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Abstract

Background: The incidence of differentiated thyroid carcinoma (DTC) in Cuba is low and the contribution of host
genetic factors to DTC in this population has not been investigated so far. Our goal was to assess the role of
known risk polymorphisms in DTC cases living in Havana. We genotyped five polymorphisms located at the DTC
susceptibility loci on chromosome 14q13.3 near NK2 homeobox 1 (NKX2-1), on chromosome 9q22.33 near Forkhead
factor E1 (FOXE1) and within the DNA repair gene Ataxia-Telangiectasia Mutated (ATM) in 203 cases and 212
age- and sex- matched controls. Potential interactions between these polymorphisms and other DTC risk factors
such as body surface area, body mass index, size, ethnicity, and, for women, the parity were also examined.

Results: Significant association with DTC risk was found for rs944289 near NKX2-1 (OR per A allele = 1.6, 95% CI:
1.2–2.1), and three polymorphisms near or within FOXE1, namely rs965513 (OR per A allele = 1.7, 95% CI: 1.2–2.3),
rs1867277 in the promoter region of the gene (OR per A allele = 1.5, 95% CI: 1.1–1.9) and the poly-alanine tract expansion
polymorphism rs71369530 (OR per Long Allele = 1.8, 95% CI: 1.3–2.5), only the 2 latter remaining significant when
correcting for multiple tests. Overall, no association between DTC and the coding SNP D1853N (rs1801516) in ATM
(OR per A Allele = 1.1, 95% CI: 0.7–1.7) was seen. Nevertheless women who had 2 or more pregnancies had a 3.5-fold
increase in risk of DTC if they carried the A allele (OR 3.5, 95% CI: 3.2–9.8) as compared to 0.8 (OR 0.8, 95% CI: 0.4–1.6) in
those who had fewer than 2.

Conclusions: We confirmed in the Cuban population the role of the loci previously associated with DTC susceptibility
in European and Japanese populations through genome-wide association studies. Our results on ATM and the number
of pregnancies raise interesting questions on the mechanisms by which oestrogens, or other hormones, alter the DNA
damage response and DNA repair through the regulation of key effector proteins such as ATM. Due to the small size of
our study and to multiple tests, all these results warrant further investigation.
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Background
Cuba is the largest island in the Caribbean Sea, with an
estimated population of over 11 million people according
to the 2012 census [1]. The Cuban population has a mixed
ethnic composition, with a large proportion of people of
African or Spanish origin. Before the Spanish colonisation,
Cuba was occupied by Native Americans who had mi-
grated from the mainland of North, Central and South
America several centuries before [2]. Today, Afro-Cubans,
mostly from Congo, account for 35% of the population
[1]. The registered incidence of DTC is low in Cuba, being
4.1 per 100,000 in females and 1.0 in males [1,3].
In a previous case-control study on thyroid cancer risk

factors conducted in Cuba [4], we showed that DTC risk
was lower in populations of African origin, was increased
with parity and body surface area, and was higher in
farmers than in people pursuing other types of activities.
A history of ionizing radiation, agricultural occupation
and an artesian well as the main source of drinking water
were also associated with a significantly increased risk of
developing DTC. In women, irregular cycles and meno-
pause status were associated with a higher risk of DTC.
On the other hand, DTC risk was lower in current or
former smokers than in non-smokers [4].
We investigated the The contribution of host genetic

factors to DTC susceptibility has never been assessed in
the Cuban population. Since NKX2-1 (NK2 homeobox 1,
also called TTF1 for Thyroid Transcription Factor 1),
FOXE1 (Forkhead factor E1, also called TTF2 for Thy-
roid Transcription Factor 2) and ATM (Ataxia-Telangi-
ectasia Mutated) have been associated with DTC in
other populations and are compelling candidates due to
their roles in thyroid development or response to DNA
damage, we chose to assess the contribution of genetic
variations in or near these three genes to the risk of
DTC in the Cuban population.
NKX2-1 and FOXE1 encode thyroid-specific transcrip-

tion factors that play an important role in thyroid devel-
opment and whose expression is modified in thyroid
tumours [5-7]. The first thyroid cancer genome-wide
association study (GWAS) reported the contribution
of two SNPs near these two genes, namely rs944289,
located 337-kb upstream of NKX2-1 on chromosome
14q13.3, and rs965513, located 57-kb upstream of
FOXE1 on chromosome 9q22.33, to the risk of develop-
ing DTC in the European population [8]. Subsequently,
the relationship between these two loci and DTC sus-
ceptibility has been investigated in other populations,
but these associations vary in the context of different
ethnic backgrounds and FOXE1 polymorphisms were
more strongly correlated with the pathogenesis of PTC
than NKX2-1 polymorphisms [9-12]. In particular, two
functional polymorphisms in FOXE1 appeared to be
of specific interest: rs1867277, located within the 5′
untranslated region (UTR) and involved in the allele-
specific transcriptional regulation of FOXE1 through
recruitment of the USF1/USF2 transcription factors
[13-16], and rs71369530, the poly-alanine expansion in
the FOXE1 coding region [17,18].
ATM is a key initiator of the DNA damage response

and some ATM SNPs have been reported to play a role
in hormone dependent cancers and radiation sensitivity
[19]. In particular, the common missense substitution
D1853N (rs1801516) has been shown to play a role in
DTC risk following irradiation [16,20] but the associ-
ation with sporadic PTC was not replicated in a meta-
analysis [11].

