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Abstract

A principal carrying out a delegation may not be certain about the state of its
delegation graph as it may have been perturbed by an attacker. This perturbation may
come about from the attacker concealing the existence of selected delegation
certificates and/or injecting new delegation certificates. As a consequence of this
delegation subterfuge the principal may violate its own policy that guides delegation
actions. This paper considers the verification of the absence of subterfuge in systems
that accept and issue delegation certificates. It is argued that this absence of
subterfuge is not a safety property and a non-interference style security-property based
interpretation is proposed.
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Introduction
Trust Management systems [1-4] provide a decentralized approach for managing delega-
tion of trust between principals. These systems are typically explicit in their assumption
that principals can be tied to an unambiguous identification, for example, Alice with her
unique public key. However, the literature has generally not been as prescriptive in terms
of how permission identifiers should be tied to the actions that they authorize. While
central authorities such as the Internet Corporation for Assigned Names and Numbers
(ICANN) might, in principle, provide identifiers that could be used for this purpose, a
malicious principal can still choose to ignore or misrepresent the interpretation. A del-
egation subterfuge attack [5,6] can occur when there is the potential for ambiguity in
interpreting a delegated permission. This can come about from an attacker perturbing a
victim?s delegation graph by concealing and/or injecting delegation certificates. As a con-
sequence, the victim may violate the requirements that guide its own delegation actions.
It is argued [7] that the problem of delegation subterfuge is analogous to the problem of a
message freshness-attack.
A number of delegation subterfuge scenarios and defense mechanisms have been pre-

viously considered [5,6,8]. However, while demonstrating its existence, this previous
research did not provide a formal definition of subterfuge and, instead, relied on ad-hoc
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delegation mechanisms that, intuitively, defend against the attack. Rather than presuming
correct operation of these ad-hoc mechanisms, in this paper we are interested in charac-
terizing what ismeant by subterfuge and in designing delegation mechanisms that can be
proven to be subterfuge-free.
In this paper we consider the verification of the absence of subterfuge in applications

and mechanisms that accept and issue delegation certificates. Using a running exam-
ple, we argue that subterfuge-freedom should not be treated as an Alpern-Schneider
[9] safety-style property. It is insufficient for an application to decide whether it is
safe to delegate, based on its view of a delegation graph (current state), as this view
may have been perturbed by an attacker. In deciding whether to delegate, the applica-
tion must also consider that other delegation graph configurations exist that may be as
equally valid as the current state, based on the available information. Therefore, we con-
jecture that subterfuge-freedom is not a property on a single state but a property on
sets of states. A non-interference [10,11] style property is proposed for freedom from
delegation subterfuge. Demonstrating and encoding subterfuge-freedom as a security
(non-interference) property is the primary contribution of this paper.
The paper is organized as follows. In Section ?Authorization delegation? we describe a

simple SPKI-style delegation model that is sufficient to present the results of this paper.
Section ?Delegation subterfuge? presents an example of a subterfuge attack on a service
reseller application that uses delegation tomanage trust relationships. Section ?Delegation
as a safety property? argues that treating the problem as a safety property is insufficient
as it does not prevent the subterfuge-attack in the application. Section ?Delegation as a
security property? proposes a non-interference style property to characterize subterfuge
freedom and demonstrates its interpretation in the service reseller example. Related work
is discussed in Section ?Related work? and Section ?Discussion and conclusion? concludes
the paper.

Authorization delegation
Principals are active entities that can source and sink messages. We assume that a princi-
pal P who owns a public key KP knows its corresponding private key K ? 1

P and can use this
private key to sign a messageM, denoted as {|M |}sKP . By validating the signature, it is easy
for a third party to confirm that the signed message {|M |}sKP originated from the owner
of KP. In this paper, when no ambiguity can arise, we interchangeably refer to a principal
by its name P or by the public key KP that is owned by P.
A delegation certificate is a statement that has been signed by a principal who owns

public key KP stating that that it trusts another principal Q for some permission X. This
trust may be conditional, for example, a SPKI delegation certificate [12] {|Q,X,D,V |}sKP

specifies a validity period V on the delegation, and a delegation bit D indicates whether
Q may further delegate this permission X. Note that in this paper we do not consider
the delegation validity period and assume that every delegated permission may be further
delegated (delegation bit D = 1). This assumption, however, does mean that we limit
ourselves to transitive delegation (reflected by Rule D3 below). However, the results in this
paper can, in principle, be generalized to other delegationmodels that support intransitive
delegation; our simplification is made for the sake of ease of exposition.
A simple model is developed that describes how collections of delegation certificates

may be interpreted.
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Delegation statement. A delegation statement P X?→ Q specifies that principal P
delegates authority for permission X to principal Q.
Certificates. A delegation certificate is a signed message {|Q,X |}sKP , whereby principal

owning key KP states that it trusts principal Q for permissions X. The following inference
rule (identified as Rule D1) provides an interpretation for this certificate as a statement:

{|Q,X |}sKP

KP
X?→ Q

[D1]

This is specified as a basic rewrite rule: given {|Q,X |}sKP , we can infer KP
X?→ Q.

