VST, CD, PU and TH before and after motion cor-
rection. During the 2TC kinetic parameter estimation, two unrealistically large Vr
values were obtained for the data with no motion correction, three unrealistically large
Vr values were obtained after motion correction by FBF, whereas none were obtained
after MC by GIR. For the scans where there were unrealistic values of V5 the motion
correction error of FBF was not always visually detectable, suggesting that small re-
sidual motion can introduce significant errors into V; particularly for regions with
slower kinetics such as the globus pallidus and ventral striatum. Corresponding BPyp
values for baseline and post-dose scans are shown in Fig. 5a with unrealistic values
shown above the line breaks. After excluding the unrealistic data points considered as
convergence failure, the inter-subject variability was assessed on baseline BPyp by the
coefficient of variation (CV)

o U(BPND)

CcV=——"-—
#(BPxp)

(8)

where ¢ and y are the standard deviation and mean across the eight subjects, respect-
ively. The CV values before motion correction, after motion correction by the FBF algo-
rithm and by the proposed GIR algorithm are shown in Table 1, together with the ROI
size in cubic centimetres. These data provide further evidence for improved registration
with GIR through the significant reduction in the CV of baseline BPyp data across all
regions. It was also apparent that the conventional FBF algorithm could lead to subse-
quent convergence problems in the kinetic fitting, whereas the proposed GIR algorithm
avoided such problems, thus eliminating the need to subjectively exclude outliers due
to unsuccessful motion correction. The conventional FBF algorithm produced less of a
reduction in CV (even after excluding unrealistic data).
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Fig. 5 Competitive binding analysis of [11C]-(+)-PHNO data. a Fits (shown as curves) to the baseline and
post-dose data before and after motion correction by FBF and GIR (shown as circles, crosses and stars) using
a competitive binding model with unweighted BPyp data. The unweighted sum of squared differences
(SSQ) of the competitive model fitting was calculated for each BPyp data set and was then scaled to the
SSQ of data before motion correction so that SSQ_motion = 1. Other than for the GIR approach, all methods
resulted in some unrealistic estimates of BPyp that affected the fits. b Competitive model fits of BPyp data
points derived from PET data before MC with removal of unrealistic values; after MC by FBF with the removal of
unrealistic values; after only MC by the proposed GIR

Occupancy and estimation of the ECs, of GSK618334
The BPyp of [11C]-(+)-PHNO measured in the follow-up PET data, after dosing with
GSK618334, was modelled using the extension of Eq. 6 that is provided in the
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Table 1 The inter-subject variability (CV) in baseline BPyp before and after motion correction (MC)
Region (ROI'size) SN (03 cm® GP (08cm® VST(1.0cm® CD@28cm®) PU@2cm® TH (53 cm?

CV before MC® 0.3699 0.3405 06345 0.2825 0.2627 05172
CV after FBF® 0.1785 0.7411 0.2857 0.1173 0.0848 0.1630
CV after GIR 0.1523 0.089 0.1822 0.0962 0.0772 0.1606

Unrealistically large V7 values due to unsuccessful convergence in 2TC kinetic parameter estimation as a result of
uncorrected motion artefacts were removed. ROI sizes are given in cubic centimetres

*Two outlier values removed

PThree outlier values removed

Additional file 1. The two-site competitive binding model, including correction for
PHNO mass on D3 binding and a small specific signal in the cerebellum, was applied
to the measured data before and after motion correction. The BPyp values obtained be-
fore motion correction, and after applying the FBF and GIR algorithms, are shown in
Fig. 5a for each of the six target ROIs, together with the competitive binding model fits.
Motion correction using the proposed GIR algorithm avoided the convergence prob-
lems that led to data points with unrealistic values, which occurred with uncorrected
and FBF corrected PET data.

In practice, to maintain the integrity at the study level, it is possible (though not
ideal) to remove the outliers with appropriate testing. Here, we considered BPyp values
greater than ten as outliers. In Fig. 5b, the competitive binding model fits are shown
using BPyp before motion correction with outliers excluded, BPyp after FBF with out-
liers excluded, and BPyp estimates obtained directly from the GIR algorithm with no
exclusions. Even with all this extra help for the other methods, GIR still produces the
best fit to the competitive binding data as judged by its ability to achieve the smallest

SSQ.
The primary outcome measures of this study, E(Z(Si(r)ulé”'D3 and ECgf)ug'Dz of GSK618334,

estimated using Eq. 6, are presented along with 95 % confidence intervals in Table 2.

The ECs, estimates obtained following GIR are in the range of the values obtained
before motion correction with the removal of unrealistic BPyp data points (the ones
with significant subject motion) and have smaller confidence intervals.

Discussion

Image-based registration methods are frequently used in brain PET studies to minimise
the impact of subject movement on the outcome measures derived from tracer kinetic
analysis. In this work, we have investigated and evaluated the applicability of two such

Table 2 EC'9 and ECI9P? for GSK618334 estimated before and after motion correction (MC)

MC Removal of unrealistic BPyp ECIM9D3 of GSK618334 ECIMeD2 of GSK618334
Method data points (ng/ml) (ng/ml)

No MC Required 15 (-6, 37) 529 (206, 852)

MC by FBF Required 4 (0, 8) 492 (327, 658)

MC by GIR Not necessary 10 (5, 15) 539 (419, 660)

Values in parentheses indicate 95 % confidence intervals associated with the parameter estimates
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motion correction algorithms for dynamic PET data obtained as part of a clinical dopa-
mine D3/D2 receptor occupancy study with GSK618334.