Results
For each genotyped polymorphism, allele and genotype
frequencies were calculated and Hardy-Weinberg equi-
librium (HWE) was tested in the studied sample set. The
five polymorphisms were in HWE among the analysed
control subjects (Table 1). We noted that in the control
population the minor allele frequency (MAF) of rs944289
near NKTX2-1 was significantly lower in subjects of
African origin than in the others (p = 0.03). No signifi-
cant difference in MAF was observed for the other
tested polymorphisms between the different ethnic groups
(p < 0.3, whatever the polymorphism).
When stratifying by sex and age, and adjusting for

body surface area (BSA), body mass index (BMI), size,
ethnicity, tobacco consumption and, for women, number
of pregnancies, all tested SNPs but rs1801516 in ATM
(D1853N) were found to be associated with increased
risk of DTC in the Cuban population (Table 2). ORs per
minor allele, ranged from 1.5 (95% CI: 1.1–1.9) for
rs1867277 located in the 5′UTR of FOXE1 to 1.8 (95%
CI: 1.3–2.5) for the length polymorphism rs71369530 in
the coding sequence of FOXE1 (Table 2).
A systematic investigation of potential interactions be-

tween the five polymorphisms and ethnicity, BMI, BSA,
size, tobacco consumption and, for women, parity (Tables 3
and 4), revealed a suggestive interaction (p = 0.03) between
the ATM coding SNP and the number of pregnancies.
Women who had 2 or more pregnancies had a 3.5-fold
(95% CI: 1.2–9.8) increase in risk of DTC if carrying the A
allele whereas this OR was 0.8 (95% CI: 0.4–1.6) in women
having had none or one pregnancy only (Table 3).

Discussion
In the present work, we assessed the relationship be-
tween five putative or recognized polymorphisms in-
volved in DTC risk in the Cuban population, where the
incidence of thyroid cancer is particularly low [4].
We replicated the association between polymorphisms

at NKX2-1 and FOXE1 loci and DTC risk previously re-
ported in a GWAS in European [8] and Japanese [14]



Table 1 Description of the five studied polymorphisms

Reference Location Chromosome Polymorphism Minor allele
frequency in cases

Minor allele
frequency in controls

Hardy-
Weinberg
equilibrium χ2

p-value

Allele
change

Residue
change

All African
origin

Others All African
origin

Others Cases Controls

rs1801516 Coding region of ATM 11q22–23 G > A D1853N 0.11 0.14 0.10 0.11 0.13 0.10 0.08 0.7

rs944289 Intergenic, 337 kb
telomeric of NKX2–1

14q13.3 C > T - 0.56 0.46 0.59 0.43 0.36 0.47 0.04 0.5

rs965513 Intergenic, 57 kb
upstream to FOXE1

9q22.33 G > A - 0.36 0.28 0.39 0.25 0.21 0.26 0.6 0.9

rs1867277 5′UTR of FOXE1 9q22.33 G > A - 0.46 0.40 0.48 0.37 0.38 0.36 0.7 0.4

rs71369530 Exon 1 of FOXE1 9q22.33 - Poly-alanine
tract expansion

0.40 0.29 0.43 0.28 0.29 0.27 0.6 0.9
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populations. When taking into account multiple tests
using Bonferoni correction [19], significant threshold for
p-value should be 0.01, and only 2 of the 3 tested SNPs
at FOXE1 loci remained significant.
The power of the present study was low for the ATM

SNP rs1801516, because of the low MAF (11%) in con-
trols. For this SNP, a power of 80% is reached only for
Table 2 Association results between the five polymorphisms

Genotypes Genotyped participants

Cases n (%) Controls n

rs1801516 (ATM) n = 197 n = 206

G/G 153 162

G/A 44 42

A/A 0 2

rs944289 (near NKX2-1) n = 202 n = 209

C/C 47 70

C/T 85 98

T/T 70 41

rs965513 (near FOXE1) n = 203 n = 212

G/G 83 118

G/A 91 81

A/A 29 13

rs1867277 (5′UTR of FOXE1) n = 203 n = 212

G/G 56 88

G/A 104 91

A/A 43 33

rs71369530 (length polymorphism in FOXE1) n = 203 n = 212

S/Sc 72 112

S/Lc 101 84

L/Lc 30 16
aStratified by age and sex.
bStratified by age and sex and adjusted on BSA, ethnicity, tobacco, size and for wom
cS for alleles with 14 or fewer alanine residues and L for alleles with 16 or more ala
an OR of 3.5 or higher. For the other tested SNPs with
MAFs of about 20% in controls (range: 15% to 27%,
Table 1), our study had a power of 80% for evidencing
an association if OR is 1.7 or higher, when not taking
into account multiple tests, and if OR is 2.0 or higher
when taking in account multiple testing. Only important
interaction could be evidenced given the size of our study,
and the risk of developing DTC