Permissions. We assume that there exists a set of permissions PERM that forms a
preorder under relation �. X � Y denotes permission ordering, whereby X � Y is inter-
preted to mean that permission X provides no less authorization than Y and X�Y defines
permission intersection. Intuitively, a principal authorized for permission Y is also autho-
rized for any permission X where X � Y . Thus, we have, for any principals P,Q and
permission X then

P Y?→ Q; X � Y

P X?→ Q
[D2]

Intuitively, this interpretation of permissions follows that used by SPKI/KeyNote. For
example, in SPKI the set of all possible s-expression permission tags (PERM) define a
preorder, with tag intersection providing a greatest lower bound operation. Thus, for
instance, the relationship

(tag (http alice.com/view?p)) � (tag (http (* prefix alice.com/)))

holds between the given s-expression permission tags. Conventional Trust Management
systems, such as SPKI and KeyNote, implicitly assume that the preorder that is used to
compare permissions is centralized, that is, it is a priori defined and globally known to
all principals. Trust Management systems that support a decentralized preorder that is
defined and extended on the fly by the principals is non-trivial and leads to challenges
[8,13] that are not considered by the model in this paper.
Delegation reduction. Collections of delegation statements may be reasoned over

using SPKI [12] style certificate reduction. Given principals P,Q,R and permissionsX and
Y then we define:

P X?→ Q; Q Y?→ R;

P X�Y?→ R
[D3]

This rule reflects the assumption in this paper that delegation is transitive.
Given a collection of delegation statements/certificates, then the model described in

this section can be used to answer questions such as ?does P trusts Q for permission X??,
that is, is it possible to infer the statement P X?→ Q using inference Rules D1?D3.
There are features of Trust Management/authorization models described in the litera-

ture that are not considered in this paper. The model used in this paper is closest to SPKI
[12] and KeyNote [14], since their interpretation of (transitive) delegation follows Rules
D1?D3. Other TrustManagementmodels may support more expressive and complex del-
egation statements. In selecting our relatively simple model of delegation, our intention is
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to elucidate the concept of subterfuge in a manner that is not encumbered by the details
that a more sophisticated model might offer.

Delegation subterfuge
Trust Management systems are typically explicit in their assumption that principals are
uniquely identified, for example, using a public key to reliably identify a principal. How-
ever, the literature has generally not been as prescriptive regarding the uniqueness of
permissions. The threat of delegation subterfuge [5] arises when there is ambiguity con-
cerning the uniqueness and interpretation of a permission. This is illustrated by the
following running example.

Example: trust management for service reselling

Principal Reese agrees to act as a reseller of hotel rooms offered by Harry andMike.When
reselling a room, Reese decides a room resell rate that is based on her business contract
with the hotel and issues customers with an unforgable room resell rate agreement to be
presented on arrival to the hotel. Customers pay the hotel directly for their room accord-
ing to the amount specified in the resell rate. The arrangement is that, in reselling a room,
Reese provides the hotel with a guaranteed room rate. Any surplus between the room
resell rate and the guaranteed rate is passed on to Reese, while Reese is liable for any
deficit.
The trust relationships in this example are encoded as delegation statements using the

model presented in the previous section. Any reasoning about delegation in this example
is done according to Rules D1?D3.
Reseller Reese and hotel Harry enter contracts by issuing delegation statements

Reese contract(r,v)?→ Harry; Harry contract(r,v)?→ Reese

for guaranteed rate v for room r. Harry subsequently issues

Harry resell.r.∗?→ Reese

delegating reselling authority for room r to Reese. In this example the second attribute of
permission resell specifies the rate at which the room is sold and the wildcard ?∗? reflects
that Harry places no constraint on the resell rate. We can treat the wildcard as an upper
bound on resell permissions whereby resell.r.u � resell.r.∗, that is, a holder of permission
resell.r.∗ is authorized (by inference rule D2) to resell the room for any rate u. In general,
a principal authorized to resell a room at rate v can also sell it at any rate u higher than
v, that is, resell.r.u � resell.r.v ⇐⇒ v ≤ u. Thus, if Reese guarantees a $50 room rate
for Harry then she can sell the room at any higher rate (to her benefit). For example, on
reselling this room to Clare for $60, Reese issues

Reese resell.r.60?→ Clare

On check-in, Clare presents delegation chain

Harry resell.r.∗?→ Reese;Reese resell.r.60?→ Clare
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which Harry reduces (by Rule D3) to Harry resell.r.60?→ Clare, as proof that Clare is autho-
rized for the $60 room rate. This chain, along with the contract certificates are used by
Harry and Reese in claiming reimbursement of any deficit/surplus (in this case, a surplus
for Reese).
We are not concerned with the claim process in this paper, however, we are interested in

Reese ensuring that she never resells a room below some minimum rateminRate that she
decides. Table 1 gives sample guaranteed (contracted) and minimum rates for any rooms
in hotels Harry and Mike. We assume that Reese may be willing to sell a room at a loss,
for example, when it is bundled as part of a package that is profitable overall.
These minimum rates are decided by Reese, and are represented as a delegation state-

ment Reese rate.v?→ Harry indicating that Reese is willing to resell any room in hotel Harry at
rate v or higher. For simplicity we assume that all rooms in the hotel are the same. If Reese
is willing to resell a room at rate v then it follows she is willing to resell the room at any
higher rate u where u ≥ v; thus, we define the permission ordering rate.u � rate.v ⇐⇒
u ≥ v. Note that this rate delegation statement is used by Reese internally to imple-
ment the minRate relationship and it is not necessary for her to share the corresponding
certificates with any other principal. For example, Reese rate.40?→ Harry;Reese rate.10?→ Mike
implement the minimum rates in Table 1.
The service reselling example illustrates how trust relationships between principals can

be encoded as delegation statements and used by an application to decide whether it is
safe to carry out a (check-in) operation.

