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Abstract

Complex, dynamic, computational models are routinely used to evaluate and optimize
the design and performance of solar thermal systems. As models become more
complex, performing uncertainty analysis on such models can be quite challenging and
computationally expensive. This paper presents an effective approach to quantify
uncertainties associated with transient simulation results from a dynamic solar thermal
energy system model with uncertain parameters. The proposed method utilizes the
concept of impulse response and convolution process to estimate the sensitivities to
time-varying external inputs. Using this method, the number of simulations required to
propagate uncertainties through dynamic models can be significantly reduced. An
example is presented throughout the paper to demonstrate the procedure of the
proposed uncertainty analysis approach.
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Introduction
A computational model of a complex energy system is often required to evaluate and

optimize the design and performance of the actual system, e.g., [1–4]. When systems

and their models are complex (i.e., containing large numbers of parameters and requiring

extensive computational time to converge under time-varying condition), assuring the

reliability and accuracy of models becomes very challenging and a methodical and

efficient way to estimate uncertainty is necessary. The quantification of uncertainty is an

essential feature in the verification and validation (V&V) procedures to validate simula-

tion results against experimental measurements [5]. In addition, a long-term (e.g., a whole

year) evaluation of system performance, which is often a necessary feature when the

system performance depends on weather conditions or varying operational circumstances,

makes uncertainty analysis even more difficult.

A variety of computational models have been developed to evaluate and optimize the

design and performance of solar thermal systems [6–12]. Those models have been

implemented in many engineering software tools such as TRNSYS [13], EnergyPlus

[14], and Modelica [15]. While many studies have been done in this area, relatively few

have considered the effects of uncertainty on the reliability of the results and conclusions.

Xu et al. [11] presented a TRNSYS based optimization study of a solar thermal system

with consideration of uncertainty. The Monte-Carlo method was used to analyze the

uncertainty in the system. However, the study only considered a very limited number of
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uncertain parameters. Additionally, the simulation included dynamic elements, but since

the study only considered cumulative effects the model was simplified to a regression that

eliminated the dynamics. Dominguez-Munoz et al. [12] also presented an uncertainty

analysis of the design of a solar thermal system that was based on a dynamic model. The

study considered many uncertain parameters and inputs using the Monte-Carlo method

for uncertainty propagation. A powerful method for design optimization under uncertainty

was presented. However, this study only evaluated cumulative effects of the uncertainty

over long periods of time rather than presenting the propagation of uncertainty for each

time step.

This paper presents an approach to quantify uncertainties associated with transient

simulation results from a dynamic solar thermal energy system model with uncertain

input parameters. The uncertainty in the simulation result is composed of contribu-

tions from the errors due to modeling assumptions and approximations, numerical

solution of the equations, and simulation inputs [5]. This study primarily focuses on

determining uncertainties due to simulation inputs including model parameters, initial

conditions, and transient external inputs. The sensitivity (i.e., partial derivative) to each

model parameter and initial condition at each time step can be determined by perturbing

each of the arguments at a nominal value. The sensitivity to the time-varying external in-

puts can be determined in a similar manner by calculating sensitivities at each time step.

However, this numerical procedure can be greatly simplified using the principle of linear-

ity and superposition. The proposed method utilizes the impulse response and the convo-

lution process to estimate the sensitivities to time-varying external inputs. Finally, the

total uncertainties on the final result due to the simulation input parameters are estimated

based on the sensitivities and systematic/random uncertainties [5].

Model Description
Description of the System

A schematic of the solar water heating system addressed in this study is shown in Fig. 1.

The system collects heat from incident solar radiation by circulating water through the

collector. A water tank is incorporated to store thermal energy for future use. Because

the temperature of the water in the tank will vary based on the weather conditions, this

Fig. 1 Schematic of solar water heating system
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system must incorporate multiple operating modes to meet the building hot water

demand. If the water temperature in the tank is greater than or equal to the desired

load temperature, the water from the tank is mixed with water from the city supply to

provide the desired temperature. In this case, the auxiliary heater is bypassed. However,

if the water from the tank is too low, the auxiliary heater is used to provide the

additional heat.