Crude ORa

(95% CI)
p-
value

Adjusted
ORb (95%
CI)

Adjusted
OR per
allele
(95% CI)

p-
value(%)

Ref Ref

1.2 (0.7–1.9) 0.6 1.2 (0.7–2.0) 1.1 (0.7–1.7) 0.8

- 0.9 -

Ref Ref

1.3 (0.8–2.0) 0.4 1.2 (0.7–1.9) 1.6 (1.1–2.1) 0.02

2.6 (1.5–4.5) <0.001 2.5 (1.4–4.4)

Ref Ref

2.0 (1.0–4.1) 0.06 1.7 (1.1–2.6) 1.7 (1.2–2.3) 0.02

3.3 (1.16–6.9) 0.001 2.9 (1.3–6.1)

Ref Ref

1.1 (0.7–1.9) 0.6 1.8 (1.2–2.9) 1.5 (1.1–1.9) 0.01

2.1 (1.2–3.8) <0.01 1.9 (1.1–3.5)

Ref Ref

1.5 (0.8–3.0) 0.2 2.0 (1.3–3.1) 1.8 (1.3–2.5) 0.0003

2.9 (1.5–5.7) <0.005 2.9 (1.4–5.9)

en, number of pregnancies.
nine residues.



Table 3 Results of interaction tests between genetic factors and other putative risk factors for DTC

rs944289$ (near NKX2-1) p-interaction rs1801516$ (ATM) p- interaction

C/C C/T T/T G/G G/A A/A

Ethnicity

African Cases/controls 16/33 21/28 12/12 35/54 14/18 0/0

OR (95% CI) Ref 1.5 (0.7–3.5) 2.3 (0.8–6.3) 0.9 Ref 1.2 (0.6–2.7)

Other Cases/controls 31/37 64/70 58/29 118/108 30/24 0/2 0.9

OR (95% CI) Ref 1.1 (0.6–2.0) 2.4 (1.2–4.5) Ref 1.2 (0.7–2.2) -

BMI (kg/m2)

≤ Median Cases/controls 27/40 33/53 19/22 68/90 21/21 0/2

OR (95% CI) Ref 0.9 (0.4–1.8) 2.1 (1.0–4.4) 0.4 Ref 1.3 (0.6–2.4) _ 0.5

> Median Cases/controls 20/30 52/45 40/19 85/72 23/21 0/0

OR (95% CI) 1.7 (0.8–3.4) 3.1 (1.4–6.8) Ref 1.0 (0.5–1.9) -

BSA (m2)

≤ Median Cases/controls 27/41 32/52 34/24 72/93 20/22 0/1

OR (95% CI) Ref 1.0 (0.5–1.9) 2.2 (1.0–4.4) 0.5 Ref 1.2 (0.6–2.4) _ 0.9

> Median Cases/controls 20/29 53/46 36/17 81/69 24/20 0/1

OR (95% CI) Ref 1.6 (0.6–3.3) 3.1 (1.4–7.0) Ref 1.0 (0.5–2.0) -

Size (m)

≤ Median Cases/controls 26/39 43/47 36/21 79/84 23/22 0/0

OR (95% CI) Ref 1.3 (0.7–2.6) 2.6 (1.2–5.4) 0.9 Ref 1.2 (0.6–2.3) -

> Median Cases/controls 21/31 42/51 34/20 74/78 21/20 0.2 0.8

OR (95% CI) Ref 1.3 (0.6–2.5) 2.6 (1.2–57) Ref 1.0 (0.5–2.1) -

Ever smoker

No Cases/controls 33/46 56/56 54/22 107/98 32/22 0/2

OR (95% CI) Ref 1.2 (0.5–2.7) 1.4 (0.6–3.6) Ref 1.4 (0.8–2.7) - 0.2

Yes Cases/controls 14/24 29/42 16/19 0.1 46/64 12/20 0

OR (95% CI) Ref 1.4 (0.8–2.5) 3.5 (1.8–7.1) Ref 0.8 (0.3–0.7) -

Pregnancy

<2 Cases/controls 19/39 35/54 35/26 72/91 17/25 0/2

OR (95% CI) Ref 1.3 (0.7–2.6) 2.7 (1.2–5.7) Ref 0.8 (0.4–1.6) -

≥2 Cases/controls 24/21 38/22 27/9 0.9 61/46 23/5 0/0 0.03

OR (95% CI) Ref 1.5 (0.7–3.4) 2.6 (1.0–6.8) Ref 3.5 (1.2–9.8) -

All ORs and tests are stratified on sex and age.
$ Not including missing data.
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a power of 80% being reached for gene-environment inter-
actions of a factor 3, assuming an environmental factor
present in 50% of controls, a main OR for environmental
factor equal to 2, a SNP MAF equal to 20% and a main
OR per minor allele equal to 1.5. All these numbers being
given without correction for multiple tests.
In addition to a low power, our study suffers from the

traditional limitations of case-control studies. If size,
pregnancies number and smoking habits are probably
well reported by subjects, it is impossible for us to verify
that cases correctly reported their weight before thyroid
cancer, as specified in questionnaire, rather than their
weight at time of interview.
Although we did not evidence an association between
ATM D1853N (rs1801516) and DTC risk in the whole
study set, a significant (p = 0.03) interaction was found
in women between this polymorphism and the number
of pregnancies, which is another known risk factor for
DTC [4]. In the Cuban study the minor allele (A) was
significantly associated with a 3-fold increased risk of
DTC among women who had had two or more children.
Interestingly, as observed in the Cuban population [4],

an increased risk of DTC with increasing number of
pregnancies had been observed in natives of French
Polynesia (OR = 3.1, 95% CI: 1.2–8.3) [21], where the aver-
age number of children is very high (about 4 children per