Subterfuge

Consider the following reselling scenario. Suppose that (malicious) Mike interferes with
communication between hotel Harry and reseller Reese, intercepts the delegation certifi-
cate Harry resell.r.*?→ Reese, and replaces it by Mike resell.r.*?→ Reese, leading Reese to believe
that permission resell.r.* is related to a room at Mike?s hotel. Eve, who is colluding with
Mike, then uses Reese?s website to book this roomr for a cost of $20, in compliance with
Reese?s minimum-rate policy in Table 1. Reese issues a certificate forReese resell.r.20?→ Eve.
However, Eve obtains the intercepted certificateHarry resell.r.∗?→ Reese fromMike and offers
this, along with Reese resell.r.20?→ Eve, as proof to Harry that she is authorized for this rate at
his hotel.
There are other variations of subterfuge [5]. For example, Reese has a legitimate expec-

tation that so long as she delegates competently then she should not be liable for any
confusion that is a result of poor permission design. Perhaps Harry and Reese collude
in order to provide plausible deniability on a resold room. On believing she (Clare) paid
Reese for an expensive room in Harry?s hotel (Reese resell.r.100?→ Clare), Harry presents
Mike resell.r.*?→ Reese to Clare arguing that she actually bought a room atMike?s (cheap) hotel.
In this case the existence of a delegation chain (Harry resell.r.*?→ Reese, Reese resell.r.100?→ Clare)

Table 1 Contracted guaranteed andminimum-sell room rates for Reese

Hotel Guarantee minRate

Harry 50 40

Mike 20 10
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is insufficient to provide adequate accountability on Reese for the rooms she resells. These
examples of subterfuge can be thought of as a variation on a semantic attack [15] at
the interface between systems rather than necessarily between humans and computers.
In this case the attacker Mike targets the way that Reese (a system) assigns meaning to
content (a permission).
Certificate chains have been used in the literature to support degrees of accountability

of authorisation [16-18]. The micro-billing scheme [16] uses KeyNote to help deter-
mine whether a micro-check (a KeyNote credential, signed by a customer) should be
trusted and accepted as payment by a merchant. In [17], delegation credentials are used
to manage the transfer of micropayment contracts between public keys; delegation chains
provide evidence of contract transfer and ensure accountability for double-spending. The
mechanisms that underly these schemes are similar to our service-reselling example in
that there can be misinterpretation as to which principal (bank) originates the permis-
sion (authority for payment). These systems are also vulnerable to delegation subterfuge
(leading to a breakdown in accountability) if care is not taken to properly identify the per-
missions indicating the payment authorizations whenmultiple banks and/or provisioning
agents are possible.
It could be argued that the inadequacy in the permission design in our example is

?obvious? and that additional information should be included in the name of the permis-
sion. For example, one could argue that permissionmike.com/resell.r.20 is clearly related
to Mike?s website/hotel. However, on receipt of a certificate

Mike
harry.com/resell.r.*?→ Reese

Reese may unwittingly delegate Reese
harry.com/resell.r.20?→ Eve, not understanding thatMike

has no authority over harry.com and that the intercepted certificateHarry
harry.com/resell.r.20?→

Reese can be used by Eve to obtain a room at Harry?s hotel for $20. Furthermore,
design of the permission harry.com/resell.r.* assumes that there is a non-transient asso-
ciation between the domain harry.com and a (hotel) principal. However, domain name
owners change in practice, intentionally or otherwise [19], and therefore, permission
harry.com/resell.r.* should not be considered to necessarily specify an unambiguous
authorization.
Arguing that prior to issuing a delegation statement that Reese has a responsibility to

confirm that Mike owns the Harry.com domain is unsatisfying. This presumes separate
and properly operating processes of managing a public key infrastructure, authenticating
Mike?s identity and checking it against the permission. Furthermore, it places part of the
reasoning about authorization outside of the rules D1?D3 of our authorization model,
which is contrary to the intent of a Trust Management system [2]. Moreover, with the
declining numbers of system administrators relative to the number of Internet domains
[20], we envisage that it becomes more difficult for organizations to maintain a consistent
view of the relationships between domains and permissions.

Eliminating subterfuge

Various ad-hoc modifications to our delegation model can be made to ensure unambigu-
ous interpretation of a permission. For example, on the basis that public keys are con-
sidered unique and if Harry owns public key KH then signed permission {| resell.r.* |}sKH
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provides a unique and unambiguous permission identifier that can be tied to Harry. How-
ever, in order for this scheme to avoid subterfuge, the recognition of a permission string
such as

⎛
⎜⎜⎜⎜⎜⎜⎝

Modulus (1024 bits): c0 fd 51 7b 70 29 51 d7 d8 8d 59 c4 a1 bb da c9 fc c6 51 fc 90 b3

46 83 bd 45 22 98 47 1c e8 2c 56 2f fe 2c e4 d4 fd 4b 3d b4 8a 82 e0 e5 c8 08 4d fe 80

a7 cf d4 5f 4f 31 08 4d e5 e5 f0 14 e3 40 f1 12 4c b0 7f 97 b9 fa 29 c0 88 bf 23 8f bc b2

df 49 1c f6 72 a3 1f fa fe 83 11 c8 45 89 fb e4 1f fa 02 57 59 68 a5 d0 d8 a6 f0 29 9f eb

d9 43 86 ea f9 1f 70 48 2d f1 4c e4 e7 70 43 b4 7f Exponent (24 bits): 01 00 01

⎞
⎟⎟⎟⎟⎟⎟⎠

: resell.r.*

is required, which is, in itself, subject to confusion by a principal.
Instead of using public keys, one might be tempted to use SDSI-like local names

