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from the 1000 Genomes project.

by all seven tools is very low.

achieve reliable and consistent indel calling results.

evaluation

Background: Insertion and deletion (indel), a common form of genetic variation, has been shown to cause or
contribute to human genetic diseases and cancer. With the advance of next-generation sequencing technology, many
indel calling tools have been developed; however, evaluation and comparison of these tools using large-scale real data
are still scant. Here we evaluated seven popular and publicly available indel calling tools, GATK Unified Genotyper,
VarScan, Pindel, SAMtools, Dindel, GTAK HaplotypeCaller, and Platypus, using 78 human genome low-coverage data

Results: Comparing indels called by these tools with a known set of indels, we found that Platypus outperforms other
tools. In addition, a high percentage of known indels still remain undetected and the number of common indels called

Conclusion: All these findings indicate the necessity of improving the existing tools or developing new algorithms to

Keywords: Indel calling, Variant calling, HaplotypeCaller, Next-generation sequencing, Deep sequencing, Software

Introduction

Insertion and deletion (indel), is a common form of poly-
morphism corresponding to the addition or removal of
base pairs in the DNA sequence of an organism. Indels
have been recognized as the second most abundant source
of genetic variation in human populations [1-3]. Studies
have shown that in the human body, 16 to 25 % of all se-
quence polymorphisms are indels [4]. Furthermore, indels
have been identified to play a key role in causing diseases.
For example, cystic fibrosis, a common genetic disease, is
frequently caused by deletion of three nucleotides in the
coding region of the CFTR gene [5]. Diseases such as fra-
gile X syndrome [6], trinucleotide repeat disorders [7],
Mendelian disorders [8], Bloom syndrome [9], acute mye-
loid leukemia [10-12], and lung cancer [13] are often
caused by short repeats/insertions in the DNA sequence.
Moreover, insertion of transposable elements such as Aluy,
L1, and SVA can interrupt gene function and cause dis-
eases like hemophilia, neurofibromatosis, muscular dys-
trophy, and cancer [14]. In addition, indels can also
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change gene expression by altering phasing and spacing of
DNA sequences in the promoter regions [15]. For
example, a small insertion of 5 bps can rotate the binding
site to the opposite face of the DNA helix, whereas a long
insertion of 100 bps can increase the spacing between two
binding sites [3]. Therefore, indels in the promoter regions
might explain certain difference in gene expression ob-
served in humans [15] and can be used as genetic markers
in natural populations [16]. Since indels influence human
traits and diseases, detection of indels in a reliable manner
is a prerequisite to develop effective treatment and medi-
cine [17, 18].

In recent time, next-generation sequencing (NGS) has
become more convenient because of its high efficiency, im-
proved sensitivity of different sequencing platforms, and re-
duced cost as compared to Sanger sequencing [19, 20]. By
applying NGS in a large scale, whole genome sequencing
(WGS) is now possible at an individual level [21-23] and it
has revealed a significant number of structural variants that
were not reported previously. Since indels can alter human
traits and cause diseases, the result of indel calling from in-
dividual WGS can be used to predict the future health of
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sampled individuals and to develop customized medical
treatments.

A good number of indel calling tools have been devel-
oped so far that can be divided into four major categories:
alignment-based methods, split read mapping methods,
paired-end read mapping methods, and haplotype-based
methods. Alignment-based methods firstly map the reads
to the reference sequence using read mapping software
such as BWA [24] and Novoalign [25], and then call indels
using the alignment data by applying some filtering steps to
separate true indels from common sequence alignment er-
rors (Fig. 1 (A)). In Fig. 1 (A), “True Call” refers to the
indels that passed after the filters are applied to separate
indels from sequence alignment errors. Therefore, “False
Calls” are those variants which are probably not indels but
caused due to the alignment errors. Many indel calling
tools belong to this category including Dindel [26], Stampy
[27], SAMtools [28], Genome Analysis Tool Kit (GATK
Unified Genotyper) [29], and VarScan [30, 31]. The main
difference among these tools is in the model they use to
distinguish true indel calls from alignment errors. Some use
the Bayesian probabilistic model (GATK Unified Genoty-
per, SAMtools, and Dindel), whereas others (VarScan) use
the heuristic approach. Split read mapping methods, on the
other hand, firstly identify discordant paired-end reads for
which one end maps completely to the reference sequence
and the other end does not. The unmapped ends of these
reads are then clustered or aligned by de novo assembly to
determine indels (Fig. 1 (B)). Tools in this category include
Pindel [32] that uses a pattern growth approach to detect
breakpoints of indels, and SV-M [33] that performs a dis-
criminative classification based on features of split read
alignment profiles and then filters the result against
empirically derived training set data to reduce the false-
positive rate. Paired-end read mapping methods compare
the expected distance to the actual mapped distance to de-
termine whether there is any indel in the sequence (Fig. 1
(C)). Tools belonging to this category include PEMer [34],
Hydra [35], and BreakDancer [36]. Haplotype-based
methods first identify the regions of interest where the
reads show substantial evidence of having indels relative to
the reference sequence. These regions are also known as
active regions. For each active region, the callers build a De
Bruijn graph to reassemble the active regions and yield the
possible haplotypes present in the reads. After that, each
read is realigned to the possible haplotypes and the likeli-
hood of the haplotypes are calculated given the read data.
Later, Baye’s rule or EM algorithms are applied to calculate
the posterior probabilities, and indels are called where the
posterior probability exceeds a certain threshold value. In
addition to that, some other filters are also applied to pro-
duce a fine-grained result. GATK HaplotypeCaller [37] and
Platypus [38] belong to this category. Figure 1 (D) shows
the general overview of the haplotype-based indel callers.