Table 4 Results of interaction tests between genetic factors and other putative risk factors for DTC
rs965513$ (near FOXE1) P-interaction rs1867277$ (5′UTR of FOXE1) p-interaction rs71369530$ (length polymorphism in FOXE1) p-interaction

G/G G/A A/A G/G G/A A/A S/S* L/S* L/L*

Ethnicity

African Cases/controls 25/41 18/28 4/1 18/30 23/32 8/12 24/37 22/31 3/6

OR (95% CI) Ref 1.1 (0.5–2.4) 6.4 (0.7–0.4) 0.3 Ref 1.2 (0.5–2.7) 1.1 (0.4–3.1) 0.4 Ref 1.1 (0.5–2.4) 0.8 (0.2–3.3) 0.09

Other Cases/controls 56/75 71/49 23/11 38/57 81/59 33/20 48/73 79/52 27/10

OR (95% CI) Ref 2.0 (1.2–3.2) 2.9 (1.3–6.4) Ref 2.0 (1.2–3.5) 2.4 (1.2–4.9) Ref 1.1 (0.5–2.3) 4.0 (1.8–3.2)

BMI (kg/m2)

≤ Median Cases/controls 36/63 43/40 10/8 25/52 46/48 19/15 32/61 45/44 13/9

OR (95% CI) Ref 1.9 (1.0–3.4) 2.0 (0.7–5.6) 0.3 Ref 2.0 (1.1–3.7) 1.6 (1.1–6.0) 0.6 Ref 1.9 (1.1–3.5) 2.7 (1.1–6.9) 0.9

> Median Cases/controls 45/53 46/37 17/4 31/35 58/43 22/17 40/49 56/39 17/7

OR (95% CI) Ref 1.5 (0.8–2.8) 5.7 (1.8–8.6) Ref 1.6 (0.8–3.0) 1.4 (0.6–3.2) Ref 1.8 (1.0–3.2) 2.9 (1.1–7.6)

BSA (m2)

≤ Median Cases/controls 37/63 41/44 13/8 27/49 49/53 17/16 35/62 44/46 15/10

OR (95% CI) Ref 1.6 (0.9–2.9) 2.8 (1.1–7.5) 0.8 Ref 1.6 (0.9–3.0) 1.9 (0.8–4.4) Ref 1.7 (0.9–3.0) 2.6 (1.1–6.5) 0.9

> Median Cases/controls 44/53 48/33 14/4 29/38 55/38 24/16 0.9 37/48 57/47 15/6

OR (95% CI) Ref 1.8 (1.0–3.4) 4.4 (1.3–14.6) Ref 2.0 (1.0–3.8) 1.9 (0.9–4.3) Ref 2.1 (1.1–3.8) 3.1 (1.1–8.7)

Size (m)

≤ Median Cases/controls 42/59 42/41 16/6 28/48 58/44 20/16 35/55 55/42 16/11

OR (95% CI) Ref 1.4 (0.8–2.7) 3.8 (1.4–10.6) 0.7 Ref 2.5 (1.4–4.7) 2.3 (1.0–5.2) 0.3 Ref 2.0 (1.1–3.6) 2.2 (0.9–5.3) 0.5

> Median Cases/controls 39/57 47/36 11/6 30/39 46/57 21/16 37/55 46/41 14/5

OR (95% CI) Ref 2.0 (1.1–3.6) 2.8 (0.9–8.3) Ref 1.3 (0.7–2.4) 1.7 (0.8_3.8) Ref 1.7 (0.9–3.1) 4.2 (1.4–12.5)

Ever smoker

No Cases/controls 57/70 60/46 22/6 43/55 71/54 28/16 55/68 68/49 21/6

OR (95% CI) Ref 1.7 (1.0–2.8) 4.8 (1.8–12.7) Ref 1.7 (1.0–2.9) 2.1 (1.0–4.4) 0.3 Ref 1.7 (1.0–2.8) 4.2 (1.6–11.1) 0.3

Yes Cases/controls 24/46 29/31 5/6 0.3 13/32 33/37 13/16 17/42 33/34 9/10

OR (95% CI) Ref 1.8 (0.9–3.7) 1.4 (0.4–5.0) Ref 2.2 (1.0–4.9) 1.9 (0.7–5.1) Ref 2.4 (1.1–5.0) 2.1 (0.7–6.1)