Energy Conservation of the Storage Tank

The storage tank temperature can be modeled using energy conservation. Assuming

that the tank is well mixed, a single capacitance can be used to model the energy stored

in the tank as

ρVcp
dT st

dt
¼ qc−qLD−qLS; ð1Þ

where ρ and cp are the density and specific heat of water,V is the storage volume of the

tank, Tst is the average temperature of the water in the tank, qc is the energy collected

in the solar collector, qLD is the energy used to meet the building hot water load, and

qLS is the energy lost through the tank walls to the ambient environment. The energy

transferred to the water in the solar collector can be determined by a heat transfer

balance on the collector between energy absorbed from solar radiation and energy lost

by convection to the ambient environment. The effective energy transferred to the

water has been defined by Duffie and Beckman [10] as

qc ¼ AcFR ITτα−Uc T st−T ambð Þð Þ½ �ΦVa; ð2Þ

where Ac is the collector area, FR is the heat removal factor, IT is the total solar

radiation incident on the collector surface, τα is the transmittance-absorptance product

for the collector glazing, and Uc is the loss coefficient for the collector. The variable

ΦVa is a Heaviside step function that represents the opening and closing of the valve in

energy collection loop (i.e., location (a) in Fig. 1) to maximize energy collection. This

step function is equal to one (i.e., the valve at (a) is open) when the heat transfer to the

water in the collector is positive and equal to zero (i.e., the valve at (a) is closed) other-

wise. The incident radiation on the collector surface can be determined from standard

radiation measurements such as the diffuse and direct radiation on the horizontal.

However, the relationship between these standard measurements and the radiation inci-

dent on the collector surface varies with the position of the sun in the sky. Therefore,

the (“Definition of Radiation Incident on Collector Surface” section) gives the equations

for angles of the sun as a function of time and location.

The convective heat loss through the tank walls can be defined as

qLS ¼ U stAst T st−T ambð Þ; ð3Þ

where Ust is the loss coefficient for the storage tank, Ast is the exposed surface area of

the storage tank, and Tamb is the ambient temperature.

The energy used to meet the building hot water load would be dependent on the user

needs. For the case study addressed in this work, a hot water load profile for a small

multi-family house is assumed based on a hot water usage schedule from the residential
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prototype building models developed by the Pacific Northwest National Laboratory.1 A

typical load for a day is illustrated in Fig. 2.

Definition of Radiation Incident on Collector Surface

This section gives a derivation of the equation used to relate standard radiation

measurements to the radiation incident on the collector surface. The derivation follows

the work by Duffie and Beckman [10] and is included here for completeness. The total

radiative flux incident on the collector surface is a function of diffuse, direct, and

ground reflected radiation components and can be defined as

IT ¼ Is;beam þ Is;diff þ Is;GR; ð4Þ

where Is,beam is the component on the collector surface due to beam radiation, Is,diff is

the component due to diffuse radiation, and Is,GR is the component due to ground

reflected radiation. Radiation measurements are typically reported as beam and diffuse

radiation on a horizontal surface. Therefore, these components must be adjusted for

the slope of the collector surface with respect to horizontal and the position of the sun.

The diffuse radiation on a surface tilted from the horizontal at angle, β, is defined as

Is;diff ¼ Id
1þ cos βð Þ

2

� �
; ð5Þ

where Id is the diffuse irradiation on a horizontal surface. The beam radiation on the

tilted surface can be defined as

Is;beam ¼ Ib cos θð Þ; ð6Þ

where Ib is the beam radiation on a horizontal surface and θ is the angle of incidence

(i.e., the angle between the direct sun beam and the normal to the collector surface).