[12] to make this task more manageable for Bob. However, in order to prevent sub-
terfuge, permissions require a name that is unique across all name spaces where it will
be used, not just the local name space of Bob. In Bob?s local name space the permission
〈(Bob?s Harry):resell.r. *〉 might refer to a different Harry to the Harry that
Reese knows. Ensuring consistent interpretation among these locally named permissions
is a non-trivial task [8].
Another possible source of suitable permission identifiers is a global X500-style naming

service (if it could be built) that would tie global identities to real world entities, that
would in turn be used within permissions. X500 Distinguished Names are, by definition,
globally unique. If it were referenced in an extended validation certificate [21] then it is,
in some legal sense, unambiguous, and is therefore not subject to subterfuge. However,
X500-style approaches suffer from a variety of practical problems [22] when used to keep
track of the identities of principals. In the context of subterfuge, a principal might easily
be confused between the (non-unique) common name and the global distinguished name
contained within a permission that used such identifiers.
One practical difficulty when relying on public keys as global identifiers is that their

use is often transitory. A public key serves as an identifier (for its owner) for as long as
the key is regarded as valid. If the (private) key is compromised, or if the owner decides
to re-key then authorization certificates will have to be re-issued by all participants on
delegation chains involving the permission. If KM re-keys to K ′

M, and issues a new cer-
tificate

{∣∣KM,
〈
K ′
Mresell.r.*

〉 ∣∣}
sK ′

M
then Reese (and everyone else) will have to issue new

certificates. This is contrary to the trust management strategy whereby role member-
ships can be maintained independent of the permissions that are delegated to them.
This contrasts with the use of X500-like global names. In this case, we assume that the
name is non-transitory while the key is transitory. A re-keying results in the issuing
of a new identity certificate. The owner uses their new key to re-issue existing autho-
rization certificates, whose permissions refer to the name of the principal rather than
the public key. Other authorization certificates signed by other principals remain valid
as their permissions are based on non-transitory global names rather than transitory
keys.
Notwithstanding these concerns, it is argued [5,7] that subterfuge can be avoided by

including the originating principal KO of the permission p in a delegation statement of the

form KA
{| p |}sKO?→ KB, whereby principal KA delegates the permission p, originating from
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the principal KO, to the principal KB. In this case we restrict the reduction rule D3 to the
following. Given principals (public keys) P,Q,R and permissions X,Y then

P {|X |}sP?→ Q; Q {|Y |}sP?→ R

P {|X � Y |}sP?→ R
[D3′]

reflecting that principal P is originator of the permission. In this case reduction is possible
only if there is certainty about the origin of the permission.
For the purposes of this paper we assume that permission signing is implemented

in such a way that given {|X |}sP then another principal can also refer to any signed
permission {|X′ |}sP where X′ � X, for instance, in a subsequent delegation. A simple
implementation strategy could require the originator P to a priori sign every possible
permission {|X |}sP that another principal might ever want to use. However this would
have limited use; for example, it would mean that Harry would have to sign copies of
{| resell.r.v |}sHarry for every possible value v. A better strategy is to treat the signing of per-
mission resell.r.* as expression {| resell.r.(v ≥ 0) |}sHarry which constrains the values of its
free variable v. On receipt of this signed permission-expression from Harry, Reese can
use expression ({| resell.r.(v ≥ 0) |}sHarry\[v ← 50]), binding the value 50 to the free vari-
able v, as an alternative representation of the permission resell.r.50 signed by Harry. With
this instantiation, Reese can generate the equivalent of {| resell.r.50 |}sHarry, without having
to sign the permission using a key that she does not own. In this way we can implement
comparisons such as ({| resell.r.(v ≥ 0) |}sHarry\[v ← 50]) � {| resell.r.(v ≥ 0) |}sHarry A
similar strategy can be taken for implementing intersection. In general, we note that the
extent to which a principal can refer to signed permissions depends on the design of the
delegation model. For example, a principal may only refer to signed permissions that it
has witnessed [8].
Returning to the reselling example, customer Clare presents the chain

Harry
{| resell.r.* |}sHarry?→ Reese; Reese

{| resell.r.50 |}sHarry?→ Clare

to Harry, who, using replacement rule D3′, verifies Harry
{| resell.r.50 |}sHarry?→ Clare. Recon-

sidering the subterfuge attack, even if Mike delegates a copy of the signed permission
{| resell.r.* |}sHarry originating fromHarry and tricks Reese into thinking he (Mike) is Harry,
then when Eve presents the chain

Mike
{| resell.r.* |}sHarry?→ Reese; Reese

{| resell.r.20 |}sHarry?→ Eve

to Harry, then, as originator, Harry can not infer Harry
{| resell.r.20 |}sHarry?→ Eve.