Pregnancies

<2 Cases/controls 34/68 44/42 10/6 23/55 50/48 16/17 31/63 46/48 12/8

OR (95% CI) Ref 2.0 (1.1–3.7) 3.1 (1.0–9.2) 0.8 Ref 2.5 (1.3–4.6) 2.2 (0.9–5.0) Ref 2.0 (1.1–3.6) 2.9 (1.1–7.9)

≥2 Cases/controls 38/30 36/18 12/3 25/15 42/30 21/7 0.4 33/27 41/21 16/3 0.7

OR (95% CI) Ref 1.6 (0.8–3.2) 3.1 (0.8–12.1) Ref 0.8 (0.4–1.8) 1.7 (0.6–5.1) Ref 1.6 (0.8–3.3) 4.3 (1.1–16.5)

All ORs and tests are stratified on sex and age.
*S for Short alleles (12–14 alanines) and L for Long allele (16–19 alanines).
$Not including missing data.
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woman in the controls). In the French Polynesian study
the minor allele A was quite rare in the population (2% in
controls), but it was associated with a significantly in-
creased risk of DTC (Maillard et al. submitted).
These observations raise interesting questions about

the biological role of ATM, and possibly of other DNA
repair genes, on the development of hormone-related
cancers. The Ser/Thr protein kinase ATM is primarily
known as a central element of the cellular response to
double-strand break (DSB) lesions. DNA DSBs can be
generated by DNA damaging agents, such as ionizing
radiation, following the collapse of stalled replication
forks or the response to uncapped telomeres. Unrepaired
DSBs can severely disrupt DNA replication in proliferating
cells, usually leading to cell death, or leave chromosomal
aberrations leading to cancer formation. In previous
studies on radio-induced PTC or sporadic PTC, the
missense substitution D1853N in ATM had been associ-
ated with a decreased risk [16,22]. More recently, it has
been reported that this conserved variant falling just
upstream of the FAT kinase domain [23] may modify
the genetic susceptibility to DTC and its clinical mani-
festation in carriers of a rare BRCA1 pathogenic variant.
In particular, both ATM rs1801516 and BRCA1 rs16941
variants modify the impact of male gender on clinical
variables [24]. An emerging hypothesis is that ATM is
exploited in undamaged cells in other signalling path-
ways that DSBs repair in response to various stimuli
or physiological situations such as hormonal exposure
[25]. One could also hypothesize that oestrogen could
contribute to DTC via the induction of DNA damage.
For instance, in breast cancer it has been proposed
that oestrogen receptor signalling converges to sup-
press effective DNA repair and apoptosis in favour of
proliferation [26]. A variation in breast cancer risk as-
sociated with parity has been evidenced according to
the type of mutation in the DNA repair gene BRCA1,
acting in the same pathway as ATM [27]. Hence, fur-
ther studies are warranted to better understand the
role of ATM in hormone-related cancers such as
DTC.

Conclusions
We confirmed in the Cuban population the role of the loci
that have been previously associated with DTC suscepti-
bility in European and Japanese populations through
genomewide association studies. Moreover, our result
on ATM and the number of pregnancies raises interesting
questions on the mechanisms by which oestrogens, or
other hormones, alter the DNA damage response and
DNA repair through the regulation of key effector proteins
such as ATM. Due to the small size of our study and to
multiple testing, all these results warrant further investiga-
tion in a larger sample set.
Methods
This case-control study was carried out in Havana,
Cuba, and was revised and approved by the Clinical Re-
search Ethics Committee of the National Institute of
Oncology (INOR), Havana, Cuba. Informed written con-
sent was obtained from all study participants.

Subjects selection and interviews
The cases and controls selection process as well as the
case-control study methodology have been described
elsewhere [4]. In brief, cases lived in the Havana area,
were between 18 and 50 years old at time of DTC diag-
nosis and had been treated between 2000 and 2011 at
INOR or at the Institute of Endocrinology of Havana.
Of the 240 eligible DTC cases, 37 (15%) individuals
were not interviewed because they could not be located
(n = 32) or refused to participate (n = 5). The final study
population consisted of 203 cases. Controls were se-
lected from the general population living in the same
areas using consultation files from primary care units
(family doctors). They were frequency-matched with
cases by age at cancer diagnosis (±5 years) and gender.
Of the 229 potential controls, 17 refused and 212
agreed to be interviewed.
All 415 participants were interviewed face-to-face by

trained professionals (nurses and medical staff ) using
a structured questionnaire between January 2009 and
December 2011 in presence of a parent, a relative, or a
general practitioner. Cases and controls characteristics
are described in Table 5. All participants gave their
consent for saliva sampling and genetic analyses.

DNA isolation
Saliva samples were collected using a DNA Genotek
Oragene DNA collection kit (Ottawa, Canada). Genomic
DNA (gDNA) was extracted using a standard inorganic
method (Qiagen Autopure LS, Courtaboeuf, France).
The gDNA was then quantified with the Life Technologies
Picogreen kit (Saint-Aubin, France). For the genotyping,
DNA from study participants was randomized on plates
and all samples were analysed simultaneously. For quality
control purposes, duplicates of 10% of the samples were
interspersed throughout the plates.