Page 2 of 14

Despite many indel calling tools, evaluation of the tools
objectively, particularly using large-scale real data, is sparse.
There is an evaluation of four indel (Dindel, VarScan,
GATK Unified Genotyper, and SAMtools) tools done by
Neuman et al; however, it was based on simulated data
[39]. Instead of repeating the same experiment, here we
performed the evaluation of the tools as well as three
additional tools and we use real data to get the actual
insight. In this study, we investigated seven indel calling
tools, GATK Unified Genotyper [29], VarScan [30], Pindel
[32], SAMtools [28], Dindel [26], GATK HaplotypeCaller
[37], and Platypus [38], using 78 human genome data from
different populations in the 1000 Genomes project. All
these tools are publicly available and are commonly used
for benchmarking. Another reason for choosing these tools
is that GATK Unified Genotyper, VarScan, SAMtools,
Dindel, GATK HaplotypeCaller, and Platypus can deal with
short indels (<50 bps), whereas Pindel can call medium to
large indels ranging from 50 to 10,000 bps. Therefore,
altogether they cover indels of various lengths. Among
these seven tools, four of them (GATK Unified Genotyper,
VarScan, SAMtools, and Dindel) fall into the alignment-
based method category, one (Pindel) implements the split
read mapping method, and two (GATK HaplotypeCaller
and Platypus) are haplotype-based methods. We did not
consider tools that are based on paired-end read mapping
because in most cases, they are insensitive to small indels,
making it difficult to separate small perturbations in read
pair distance from the normal background variability [40].
Moreover, the exact inserted or deleted sequence cannot be
known from the results of tools that belong to this category
[40]. We also note that only one of the two commonly used
tools (Pindel and SV-M) from the split read mapping
method category was included in this study. We did not
consider SV-M mainly because this tool does not use BAM
file as input. As described in the README file of SV-M,
the input file requires the start and end position of each
chromosome along with several features corresponding to
that chromosome such as the number of uniquely mapped
reads (UMRs) overlapping the deletion candidate, single
position variation (SPV) from split read alignment, and
number of split reads supporting the same indel location.
For reason of consistency and to eliminate possible factors
that could bias the comparison, we decide to exclude SV-M
from this study.

Methods

Tools investigated

We investigated seven indel calling tools, GATK Unified
Genotyper, VarScan, Pindel, SAMtools, Dindel, GATK
HaplotypeCaller, and Platypus. A brief introduction of
each tool and the commands for execution are provided
below.
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GATK Unified Genotyper (GATK_UG) [29] (version 2.7)
is a tool developed by the Broad Institute of MIT and
Harvard. For indel calling, it incorporates realistic read
mapping error and base miscall models. Using a Bayesian
genotype likelihood model, GATK UG estimates the most
likely genotypes and allele frequency in the sample while
emitting an accurate posterior probability of having a
segregating variant allele at each locus. We called indels by
GATK_UG for each sample using the following command
with default settings:

java -jar GenomeAnalysisTK.Jjar -R <reference.fasta> -T

UnifiedGenotyper -I <input.bam> -glm INDEL -o <output.vcf>

VarScan [30] (version 2.2.2) is a platform-independent
software tool developed by the Genome Institute of
Washington University. It uses the mpileup file generated
by SAMtools [28] for scoring and sorting sequence
alignments. The reads mapped uniquely to one location in
the reference sequence are kept, whereas the unmapped
and ambiguous mapped reads are discarded. The uniquely
mapped reads are further filtrated on read depth, base
quality, and variant allele frequency in downstream analysis
and then used to call indels by a heuristic approach. Indels
were called by VarScan with its default settings using the
following commands:

Generating the mpileup file using SAMtools:

./samtools mpileup -f <reference.fasta> <input.bam> >

out.mpileup
Calling indel from the mpileup file:

java -jar varscan.jar mpileup2indel out.mpileup --output-vcf 1

> <output.vcf>

Pindel [32] (version 0.2.4) is a pattern growth
approach-based tool that detects breakpoints of large
deletions, medium-sized insertions, and other structural
variants from NGS data at single-based resolution. In
Pindel, all reads are initially mapped to the reference
genome. The mapping results are then inspected to select
paired reads that are mapped with indels or have only one
end mapped. Based on the mapped reads, Pindel
determines the anchor point on the reference genome as
well as the direction of unmapped reads or the reads
mapped with indels. Using this information and user-
defined maximum deletion size, a sub-region in the
reference genome is located where the unmapped reads
are broken into fragments and then the fragments are
mapped separately. Pindel was executed with its default
settings using the following commands:

The configuration file:

<input.bam> 250 <sample_name>
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Here 250 is the insert size, i.e., the length of the region
between the paired-end adapters in paired-end sequence.
Generating the output file:

./pindel -f <reference.fasta> -i <pindel config.txt> -o

<pindel output file name>

Creating the VCF file from the output file:
./pindel2vcf -r <reference.fasta> -R HUMAN_GlK_v37 -d <date> -

p <pindel output file name D> -e 5

SAMtools [28] (version 0.1.19) is a software package
used for parsing and manipulating alignments in SAM/
BAM format. For indel calling, it uses a Bayesian model
for local realignment and base quality assessment. We
called indels by SAMtools with its default settings using
the following command:

Generating the mpile file:

java -jar GenomeAnalysisTK.jar -R <reference.fasta> -T

HaplotypeCaller -I <input.bam> -o <output.vcf>

Calling indel from the mpileup file:

./bcftools view <output.bcf> | ./vcfutils.pl varFilter -D100 >

<output.vcf>

Dindel [26] (version 1.01), developed by the Well-
come Trust Sanger Institute in UK, is a software tool
that uses Bayesian network for calling indels from NGS
data. First, a number of candidate haplotypes, each con-
taining at least 120 bps, are generated according to the
hypothesis that indel events exist in pre-specified
genomic segments. After realigning all reads to the can-
didate haplotypes using a hidden Markov model, the
posterior probability of a haplotype is calculated using
the Bayesian approach and used to determine the pres-
ence of indels in the sample. Dindel assumes that all
differences between the read and the candidate haplo-
type are caused by sequencing errors. By realigning
reads to the candidate haplotype, it separates the indels
from sequencing errors. Dindel uses mapping quality as
the prior probability that a read should align to any of
the candidate haplotypes, and thus, it effectively reduces
the weight of reads that cannot be confidently mapped to
that location in the genome. We used Dindel with default
settings to call indels by the following commands:

Step 1: Extract candidate indels from the alignment file.

./dindel --analysis getCIGARindels --bamFile <input.bam> --

outputFile <dindel output> --ref <reference.fasta>

Step 2: Create realignment windows.

./makeWindows.py --inputVarFile <dindel output.variants.txt> -
-windowFilePrefix <dindel output.realign_windows> --

numWindowsPerFile 1000
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Step 3: For every window, generate candidate haplo-
types from the candidate indels and realign the reads to
these candidate haplotypes.

For each file created in step 2

./dindel --analysis indels --doDiploid --bamFile <input.bam> -
-ref <reference.fa> --varFile

<dindel_ output.realign_windows.X.txt> --1ibFile

<dindel output.libraries.txt> --outputFile
<dindel output windows.X> [Here X = window number currently

being analyzed]

Step 4: Create the final output.
Merging results from all realignment windows:

1s | grep ".glf.txt" > <list.txt>
mergeOutputDiploid.py --inputFiles <list.txt> --outputFile