Given the relative simplicity of the delegation model used in this paper it is not unrea-
sonable to rely on an intuitive argument that subterfuge freedom can be ensured on the
basis of its three delegation rules D1, D2 and D3′. However, relying solely on an intuitive
argument is less convincing for other more complex/expressive delegation models. For
example, an intuitive argument for subterfuge freedom is less convincing for a delegation
model [8] that is defined in terms of over twenty delegation rules/axioms. Therefore, we
are interested in characterizing subterfuge-freedom as a property so that the rules and
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operation of a delegation model, such as that used in the reseller example, can be formally
verified to be subterfuge-free. In the case of [8] this analysis would give us confidence that
its twenty-plus axioms actually capture what is intended.

Delegation as a safety property
A delegation system is defined to be a system that carries out operations, on behalf of
a principal, based on a collection of delegation certificates that it maintains. The imple-
mentation of Reese?s reselling service, along with its use of the delegation rulesD1?D3′,
is an example of a delegation system.
Delegation state. Let STATE represent the set of all possible states of a delegation sys-

tem. For the purposes of this paper we do not consider functional properties of the system
and define a state g to be simply the current delegation graph that is accessible by the sys-
tem. This graph may be stored locally by the system, hosted by an authorization server,
distributed among peers, or some combination. Given state g then P X?→ g Q denotes
delegation of permission X by principal P to principal Q in state g.
Delegation system. The implementation of a delegation system is characterized in

terms of a predicate System(g), whereby System(g) is true iff delegation network g is a
reachable state of the implementation.
Delegation policy. Let a delegation policy be a set of delegation states that are consid-

ered to be valid. A policy is defined as a predicate Policy(g), whereby Policy(g) is true iff
the delegation graph g is considered valid.
For example, the policy for the hotel reseller in Section ?Example: trust management for

service reselling? is that any room resold by Reese is at least at the minimum-sell rate for
the hotel. In particular, if state g indicates that Reese sold a room r in hotel H for rate v
then Reese is willing to sell that hotel room at that rate, that is,

ResellPol0(g) ≡ ∀H ,C : Principals; r : Room; v : N ?(
H resell.r.∗?→ g Reese ∧ Reese resell.r.v?→ g C

)
⇒ Reese rate.v?→ g H

The reader should recall the encoding of the minRate relationship as a delegation
Reese rate.u?→ Harry, where rate.u � rate.v ⇐⇒ u ≥ v. Given that Reese signed Reese rate.40?→ g

Harry and that rate.60 � rate.40 we can infer by Rule D2 that Reese rate.60?→ g Harry. Thus,
the sale Reese resell.r.50?→ g Clare is valid.
Safe delegation. A delegation system System(g) safely upholds a delegation policy

Policy(g) every state reachable by the system upholds the delegation policy.

∀g : STATE ? System(g) ⇒ Policy(g) (1)

In constructing System(g), Section ?A poor implementation of the hotel reseller? con-
siders the delegation model based on the original inference rule D3 when carrying out
certificate reduction in g.

A poor implementation of the hotel reseller

Suppose that Reese only enters into new contracts from hotels with which she does not
already have a contract (identified as having no minimum rate information). As noted
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previously, for the sake of simplicity, we do not consider management of the contract per-
mission delegations and the creation of a new contract in state g with hotelH corresponds
to the setting of aminRate rate v using delegation state transition operation:

newRate0(g,H , v){
if ( � ∃i : N ? Reese rate.i?→ g H) then

add [Reese rate.v?→ H] to g;
return(g);

}
Having decided a minimum resell rate for a hotel, Reese engages state transition oper-

ation newRoom0(g,H , r) whenever she receives a resell delegation statement H resell.r.∗?→
Reese for room r in Hotel H .

newRoom0(g,H , r){
if (∃i : N ? Reese rate.i?→ g H) then

add [H resell.r.∗?→ Reese] to g;
return(g);

}
Having decided a suitable price v at which to resell hotel H?s roomr to customer C,

Reese engages state transition operation bookRoom0(g,H ,C, r, v) in state g to issue the
booking.

bookRoom0(g,H ,C, r, v){
if (Reese rate.v?→ g H ∧ H resell.r.∗?→ g Reese) then

add [Reese resell.r.v?→ g C] to g and issue;
return(g);

}
Reese?s rationale in this implementation is that, regardless of however she may decide

the selling price, then so long as she only uses transitions newRate0, newRoom0 and
bookRoom0 to update her delegation graph and issue certificates then she will never
violate her minimum selling policy.

Proposition 1. If we define ResellSys0(g) to be the set of all states reachable from an
empty graph (initial state) by operations newRate0, newRoom0 and bookRoom0 then
Reese can prove that every reachable state in her implementation upholds her resell
delegation policy, that is,

∀g : STATE ? ResellSys0(g) ⇒ ResellPol0(g) (2)

That is, ResellSys0 provides safe delegation under ResellPol0. In constructing
ResellSys0(g) we assume that Reese uses the original inference rule D3 when carrying out
certificate reduction in g.

The proof of Proposition 1 characterizes delegation correctness as a refinement that can
be considered to be a safety-style property in the Alpern-Schneider sense [9]. However,
the subterfuge example in Section ?Subterfuge? demonstrates that such a characterization,
as a property on a state, is inadequate (at least to the extent that our characterization
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of delegation correctness can be considered to represent a safety property). This is not
surprising: a frequent argument [11,23,24] that is that security properties are not safety
properties, but properties over sets of states. This is considered in the next section.