Genotyping
Five polymorphisms that were observed in previous
studies to be associated with DTC were selected for
genotyping: the nonsynonymous SNP rs1801516 (D1853N)
in ATM, the GWAS SNP rs944289 near PTCSC3 and
NKX2-1 at 14q13.3, the GWAS SNP rs965513 near
FOXE1 at 9q22.33, rs1867277 in the 5′UTR of FOXE1,
and the poly-alanine stretch polymorphism rs71369530
in FOXE1 that is the result of a variable number of ala-
nine repeats.



Table 5 Characteristics of the 415 subjects participating
in the case-control study

Characteristics Controls
(n = 212) (%)

Cases
(n = 203) (%)

Gender

Male 39 (18.4) 24 (11.8)

Female 173 (81.6) 179 (88.2)

Age at diagnosis (years)

<25 24 (11.3) 23 (11.3)

25–34 47 (22.2) 40 (19.7)

35–44 87 (41.0) 87 (42.9)

45–54 49 (23.1) 46 (22.7)

55+ 5 (2.4) 7 (3.4)

Histology

Papillary thyroid carcinoma N/A 162 (89.5)

Follicular thyroid carcinoma N/A 19 (10.5)

Missing N/A 22

Ethnicity

European 38 (17.9) 57 (28.1)

Mixed 99 (46.7) 97 (47.8)

African 75 (35.4) 49 (24.1)

Body Mass Index (kg/m2)

> Median in genotyped controls 105 (49.5) 79 (38.9)

≤ Median in genotyped controls 107 (50.5) 124 (61.1)

Body surface area (m2)

> Median in genotyped controls 105 (49.5) 85 (41.9)

≤ Median in genotyped controls 107 (50.5) 118 (58.1)

Smoker

Never smoker 125 (59.0) 144 (70.9)

Current or former smoker 87 (41.0) 59 (29.1)

N/A: not applicable.
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For SNPs rs944289, rs965513, rs1867277, and rs1801516,
25 ng of gDNA were analysed using High-Resolution
Melting curve (HRM) with a specific probe. Some repre-
sentative samples were re-sequenced by dye-terminator to
confirm the genotype [28]. Fluorescence readings and
data analyses were done with the Idaho Technology
LightScanner Inc. Hi-Res Melting System (Idaho Tech-
nology, Salt Lake City, UT).
For rs71369530, 30 ng of gDNA was amplified by

PCR with fluorescently end-labelled forward primers
(5′–6-FAM or 5′-HEX) using KAPA 2G Fast HotStart
ReadyMix (KAPA Biosystems, Woburn, MA, US) in
a 10 μl final reaction volume (0.5 mM MgCl2, 5%
DMSO, 0.25 mM primers). The fluorescently-labelled
PCR product was loaded on an ABI 3730 capillary
sequencer and analysed as a variable length fragment
polymorphism using GenScan size standards (ROX–
500) as internal size standards. Data were collected
and visualized with Genotyper Software v3.7. To
determine the number of repeats corresponding to
each allele identified in the genotyping assay, the PCR
products from 6 homozygous individuals were Sanger
sequenced.
The sequences of all PCR primers, HRM probes, and

all PCR conditions are available from the authors on
request.
The proportion of successfully genotyped DNA samples

was 99.0% for rs944289, 96.9% for rs965513, 99.0% for
rs1867277, 99.3% rs71369530, and 97.1% for rs1801516.
Quality control analysis showed a concordance rate >99%
between duplicate samples.

Statistical analyses
For the statistical analyses, the study participants
were classified into three categories according to the
ethnicity of their parents: European (both parents of
European origin), African (both parents of African
origin), and other (all other combinations of parental
origin). Body mass index (BMI) was defined as
weight (kg) divided by height (m) squared, and body
surface area (BSA) was calculated using the Boyd formula:
BSA(m2) = 0.0003207 × (weight)0.7285 – (0.0188 * log (weight)) ×
(height)0.3, where weight is expressed in g and height
in cm [29]. Quantitative factors were categorised into
tertiles based on their distribution among the controls.
Anthropometric categorisation was defined separately
for men and for women.
Allele and genotype frequencies were calculated

and HWE was tested using a χ2 test in the studied
sample set for each polymorphism. The five SNPs
were in HWE among the analysed control subjects
(Table 1).
For the genotype analysis of the FOXE1 multi-allelic

poly-alanine stretch length polymorphism (rs71369530),
we considered a bi-allelic marker with the three possible
genotypes according to the length of the alanine tract:
Short/Short, Short/Long and Long/Long, with short
alleles (S) including alleles coding for a stretch of 12–14
alanines and long alleles (L) comprising those alleles
coding for a stretch of 16–19 alanines.
Nineteen strata were defined based on age and

gender, seven for men and twelve for women. The
association between the five analysed polymorphisms
and risk of DTC was assessed using multiple logistic
regressions and assuming co-dominant, dominant,
and recessive genetic models of inheritance [30,31].
Crude analyses and analyses adjusted for environ-
mental thyroid cancer risk factors were performed.
Tests for interaction were performed to determine
whether the putative associations of SNPs with the
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risk of developing DTC were modified by environmental
parameters [30]. All statistical analyses were done with
SAS software, version 9.3 (SAS Institute Inc, NC, USA).
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High-resolution melting curve; OR: Odds-ratio.