The radiation on the collector surface from ground reflected radiation can be defined

as

Fig. 2 Building hot water load for a typical day
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Is;GR ¼ Ib cos θzð Þ þ Idð Þ 1− cos βð Þ
2

� �
ρg; ð7Þ

where ρg is the reflectivity of the ground and θz is the solar zenith angle (i.e., the

incidence angle for a horizontal surface). The solar zenith angle is illustrated in Fig. 3a.

For this simulation, the ground reflectance is assumed to be 0.2, which is the commonly

used value in the building energy simulations [16].

The angle of incidence is defined as

cos θð Þ ¼ sin θzð Þ cos γs−γ
� �

sin βð Þ þ cos θzð Þ cos βð Þ; ð8Þ

where γs is the solar azimuth angle (i.e., the angle between south and the projection of

the beam onto the horizontal, see Fig. 3b) and γ is the tilted surface azimuth angle. The

solar zenith angle and the solar azimuth angle can be found using Eqs. (9) and (10),

respectively, as

cos θzð Þ ¼ sin ϕð Þ sin δsð Þ þ cos ϕð Þ cos δsð Þ cos ωsð Þ ð9Þ

γs ¼ sign ωsð Þ arccos
cos θzð Þ sin ϕð Þ− sin δsð Þ

sin θzð Þ cos ϕð Þ
� �����

����; ð10Þ

where ϕ is the latitude of the site, δs is the solar declination, and ωs is the hour angle.

The function sign returns the sign of the argument. Therefore, if ωs is positive,

sign(ωs) = 1; otherwise, sign(ωs) = − 1. The solar declination refers to the angle of

the sun relative to the equatorial plane of the earth. The solar declination for a

given hour in the year can be obtained as

δs ¼ 23:45� sin 360�
hsolar
24 þ 284

� �
365

#
;

"
ð11Þ

where hsolar corresponds to the hour in the year in terms of solar time. Solar time only

corresponds to local time if the site is located along the standard meridian for the local

time zone. Otherwise, the time must be corrected proportional to the amount the

location varies from the standard meridian. The time correction can be defined as

a b
Fig. 3 Illustration of the (a) solar zenith angle and (b) solar azimuth angle
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hsolar ¼ hlocal þ 1
60

� �
4 Lst−Llocalð Þ þ E½ �; ð12Þ

where hlocal is the hour in local time, hsolar is the hour in solar time, Llocal is the longi-

tude at the site location, Lst is the longitude of the standard meridian for the time zone,

and E is a parameter of time correction that can be determined from the following em-

pirical relations [17]:

E ¼ 229:2
0:000075þ 0:001868 cos

hlocal
24

−1
� �

360
365

� �
−0:032077 sin

hlocal
24

−1
� �

360
365

� �

−0:014615 cos 2
hlocal
24

−1
� �

360
365

� �
−0:04089 sin 2

hlocal
24

−1
� �

360
365

� �
0
BB@

1
CCA:

ð13Þ

Finally, the hour angle in Eqs. (9) and (10) denotes the angular displacement of the

sun east or west of the local meridian due to rotation of the earth. The earth rotates at

15°/h. The hour angle is defined to be zero at solar noon, negative in the morning, and

positive in the afternoon. Therefore, for a given day, the hour angle can be defined as

ωs ¼ 15� hsolar−12ð Þ: ð14Þ

Uncertainty Analysis
Nominal Tank Solution

In this section, an example case of a flat plate solar thermal system located in San

Diego, CA, USA, is used to illustrate the uncertainty analysis process for a day long

simulation. Equation (1) is solved for the storage temperature in the tank by using a

standard Runge-Kutta numerical solver. The storage tank temperature is calculated

hourly. The storage tank temperature could be calculated for a variety of design condi-

tions to determine if the design meets the requirements or could be implemented in an

algorithm as part of an effort to optimize the operation method under uncertainty.

The numerical solution for Eq. (1) at each time step, k, can be defined as a function

of the parameters and inputs to the system.