Delegation as a security property
A principal operating a delegation system may not be certain about the entirety of its
delegation state g as a portion of it may have been perturbed by an attacker. The perturba-
tion in the delegation state may come about from an attacker concealing the existence of
selected delegation statements and/or injecting new delegation statements. Like a Dolev-
Yao attacker [25], we assume that the attacker can only intercept, copy and paste signed
statements, and cannot forge cryptographic signatures.
Delegation state equivalence. Let ≈ be an invariant relation over delegation states

whereby g ≈R h is interpreted to mean that principal R is as certain of being in state g as
it is of being in state h.
An example of a definition of this equivalence relation is:

g ≈R h ≡ ∀Q : Principal;X : PERM ? R X?→ g Q ⇐⇒ R X?→ h Q (3)

This reflects an assumption that principal R cannot rely on fully knowing the delega-
tions of others and, therefore, the only thing that principal R can be sure about is the
delegation statements that it has directly made itself.
Alternatively, suppose that the principle R had a reliable network connection with a set

of principles S . This is interpreted to mean that R knows the delegation statements that
the principals in S have or have not made. For example, S might represent the principals
over which a trusted authorization server has jurisdiction and to which R has a reliable
connection. Alternatively, for example, the credentials might have been exchanged using a
non-repudiation protocol [26]. In these cases, and assuming R ∈ S , then state equivalence
can be generalized to:

g ≈R h ≡ ∀P : S ;Q : Principal;X : PERM ? P X?→ g Q ⇐⇒ P X?→ h Q

Returning to the hotel reseller example, Reese does not have a reliable connection to
any of the hotels and, therefore, cannot be sure about the absence or otherwise of state-
ments she has not directly signed herself. For example, if she does not hold statement
Harry resell.r.*?→ h Reese she cannot be sure that it has not been said byHarry and thus we have
the state equivalence:

[Mike resell.r.*?→ g Reese;Reese resell.r.20?→ g Eve;

Reese rate.40?→ Harry;Reese rate.20?→ Mike]

≈Reese [Harry resell.r.*?→ h Reese;Reese resell.r.20?→ h Eve;

Reese rate.40?→ Harry;Reese rate.20?→ Mike]

Note that Reese can be sure about the minimum selling rate since Reese rate.v?→ H is a
delegation statement that she makes directly and stores locally.
A delegation Policy defines a valid delegation state under an assumption that there is

certainty about the delegation statements in terms of which it is defined. A principal
implementing a delegation System cannot make this assumption and the uncertainty must
be considered when deciding whether it is safe to issue a delegation certificate. Therefore,
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an implementation system in some state g should uphold not just Policy(g) but should
also uphold the policy for any other uncertain state that is potentially equivalent.
Secure delegation (subterfuge freedom). A delegation System used by principal R

is resilient to subterfuge when upholding a delegation Policy if the delegation policy is
upheld by the system for every delegation state h that R can be as certain it is in as each
reachable state g.

∀g :STATE ? System(g) ⇒
(∀h : STATE ? g ≈R h ⇒ Policy(h))

Subterfuge in the original hotel reseller

Consider again the attack on the hotel reseller in Section ?Subterfuge?. Suppose that Reese
has had a series of legitimate interactions with hotels leading to delegation state f , con-
taining a number of sales/bookings andminimum sell rates. Harry then issues a new resell
certificate for room rx, which Mike intercepts and conceals and issues a resell certificate
of his own for room rx. Reese accepts this resell certificate from Mike and sells the room
to Eve:

f ′ =̂newRoom0( f ,Mike,rx)

g =̂bookRoom0( f ′,Mike,Eve,rx, 20)

The resulting delegation state of Reese is:

g =
[
Mike resell.rx.*?→ Reese; Reese resell.rx.20?→ Eve

]
∪ f

and ResellPol0(g) holds. However, Reese is not certain that g represents the complete
state, and there is an alternative state h, where g ≈Reese h (based on Equation (3) above),
to which the policy should also apply:

h =̂
[
Harry resell.rx.*?→ Reese; Reese resell.rx.20?→ Eve

]
∪ f

This state h violates the minRate policy. In particular, Reese rate.20?→ h Harry does not hold
and therefore ResellPol0(h) does not hold. Thus, we have a state g of the system such that

ResellSys0(g) ∧ g ≈Reese h ∧ ? ResellPol0(h)

and, therefore, the system is not subterfuge free.

Subterfuge-free hotel reseller

Consider the revised reseller delegation mechanism outlined in Section ?Eliminating sub-
terfuge?. The principals use signed permissions along with the revised reduction rule
D3′. We modify the minimum-sell ResellPol0 defined in Section ?Delegation as a safety
property? in order to consider the new permission syntax:

ResellPol1(g) ≡ ∀H ,C,K : Principals; r : ROOM; v : N?(
H {| resell.r.∗ |}sK?→ g Reese ∧ Reese {| resell.r.v |}sK?→ g C

)

⇒ (Reese {| rate.v |}Reese?→ g H)