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
CMP, FL and FD contributed to the genetic analyses, the statistical analyses,
and to the writing of the manuscript. MP and NR contributed to the
genotyping. JJLA and RMO contributed to the conception, the organization
and the realization of the study. ST, MV, MC, II, MB, AG, SS and RR contributed
to the organization of the study and to the collection of epidemiological
data. EC, CX, YR, SM and CR participated in the organization of the study.
FDV conceived and organized the study, carried out the statistical analyses
and drafted the manuscript. All authors read and approved the final
manuscript.

Acknowledgments
We thank Jocelyne Michelon who prepared the DNA samples for her
technical expertise. We also appreciate the support of James McKay and the
Genetic Cancer Susceptibility group at IARC.

Funding
This work was supported by the Ligue Nationale Contre le Cancer (LNCC) and
the Région Ile de France. CX received a grant from the Région Ile de France,
and YR a grant from the Fondation de France (FDF).

Author details
1Institute of Oncology and Radiobiology, Havana, Cuba. 2The French National
Institute of Health and Medical Research (Inserm), U900, Institut Curie, Mines
ParisTech, Paris F-75005, France. 3Genetic Cancer Susceptibility, International
Agency for Research on Cancer (IARC), Lyon F-69372, France. 4National
Institute of Endocrinology, Havana, Cuba. 5Cuban Health Public Ministry,
Havana, Cuba. 6The French National Institute of Health and Medical Research
(Inserm), Centre for Research in Epidemiology and Population Health (CESP),
U1018, Radiation Epidemiology Group, Villejuif 94805, France. 7Paris-Sud
University, Villejuif 94805, France. 8Institut Gustave Roussy (IGR), Villejuif
94805, France. 9CRCL, CNRS UMR5286, the French National Institute of Health
and Medical Research (Inserm) U1052, Centre Léon Bérard, Lyon F-69008,
France.

Received: 6 August 2014 Accepted: 12 February 2015

References
1. MINSAP-DNE. Anuario estadístico de salud (Annual report of health

statistics) 2012. La Havana: direccion nacional de registros medicos y
estadisticas de salud; 2013.

2. Dacal R, Rivero de la Calle M. Art and archaeology of pre-Columbian Cuba.
Pittsburgh: University of Pittsburgh Press; 1996.

3. Curado P, Edwards B, Shin HR, Storm H, Ferlay J, Heanue M, et al. Cancer
incidence in five continents Vol. IX. IARC scientific publication no. 160. Lyon:
IARC Scientific Publications; 2007.

4. Lence-Anta JL, Xhaard C, Ortiz RM, Kassim H, Pereda CM, Turcios S, et al.
Environmental, lifestyle, and anthropometric risk factors for differentiated
thyroid cancer in Cuba: a case-control study. Eur Thy J. 2014;3:189–96.

5. Zannini M, Avantaggiato V, Biffali E, Arnone MI, Sato K, Pischetola M, et al.
TTF-2, a new forkhead protein, shows a temporal expression in the developing
thyroid which is consistent with a role in controlling the onset of differentiation.
EMBO J. 1997;16:3185–97.

6. Zhang P, Zuo H, Nakamura Y, Nakamura M, Wakasa T, Kakudo K.
Immunohistochemical analysis of thyroid-specific transcription factors in
thyroid tumours. Pathol Int. 2006;56:240–5.
7. Perna MG, Civitareale D, De Filippis V, Sacco M, Cisternino C, Tassi V.
Absence of mutations in the gene encoding thyroid transcription factor-1
(TTF-1) in patients with thyroid dysgenesis. Thyroid. 1997;7:377–81.

8. Gudmundsson J, Sulem P, Gudbjartsson DF, Jonasson JG, Sigurdsson A,
Bergthorsson JT, et al. Common variants on 9q22.33 and 14q13.3
predispose to thyroid cancer in European populations. Nat Genet.
2009;41:460–4.

9. Bonora E, Rizzato C, Diquigiovanni C, Oudot-Mellakh T, Campa D,
Vargiolu M, et al. The FOXE1 locus is a major genetic determinant
for familial nonmedullary thyroid carcinoma. Int J Cancer.
2014;134:2098–107.

10. Ai L, Yu Y, Liu X, Wang C, Shi J, Sun H, et al. Are the SNPs of NKX2-1
associated with papillary thyroid carcinoma in the Han population of
Northern China? Front Med. 2014;8:113–7.

11. Kang J, Deng XZ, Fan YB, Wu B. Relationships of FOXE1 and ATM genetic
polymorphisms with papillary thyroid carcinoma risk: a meta-analysis.
Tumour Biol. 2014;35:7085–96.

12. Zhuang Y, Wu W, Liu H, Shen W. Common genetic variants on FOXE1
contributes to thyroid cancer susceptibility: evidence based on 16 studies.
Tumour Biol. 2014;35:6159–66.

13. Jones AM, Howarth KM, Martin L, Gorman M, Mihai R, Moss L, et al. Thyroid
cancer susceptibility polymorphisms: confirmation of loci on chromosomes
9q22 and 14q13, validation of a recessive 8q24 locus and failure to replicate
a locus on 5q24. J Med Genet. 2012;49:158–63.