Tstð Þk ¼ F P1;…; PN; qLDð Þ1;…; qLDð Þk; Idð Þ1;…; Idð Þk; Ibð Þ1;…; Ibð Þk; T ambð Þ1;…; T ambð Þk
� �

ð15Þ

The function, F(), in Eq. (15) is based on the model developed in the “Model Description”

section above. The P variables represent the N parameters of the system. The parameters

for the model developed above are listed in Table 1. The other variables in Eq. (15) are the

inputs to the system at each time step, k. The inputs are the hourly building load, qLD, the

diffuse radiation on the horizontal, Id, the beam radiation on the horizontal, Ib, and ambient

temperature,Tamb. An example of the storage tank temperature for a typical day is given in

Fig. 4.

Figure 5 below shows the heat transfer to water in the collector, qc, for the nominal

conditions. The figure shows that positive heat transfer occurs from hours 9 through

17. Therefore, the valve will be opened at 9:00 AM and closed at 6:00 PM. At this point

of the development of the uncertainty analysis procedure, it is important to point out

that the valve system affects the linearity and time invariance of the system with respect

to the time varying inputs.
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Sensitivities of the Tank Temperature

The first step in the uncertainty analysis is to calculate the sensitivities of the solution

variable (i.e., storage temperature) to each of the parameters and inputs. Since the

solution is obtained numerically, the sensitivities are obtained numerically as well. The

sensitivity of the solution to a given parameter or external input can be determined

using a first-order difference. For example, the sensitivity of the storage temperature at

time, k, to the ith parameter, Pi, can be defined as

SPið Þk ¼
F

P1;…; Pi þ ΔPi;…; PN; qLDð Þ1;…; qLDð Þk ;
Idð Þ1;…; Idð Þk; Ibð Þ1;…; Ibð Þk; T að Þ1;…; T að Þk

� �
− T stNð Þk

ΔPi
; ð16Þ

Table 1 Parameters used to determine the storage temperature in San Diego, CA, USA

Parameter Nominal value Estimated uncertainty

Local longitude (Llocal) 117.16 (deg) 0

Location latitude (ϕ) 32.733 (deg) 10%

Longitude of the standard meridian for the time zone (Lst) 120 (deg) 0

Collector area (Ac) 5 (m2) 1%

Heat removal factor times the transmittance-absorptance product (FRτα) 0.753 2%

Heat removal factor times the collector loss coefficient (FRUc) 3.79 2%

Reflectivity of the ground (ρg) 0.2 0.1

Collector slope (β) 32.733 (deg) 2°

Collector azimuth angle (γ) 0 (deg) 2°

Loss coefficient for storage tank (UAst) 1.7 1%

Ambient temperature (Tamb) 25 ( °C) 1 °C

Specific heat of water (cp) 4.1813 (kJ/kg K) 0

Density of water (ρ) 974 (kg/m3) 0.1

Storage tank volume (V) 0.19 (m3) 0

Fig. 4 Storage tank temperature (deg C) for a typical day
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where Tst_N represents the nominal solution which is found by simulating the system

with all parameters and inputs at their nominal values. Notice that when finding the

sensitivity of the solution to a given parameter, Pi, only this parameter is perturbed

while all other parameters and all inputs are held constant. For example, the sensitivity

of the solution at time, k, to the collector area can be defined as

SAcð Þk ¼
F

P1;…;Ac þ ΔAc;…; PN; qLDð Þ1;…; qLDð Þk;
Idð Þ1;…; Idð Þk; Ibð Þ1;…; Ibð Þk; T að Þ1;…; T að Þk

� �
− T stNð Þk

ΔAc
: ð17Þ

An example of this sensitivity is shown in Fig. 6. This same process can be used to

find the sensitivity of the solution to each parameter.