As before, the policy is concerned only with enforcing the minimum selling rule,
regardless of who may have signed the original permission or how it is implemented.
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In this way ResellPol1 matches the requirements of the original specification of
ResellPol0 in Section ?Eliminating subterfuge?. Indeed, a simple translation ofResellSys0
to support signed permissions would provide safe delegation under ResellPol1 (safety
property), while failing to provide secure delegation under the same policy (security
property).
The state transition operations are revised to incorporate a new implementation deci-

sion that resell permissions must be signed by the delegating hotel. On receipt of a new
room resell certificate H {| resell.r.∗ |}sK?→ Reese from hotel H for room r (signed by some K)
she engages the operation:

newRoom1(g,H ,K , r){
if

(
H = K ∧ ∃i : N ? Reese {| rate.i |}sReese?→ g H

)
then

add

[
H {| resell.r.∗ |}sK?→ Reese

]
to g;

return(g);
}

Operation bookRoom1 is similarly revised:

bookRoom1(g,H ,C, r, v){
if

(
Reese {| rate.v |}sReese?→ g H ∧ H {| resell.r.* |}sH?→ Reese

)
then

add

[
Reese {| resell.r.v |}sH?→ g C

]
to g and issue;

return(g);
}

and operation newRate1 is defined in terms of signed rates:

newRate1(g,H , v){
if

(
� ∃i : N ? Reese {| rate.i |}sReese?→ g H

)
then

add

[
Reese {| rate.v |}sReese?→ H

]
to g;

return(g);
}

These operations along with revised reduction rule D3′ are used to describe the
corrected delegation system implementation ResellSys1.
The definition of the delegation state equivalence invariant ≈ is unchanged from

Equation (3), since whoever may have signed the permission has no impact over what part
of the delegation state might be concealed by an attacker.
The sample subterfuge attack no longer works. If Reese is in a state with[
Mike

{| resell.r.* |}sHarry?→ g Reese
]
then the new bookRoom operation will not delegate (on

behalf of Reese) permission {| resell.r.20 |}sHarry to Eve since the delegator Mike of the
permission held by Reese is not the signer Harry of the permission.

Proposition 2. ResellSys1 provides secure delegation under ResellPol1:

∀g, h : STATE ? (ResellSys1(g) ∧ g ≈Reese h) ⇒ ResellPol1(h)
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Proof. Let speakers(g) be the set of principals who have signed/made delegation state-
ments in g. We prove by induction that

∀g : STATE ? ResellSys1(g) ⇒ (∀h : STATE ? g ≈R h ⇒ ResellPol1(h))

Base case.Given an initial delegation state init = [] then it follows that ResellSys1(init).
Consider any equivalent state h where init ≈R h, then by definition we have R /∈
speakers(h). Thus, there is no delegation of the form R {| resell.r.v |}sK?→ h C in state h and,
therefore, ResellPol1(h) holds. Therefore, the base case holds.
Inductive step. Assume that ResellSys1 is in a state g where (∀h : STATE ? g ≈R h ⇒

ResellPol1(h)). The inductive goal is to prove that for all h′ : STATE then op(g) ≈R h′ ⇒
ResellPol1(h′)), for each system transition operation op.
Consider each system transition g′ = op(g). If the operation precondition is satis-

fied then g = g′ and the inductive goal trivially holds. Consider g′ when the operation
precondition holds.

? g′ = newRate1(g,H , v): given precondition
(

� ∃i : N ? R {| rate.i |}R?→ g H
)
then

g′ = g ∪
[
R {| rate.v |}R?→ H

]
. Consider a state h′ where g′ ≈R h′. It follows from the

definition of equivalence that
[
R {| rate.v |}R?→ H

]
∈ h′, and thus if h = h′/

[
R {| rate.v |}R?→ H

]
then g ≈R h. Therefore, given the inductive hypothesis, ResellPol1(h) holds. Suppose

ResellPol1
(
h ∪

[
R {| rate.v |}R?→ H

])
is false; for this to be the case, the ResellPol1(h′)

antecedent
(
H {| resell.r.∗ |}sK?→ h′ R ∧ R {| resell.r.u |}sK?→ h′ C

)
has a negative conclusion[

? R {| rate.u |}R?→ h′ H
]
. However, if R {| resell.r.u |}sK?→ h C holds in state h then, by g ≈R h,

R {| resell.r.u |}sK?→ g C must also hold in state g. However, the system cannot be in a state g
where a resell certificate is issued without a corresponding rate statement. Therefore,
this antecedent is false and thus, given g′ ≈R h′ then ResellPol1(h′) holds.

? g′ = newRoom1(g,H ,K , r). For precondition
(

∃i : N ? R {| rate.i |}sR?→ g H
)
then

g′ = g ∪
[
H {| resell.r.∗ |}sH?→ R

]
. By the definition of equivalence, we have g ≈R g′, and

therefore, by transitivity of equivalence, for any state h′ such that g′ ≈R h′ holds, then
the inductive hypothesis gives g′ ≈R h′ ⇒ ResellPol1(h′).

? g′ = bookRoom1(g,H ,C, r, v). Given precondition
(
R {| rate.v |}sR?→ g H ∧ H {| resell.r.∗ |}sH?→ R