14. Takahashi M, Saenko VA, Rogounovitch TI, Kawaguchi T, Drozd VM,
Takigawa-Imamura H, et al. The FOXE1 locus is a major genetic determinant
for radiation-related thyroid carcinoma in Chernobyl. Hum Mol Genet.
2010;19:2516–23.

15. Landa I, Ruiz-Llorente S, Montero-Conde C, Inglada-Pérez L, Schiavi F,
Leskelä S, et al. The variant rs1867277 in FOXE1 gene confers thyroid cancer
susceptibility through the recruitment of USF1/USF2 transcription factors.
PLoS Genet. 2009;5:e1000637.

16. Damiola F, Byrnes G, Moissonnier M, Pertesi M, Deltour I, Fillon A, et al.
Contribution of ATM and FOXE1 (TTF2) to risk of papillary thyroid
carcinoma in Belarusian children exposed to radiation. Int J Cancer.
2014;134:1659–68.

17. Bullock M, Duncan EL, O’Neill C, Tacon L, Sywak M, Sidhu S, et al.
Association of FOXE1 polyalanine repeat region with papillary thyroid
cancer. J Clin Endocrinol Metab. 2012;97:E1814–9.

18. Carre A, Castanet M, Sura-Trueba S, Szinnai G, Van Vliet G, Trochet D, et al.
Polymorphic length of FOXE1 alanine stretch: evidence for genetic
susceptibility to thyroid dysgenesis. Hum Genet. 2007;122:467–76.

19. Dunn OJ. Multiple comparisons among means. JASA. 1961;56:52–64.
20. Canman CE, Lim DS. The role of ATM in DNA damage responses and

cancer. Oncogene. 1998;17:3301–8.
21. Brindel P, Doyon F, Rachédi F, Boissin JL, Sebbag J, Shan L, et al. Menstrual

and reproductive factors in the risk of differentiated thyroid carcinoma in
native women in French Polynesia: a population-based case-control study.
Am J Epidemiol. 2008;167:219–29.

22. Akulevich NM, Saenko VA, Rogounovitch TI, Drozd VM, Lushnikov EF,
Ivanov VK, et al. Polymorphisms of DNA damage response genes in
radiation-related and sporadic papillary thyroid carcinoma. Endocr Relat
Cancer. 2009;16:491–503.

23. Tavtigian SV, Oefner PJ, Babikyan D, Hartmann A, Healey S, Le Calvez-Kelm
F, et al. Rare, evolutionarily unlikely missense substitutions in ATM confer
increased risk of breast cancer. Am J Hum Genet. 2009;85:427–46.

24. Wójcicka A, Czetwertyńska M, Świerniak M, Długosińska J, Maciąg M, Czajka A,
et al. Variants in the ATM-CHEK2-BRCA1 axis determine genetic predisposition
and clinical presentation of papillary thyroid carcinoma. Genes Chromosomes
Cancer. 2014;53:516–23.

25. Shiloh Y, Ziv Y. The ATM protein kinase: regulating the cellular response to
genotoxic stress, and more. Nat Rev Mol Cell Biol. 2013;14:197–210.

26. Caldon CE. Estrogen Signaling and the DNA damage response in hormone
dependent breast cancers. Front Oncol. 2014;4:106.

27. Lecarpentier J, Noguès C, Mouret-Fourme E, Gauthier-Villars M, Lasset C,
Fricker JP, et al. Variation in breast cancer risk associated with factors related
to pregnancies according to truncating mutation location, in the French
National BRCA1 and BRCA2 mutations carrier cohort (GENEPSO). Breast
Cancer Res. 2012;14:R99.

28. Nguyen D, Calvez-Kelm FL, Forey N, McKay-Chopin S, Garritano S,
Gioia-Patricola L, et al. Description and validation of high-throughput



Pereda et al. BMC Genetics  (2015) 16:22 Page 9 of 9
simultaneous genotyping and mutation scanning by high-resolution
melting curve analysis. Hum Mutat. 2009;30:884–90.

29. Boyd E. The growth of the surface area of the human body. Minneapolis:
University of Minnesota Press; 1935.

30. Breslow NE, Day NE. Statistical methods in cancer research. Volume I - the
analysis of case-control studies. Lyon: IARC Scientific Publication; 1980.

31. Lewis CM. Genetic association studies: design, analysis and interpretation.
Brief Bioinform. 2002;3:146–53.
Submit your next manuscript to BioMed Central
and take full advantage of: 

• Convenient online submission

• Thorough peer review

• No space constraints or color figure charges

• Immediate publication on acceptance

• Inclusion in PubMed, CAS, Scopus and Google Scholar

• Research which is freely available for redistribution

Submit your manuscript at 
www.biomedcentral.com/submit


	Abstract
	Background
	Results
	Conclusions

	Background
	Results
	Discussion
	Conclusions
	Methods
	Subjects selection and interviews
	DNA isolation
	Genotyping
	Statistical analyses
	Abbreviations

	Competing interests
	Authors’ contributions
	Acknowledgments
	Funding
	Author details
	References