The same approach could be used for finding the sensitivities of the solution to the

time varying inputs. The sensitivity of the solution at time, k, must be calculated for

Fig. 5 Energy transferred to the water in the solar collector, qc (kW) for a typical day

Fig. 6 Sensitivity of storage tank temperature to the collector area (units °C/m2)
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the entire history of the time varying inputs as shown in the following equations. Note:

The index j is used to indicate the time that the input perturbation occurred.

S qLDð Þj
	 


k
¼

F
P1;…; PN; qLDð Þ1;…; qLDð Þj þ ΔqLDð Þj

h i
;…; qLDð Þk;

Idð Þ1;……; Idð Þk; Ibð Þ1;…; Ibð Þk; T að Þ1;…; T að Þk

 !
− T stNð Þk

ΔqLDð Þj
ð18Þ

S T að Þj
	 


k
¼

F
P1;…; PN; qLDð Þ1;…; qLDð Þk;

Idð Þ1;…; Idð Þk; Ibð Þ1;…; Ibð Þk; T að Þ1;…; T að Þj þ ΔT að Þj
h i

;…; T að Þk

 !
− T stNð Þk

ΔT að Þj
ð19Þ

S Idð Þj
	 


k
¼

F
P1;…;PN; qLDð Þ1;…; qLDð Þk;

Idð Þ1;…; Idð Þj þ ΔIdð Þj
h i

;…; Idð Þk; Ibð Þ1;…; Ibð Þk; T að Þ1;…; T að Þk

 !
− T stNð Þk

ΔIdð Þj
ð20Þ

S Ibð Þj
	 


k
¼

F
P1;…; PN; qLDð Þ1;…; qLDð Þk;

Idð Þ1;…; Idð Þk; Ibð Þ1;…; Ibð Þj þ ΔIbð Þj
h i

;…; Ibð Þk; T að Þ1;…; T að Þk

 !
− T stNð Þk

ΔIbð Þj
ð21Þ

However, this approach would require a large number of numerical simulations. For

instance, for a given time step k, the sensitivity must be determined for the current

input as well as for the entire history of inputs. This would require k additional simula-

tions for each time varying input. In this model, there are four time varying inputs.

Therefore, for a single day simulation (i.e., 24 time steps), it would take 96 simulations

to calculate the sensitivities for the inputs alone. This would become especially cumber-

some if there was a need for multiple day simulations. An alternative approach is taken

in this work.

Assuming a linear time invariant system, the principle of superposition can be used

to greatly reduce the number of simulations required. In this case, discrete convolution

(i.e., a discretized version of Duhamel’s integral) can be used to determine the response

of the storage temperature to small changes in the input loads. Then, the impulse

response can be found for each load. This impulse response can simply be multiplied

by the load perturbation magnitude and shifted to the time of the load to determine

the response to all perturbations. It follows that only one additional simulation will be

required for each time varying input. That eliminates 92 simulations. In general using

the principle of convolution reduces the number of simulations by I *N − I, where N is

the number of time steps, and I represents the number of inputs (i.e., four in this case).

For a 1-week simulation, this method would eliminate the need for 668 numerical ODE

simulations. For a 1-year simulation, this method would eliminate 35,036 simulations,

requiring only four simulations for calculating the sensitivities to the inputs.

The previous discussion assumes that the model is linear and time-invariant.

However, the model developed in this work has fairly strong nonlinearities due to

changes in the valve states. To address this issue, the simulation was split into three

zones: before collector valve is open, during collector operation, after collector valve is

closed. For the ambient temperature and hot water load, a simulation is required for
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each of the three zones, while the diffuse and beam radiation only affect the solution

during the time when the collector is being used.

At zone transitions, the uncertainties from the previous zone are interpreted as an

uncertainty in the initial temperature for the next zone. This requires additional simu-

lations for each zone transition and for each time-varying input that is effective leading

up to the zone transition. This leads to six additional simulations for a single day

simulation.