)

then g′ = g ∪
[
R {| resell.r.v |}sH?→ g C

]
. Consider a state h′ where g′ ≈R h′. It follows from

the definition of equivalence that
[
R {| resell.r.v |}sH?→ g C

]
∈ h′, and thus if

h = h′/
[
R {| resell.r.v |}sH?→ g C

]
then g ≈R h. Therefore, given the inductive hypothesis,

ResellPol1(h) holds. Given g′ ≈R h′ then a rate statement in g′ appears in h′ and if the
precondition of newRoom1 holds in g′ then it also holds in h′. Therefore, if the resell
action is valid in g′ it will also be valid in h′ and ResellPol1(h′) holds.
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The purpose of this paper is to provide a formal definition for subterfuge freedom. The
example above illustrates that defining it as a safety-style property on delegation states
is inadequate. The proposed definition of subterfuge freedom is defined as a property
on sets of delegation states, which is not surprising, given that security properties are
generally characterized as a properties on sets of states.
The ResellSys1 system is an example of a system that uses the specific Rules D1, D2

and D3′ to deduce whether it is secure to carry out some requested action, such as
accept a room rate from a customer. Rather than simply accept an intuitive argument
that using these rules ensure subterfuge freedom, Proposition 2 formally proves that it
is not possible for an attacker to carry out a subterfuge attack on this system. The defi-
nition of subterfuge-freedom is not limited to systems built using only rules D1, D2 and
D3′; defining subterfuge-freedom as a property means that it can be used to verify the
subterfuge freedom of systems designed to use different rules to reason over delegation
statements.
Our formalization of subterfuge freedom is limited to delegation systems defined over

delegation statements of the form P X?→ Q. Therefore, in principle, it could be used to
validate systems that use revised (subterfuge-safe) rules for delegation schemes such as
SPKI/SDSI, KeyNote and X509 attribute certificates. We are currently using the property
to analyze the subterfuge freedom of the delegationmodel in [8], which is defined in terms
of twenty-plus deduction rules.

Related work
Trust Management systems such as [2-4,12] are intended to provide a decentralized
approach to constructing and interpreting authorization relationships between princi-
pals/domains. Unlike a centralized authorization server-based approach, authorization
rules are defined and signed locally by issuing principals. These cryptographic delegation
credentials can be distributed in anymanner to suit the design of the (TrustManagement-
based) access control mechanism that mediates according to the policy. In this way, trust
management provides a basis for secure decentralized policy based management.
While credential-based policy rules are inherently decentralized, many implicitly

assume unique and unambiguous global permissions, effectively originating from some
central authority that provides a permission namespace that everyone agrees to con-
sistently use. For example, Keynote [14] suggests using the Internet Assigned Num-
ber Authority (IANA), RT [3] relies on Application Domain Specification Documents
(ADSDs), and X509 relies on the X500 name service, to ensure that different parties
use the right name for resources, conditions, other participants, and so forth. How-
ever, principals may prefer not to have to trust some global authority, irrespective of the
practicalities of such an authority.
Delegation subterfuge [5,6] arises when there is ambiguity in interpreting a permission

in its namespace. This can come about from an attacker concealing and/or injecting dele-
gation credentials whereby, as a consequence, a victim may violate the policy that guides
its own delegation actions, as illustrated in this paper. Under reasonable assumptions,
public keys can be considered to be globally unique and, by signing a permission, a prin-
cipal can be sure that the resulting value is globally unique. Subterfuge-freedom can be
provided in a role-based distributed authorization language by constraining delegation
to permissions that have an associated originating public key [6]. While effective, this
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approach suffers the challenge of reliably referencing public keys. A SDSI-like naming
system can alternatively be used to provide subterfuge-free local permission namespaces
[8]. The FRM distributed policy management framework [13] also relies on signed per-
missions to avoid subterfuge and uses Distinguished Names/X509 certificates to uniquely
tie a permission to its namespace. While seeking to avoid subterfuge-like vulnerabilities,
these schemes are justified on the basis of intuitive argument rather than on a formal
definition of the a meaning of subterfuge.
While subterfuge is concerned with how an attacker can interfere with a target?s pol-

icy certificates, probing-free authorization [4,27,28] is concerned with determining what
an attacker can infer about hidden policy certificates when making queries. Both sub-
terfuge and probing are effectively concerned with determining whether information
flows [23,24,29,30] from one principal to another as a result of using the delegation sys-
tem. Further investigating the relationships between subterfuge and probing, and their
relationship to information flow properties in delegation systems is an open topic of
research. One avenue of interest is whether intransitive information flow [10,31,32] might
provide an interpretation for conditional subterfuge-freedom. In this case, a principal may
declare that it is willing to accept accountability for some third-party?s permission with
the consequence that any perturbation to its delegation state prior to the declaration can
be safely ignored.

Discussion and conclusion
Security refinement can be defined to be a system robustly upholding functional require-
ments (policy) in the presence of threats that may perturb a state that has been arrived
at via some trace [11]. If one considers delegation states to be analogous to system traces
then the definition of delegation security/subterfuge freedom proposed in this paper is
similar, at least in intent, to this definition.
We argue that subterfuge-freedom is not a safety-style property in the conventional

sense [9], but that it is a security property [11,23,24] that is similar to non-interference
[10,24,29,30]. This paper presents an example of an implementation of a policy require-
ment that appears to be preserved under a safety refinement (Proposition 1), but which
is subject to a subterfuge attack. Section ?Delegation as a security property? demonstrates
that the implementation of the policy requirement is not preserved under the proposed
security-style refinement. By using a restricted form of (subterfuge-free) delegation, a
revised implementation can be shown to preserve the policy under security refinement.
The primary contribution of this paper is a characterization of subterfuge-freedom as

a security-style property based on delegation statements of the form P X?→ Q. To our
knowledge, this is the first characterization of subterfuge as a security property. While
relatively straightforward, the delegation model provided a sufficient scheme in which
to present the result. We hope that this will provide insight into the refinement of the
definitions for more expressive authorization logics that support reasoning over richer
statements, such as [4,6].We are currently exploring a Kripke-based semantics with which
to more formally investigate subterfuge properties and their relationship to safety and
security properties in general.
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