This involved a more traditional FBF approach along with a novel GIR method that
we have recently introduced. The GIR approach incorporates a pharmacokinetic model
into the registration process so as to provide additional temporal constraints in the
registration process over and above just spatial image similarity maximisation. The in-
put function for the pharmacokinetic model is derived directly from the tomographic
PET data using a reference region and therefore the GIR method does not necessarily
require any arterial blood sampling. We hypothesised that the application of a spatio-
temporal (GIR) method that makes better use of the available data would lead to im-
proved results over the purely spatial (FBF) method.

The performance of the FBF and GIR methods was evaluated using data from a dopa-
mine D3/D2 receptor occupancy study in humans with [11C]-(+)-PHNO. In the PET
data, there were different levels of subject motion and a range of signal-to-noise ratios
(SNR) due to competitive binding of the drug at varying doses. The performance was
assessed directly by visual inspection of the PET data and indirectly by assessing the
inter-subject variability in baseline BPyp, convergence and residuals of the competitive
binding modelling and the drug ECso estimation. In addition to the visually improved
removal of subject motion, the GIR method led to more reliable BPyp estimates with
reduced variation and bias at baseline and when modelling competitive binding of
GSK618334 as compared to the FBF method. It also provided estimates of GSK618334
EC5, that were consistent with a previously published study that had employed outlier
removal techniques but with reduced confidence intervals [19]. These convergent data
all provide evidence that the proposed GIR method yields improved registration for dy-
namic PET data. On the study level, it increases the statistical power by reducing the
motion-introduced variability, and in practice, less PET scans would be required to
achieve the same outcome parameter precision once the motion correction is accur-
ately conducted using the GIR method.

The proposed GIR method uses the full dynamic data in addition to spatial similarity,
and from a theoretical point of view, it should perform better than the FBF method.
For the brain D3/D2 images, whilst there is limited binding data outside the striatum,
there is still information available from the delivery and washout to regions just con-
taining free and non-specifically bound tracer. Similarly, for other tracers with different
distributions, areas of relatively low signal may still contribute usefully to the motion
correction process. The pharmacokinetic model employed by the GIR approach is gen-
eric allowing for different compartmental topologies at individual voxels and thus
should not only handle the kinetics displayed by a broad range of tracers but even dif-
ferent kinetic behaviour in different regions of the image. Furthermore, it is not neces-
sary for the reference region to be devoid of the target biology, as the data can be
quantified subsequently, and a region with the fastest kinetics could be used as the ref-
erence region. Thus, the method should be generally applicable to dynamic brain PET
data (except perhaps when significant metabolite components contribute to the data).
The generalised reference tissue model employed is able to describe a range of different
behaviours, which will likely include regions outside the brain. Qualifying how well it is
able to describe such data is not strictly necessary in order to assess the performance of
the approach (for instance, it would not matter if it did not describe these regions
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particularly well if the algorithm provides improved performance in image registration
over existing approaches). Future studies will explore the utility of the approach with
other tracers, and further extension to the deformation motion model could also allow
application to dynamic imaging outside the brain as well.

In this paper, we have employed filtered back projection (FBP) for the reconstruction
of the dynamic image sequence. We fully acknowledge that the application of iterative
reconstruction algorithms could have improved the performance of both the FBF and
GIR approaches, but an assessment of this was beyond the scope of this paper. Future
studies will evaluate the impact of the reconstruction algorithm in more detail. Our hy-
potheses are, firstly, that the application of iterative reconstruction algorithms to the
FBF method would bring its performance closer to that of the current GIR (FBP)
method and, secondly, that the application of iterative reconstruction to the GIR
method would further increase its performance.

The reconstructed PET data used in this work represents a very common clinical
workflow. In practice, the subject motion introduces mismatched attenuation and scat-
ter correction in the reconstruction, which are theoretically challenging to eliminate
with post reconstruction approaches. Addressing these issues, however, requires access
to the raw PET emission data and extra fast-processing hardware/software that would
impose an undesirable cost for clinical use. The approach proposed in this work is dir-
ectly based on the reconstructed PET images and in the presence of intra-frame motion
artefacts (attenuation, scatter etc.), it demonstrates an improvement in the kinetic ana-
lysis of dynamic data compared to alternative image-based methods. Further extension
of this approach to fully account for attenuation/scatter mismatch in the PET recon-
struction framework will be explored and evaluated in future work.

Besides the image-based motion correction methods discussed in this work, which
estimate and eliminate the subject motion using only the measured PET data, subject
motion can also be tracked and corrected using additional hardware. However, such
motion-tracking systems are not always available in typical clinical settings, and add-
itional processing and calibration are required to ensure the mapping of the motion pa-
rameters from the motion-tracking space into the PET image space is accurate. The
image-based methods presented provide a more accessible and less demanding way to
remove the subject motion in the majority of PET studies.

In summary, we have demonstrated the applicability of a novel groupwise-based im-
aged registration for improving the quality of data obtained from PET receptor occu-
pancy studies, using only measured PET data. The generic nature of the incorporated
pharmacokinetic model means that this should have wide utility across PET neuroim-
aging studies.

Conclusions

Groupwise image-based registration of dynamic brain PET data provides an improved
method to correct for subject motion. Incorporation of a reference input-based general
pharmacokinetic model that requires no arterial blood sampling allows for wide applic-
ability of the technique. The approach has value for increasing the integrity of both in-
dividual scan data and outcome measures from clinical studies involving a series of

scans enabling increased precision or reduction in the required number of scans.
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