The diffuse radiation only affects the model simulation when the collector valve is

open. For the case studied, the valve is open from 9:00 AM to 6:00 PM. As discussed

above, finding the sensitivity of the solution to this input would require running a

simulation for each time step in this range. The impulse response is found by running

a simulation in which the input is perturbed in a single time step in a single variable. For

example, the impulse response for a perturbation of the diffuse radiation load at j = 9 can

be determined as

h Idð Þ9ð Þk ¼
F

P1;…;PN; qLDð Þ1;…; qLDð Þk;
Idð Þ1;…; Idð Þ9 þ ΔId;…; Idð Þk; Ibð Þ1;…; Ibð Þk; T að Þ1;…; T að Þk

� �
− T stNð Þk

ΔId
:

ð22Þ

Using the same approach for perturbations at later time steps gave almost identical

impulse responses for times before closing of the collector valve (at 6:00 PM). Figure 7

shows a comparison of the impulse responses for three different perturbation times.

Note that the impulse responses for later perturbation times are shifted to the left for

comparison. The fact that the impulse responses are the same at different times shows

the time invariance of the model with respect to diffuse radiation inputs during the

time when the valve is open. This indicates that a single impulse response can be used

to represent the sensitivities of the solution to diffuse radiation inputs at all remaining

times when the collector valve is open. For this simulation the impulse response at

9:00 AM is used as

Fig. 7 Comparison of the impulse response to diffuse radiation at different perturbation times
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SIdð Þk ¼ h Idð Þ9ð Þk : ð23Þ

While the diffuse radiation input does not affect the model after the valve is closed,

the uncertainty of the input diffuse radiation does contribute to the uncertainty in the

storage temperature after the valve is closed. However, the sensitivity of the solution to

diffuse radiation is very nonlinear for times after the valve is closed. Figure 8 shows the

sensitivity for various perturbation amplitudes within the expected range of the diffuse

radiation uncertainty. Notice the drastic nonlinearity after the valve is closed. This

same trend was found in each of the four time-varying inputs. This nonlinearity makes

the truncated Taylor series method inaccurate. To overcome this difficulty, new simula-

tions are started at the time when the collector valve is closed. The uncertainty in the

tank temperature at the time when the collector valve is closed (6:00 PM or hour num-

ber 18) but obtained assuming that the collector valve is open and will be used as the

uncertainty in the initial tank temperature for new “closed-valve” simulations starting

at this time. Therefore, the initial condition uncertainty will capture the effect of the

uncertainty in the time-varying inputs in previous time steps on the uncertainty in the

solution after the collector valve is closed.

Next, the sensitivity of the solution to beam radiation will be defined. The sensitivity

of the solution to beam radiation was found to be time variant. This time variance

results from the fact that the contribution from the beam radiation on the collector

surface is dependent on the angle between the sun and the surface as shown in

Eqs. (2), (4), (6), and (7). This angle is a function of time. The chain rule can be

invoked to remove the time variance shown in the sensitivity of the solution to the

beam radiation as follows:

∂T st

∂Ib
¼ ∂T st

∂qc

∂qc
∂Ib

: ð24Þ

The first term represents the sensitivity of the tank temperature to a change in heat

transfer from the collector. The second term represents the sensitivity of the heat

Fig. 8 Sensitivities of diffuse radiation input after the value is closed for various perturbation amplitudes
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transfer in the collector to changes in the beam radiation. This can be found by taking

the derivative of (2) with respect to Ib.

dqc
dIb

¼ AcFR cos θð Þ þ cos θzð Þ 1− cos βð Þ
2

� �
ρg

� �
ð25Þ

Total Uncertainty of the Tank Temperature

Once the sensitivities are available, the total uncertainty of the storage temperature in

the tank can be determined by following the procedures described in the ASME test

uncertainty [18] and the ISO guide [19] to yield

UT st ; k
2 ¼

X
i¼1

N
SPið ÞkUPi;k

� �2þU2
qLD;k þ U2

Id;k þ U2
Ib;k þ U2

Ta;k; ð26Þ

where UPi;k are the estimated uncertainties of the parameter Pi, the list of parameters

including the respective uncertainties is given in Table 1. In general, the uncertainties

are estimated based on many factors such as expected measurement errors in experimen-

tal variables (obtained from instrument manufacturers), approximation errors in model

parameters, conceptual errors in model equations, and engineering judgment. Additional

information for estimating uncertainties can be found in references [18–20]. The nominal

values of model parameters used in the present uncertainty analysis and their estimated

uncertainties are listed in Table 1. Nominal values in this table refer to the model param-

eter values assuming zero uncertainty. The total uncertainties for the hourly building load,

qLD, the diffuse radiation on the horizontal, Id, the beam radiation on the horizontal, Ib,

and ambient temperature, Ta, can be determined using their sensitivities at time k and es-

timated uncertainties as defined below

U2
qLD;k ¼

X
j¼1

k
SqLdk−j
	 
h i2

UqLdS
2 þ

X
j¼1

k
SqLdj−k
	 
2

UqLdR
2 ð27Þ

U2
Id;k ¼ Sbð ÞkUbk

� �2 þXj−1

k¼0
SIdj−k
h i2

U IdR
2 ð28Þ

U2
Ib;k ¼ Sað ÞkUak

� �2 þXj−1

k¼0
SIbj−k
h i2

U IbR
2 ð29Þ

U2
Ta;k ¼

Xj−1

k¼0
STaj−k
h i	 
2

UTaS
2 þ

Xj−1

k¼0
STaj−k
h i2

UTaR
2: ð30Þ

Uncertainties for External Input Variables

TMY3 data includes hourly uncertainty values for direct solar radiation and diffuse

solar radiation, and these uncertainty values represent the plus or minus 95% confi-

dence intervals for the hourly data [14]. The uncertainty for each hourly data in TMY3

Table 2 Estimated uncertainties for input variables

Input variable Source Standard random
uncertainty

Standard systematic
uncertainty

Idiff Hourly values given in TMY3 1% of maximum daily 10%

Ibeam Hourly values given in TMY3 1% of maximum daily 16%

Tamb Typical uncertainty in temperature sensors 1 °C 1 °C

qLD Estimation (engineering judgment) 5 W 5 W
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data is determined by comparing predictions with measured data [15]. The uncertainty

for ground reflectance (ρ) is estimated to be 0.1 because many ground surfaces have

the ground reflectance values between 0.1 and 0.3 based on their material [8]. The

estimated uncertainties for the input variables are listed in Table 2.

Results of Uncertainty Propagation

The uncertainty analysis method presented in the “Uncertainty Analysis” section was

performed for the single day simulations case study described in the “Uncertainty

Analysis” section. Figure 9 summarizes the one sided 95% uncertainty in the storage

tank temperature results. Note that the graph is segmented into three sections based

on the opening and closing of the collector valve. The highest uncertainty occurs when

the energy transferred to the water by the solar collector is highest. Figure 10 shows

Fig. 9 Uncertainty in storage tank temperature for day simulation

Fig. 10 Storage tank temperature with uncertainty confidence intervals
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the two-sided confidence intervals for each time step plotted over the nominal storage

tank temperature solution. The results in Figs. 9 and 10 indicate that the storage

temperature can vary between 1 and 2.2 °C from the nominal values obtained from the

system model due to the uncertainty associated with the input parameters.

Conclusion
An approach was presented to quantify uncertainties associated with transient simulation

results from a dynamic solar thermal energy system model with uncertain input parame-

ters. The approach greatly reduced the number of simulations required by using the

impulse response and convolution integral to estimate the sensitivities to time-varying

external inputs. The results from the selected example indicated that the uncertainty in

the time-varying temperature of the storage tank can vary as much as ±2.2 °C. This

method can be helpful for validating models for system design and potentially for

developing operation algorithms that take time varying uncertainties into account.

Endnote
1Available at https://www.energycodes.gov/development/residential/iecc_models.
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