<output.vcf> --ref <reference.fasta>

GATK HaplotypeCaller (GATK_HC) [37] (version
3.30) is a tool developed by the Broad Institute of MIT
and Harvard. For indel calling, at first it determines the
regions of the genome where there are significant
evidences of variation. Therefore, regions that do not
show any variation beyond the expected levels of
background noise are skipped. After this step, the result-
ing regions having significant evidence of variations are
passed to the next step. These regions are known as
“Active Regions.” For each active region, in the second
step, GATK_HC builds a De Bruijn graph to reassemble
the active regions and identifies the candidate haplotypes
present in the reads of the given sample. Additionally,
each haplotype is locally realigned to the reference
haplotype to identify the potentially variant sites. In the
next step, for each active region, each read is then
pairwise aligned to each of the candidate haplotype
using the PairHMM algorithm. This produces a matrix
of likelihoods of haplotypes for the reads in the given
sample. These likelihoods are then marginalized to
obtain the likelihoods of the alleles per read for each
potentially variant site. For each potentially variant site,
in the next step, Baye’s rule is applied to determine the
posterior likelihoods of each genotype per sample using
the likelihoods of alleles obtained in the previous step.
The most likely genotype is then assigned to the given
sample. We called indels using GATK_HC with default
settings using the following command:

java -jar GenomeAnalysisTK.jar -R <reference.fasta> -T

HaplotypeCaller -I <input.bam> -o <output.vcf>

Platypus [38] (version 0.7.9.1) is a haplotype-based
variant calling tool developed by the Wellcome Trust
Sanger Institute in UK. In this tool, at the beginning,
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candidate variants are obtained from read alignments,
local assembly, and external sources, and then candidate
haplotypes are formed. After haplotypes are generated
from candidate variants, their frequencies are estimated
on the basis of their likelihood. These likelihoods are
calculated by aligning a read to the haplotype sequence
with an underlying hidden Markov model (HMM). The
forward algorithm is used to calculate the likelihood of a
read given haplotype. After the likelihood is calculated
for all combinations of reads and haplotypes, an EM
algorithm is used to estimate the frequency of each
haplotype under a diploid genotype model. In the next
step, the posterior support for any variant is computed
by comparing the likelihood of the data given all haplo-
types and the likelihood given only those haplotypes that
do not include a particular variant. Later, indels are
called when their posterior support exceeds a threshold
using these frequencies as a prior. The variants are also
filtered based on allele bias, strand bias, mapping quality,
quality over depth, posterior quality, and sequence
context. We called indel with the default settings of
Platypus using the following command:

python Platypus.py callVariants --bamFiles=<input.bam> --

refFile=<reference.fasta> --output=<output.vcf>

Dataset

The dataset consists of low-coverage (~3X to ~12X)
alignment profiles from 78 humans that belong to 26
populations and were collected for the 1000 Genomes
project [41]. We used the alignment files of chromosome
11 as input for the tools we investigated. These short
reads were sequenced on Illumina Genome Analyzer
platform [42] and mapped using BWA [24]. We used
hs37d5 as the human reference genome, which is an
extended version of the Build37 dataset of the 1000
Genomes project with additional sequences. Note that
this reference genome was used by the 1000 Genomes
project in the final phase. Additional file 1: Table S1 lists
the samples we used with their corresponding ethnic
background and coverage.

Ideally, a benchmarking dataset for evaluating indel
calling tools would consist of a list of known indels for
the samples. However, such kind of benchmarking
dataset is not available in large quantity [43]. Hence, for
evaluation purpose, we used the indels identified in Mills
et al. [43] as the gold standard. To call indels, Mills et al.
[43] examined 98 million Applied Biosystems (Sanger)
DNA re-sequencing traces from the trace archive of
NCBI which has been proved to be sufficient for accur-
ate indel calling [4]. After some pre-processing of the
traces based on the quality scores, they were compared to
the human reference genome to call indels. Details about
the indel calling procedure and some post processing to
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generate the gold standard dataset can be found in
[4]. The called indels were validated using PCR-based
methodologies, and the validation rate was 97.2 %.
This dataset reports almost two million small and large
indels found in all 24 chromosomes of 79 diverse humans
with length ranging from 1 to 10,000 bps. Moreover, it has
been confirmed that the sequence traces used in Mills
et al. provide excellent coverage of the human genome
[43]. Note that the samples we used here are sequenced
on Illumina Genome Analyzer platform and the indels
listed in the “gold standard” dataset are called using the
Applied Biosystem (Sanger) DNA re-sequencing traces. In
spite of these differences, the indels identified in the gold
standard dataset are considered to be most likely reliable,
and they have been used as the gold standard in other
studies [44, 45]. In Mills et al. [43], 58,811 indels were
identified for chromosome 11, and in the current study,
we used this set as the gold standard. Note that we did
not use simulated data for benchmarking because though
simulated data are valuable, they do not always represent
the actual phenomena. We could also use the sample
benchmark dataset available in “Genome in a Bottle Con-
sortium” [46], but that one relies on a single dataset from
one human only (NA12878).

Evaluation criteria
We evaluated the tools using the criteria including
running time, number of indels called, comparison with
the set of gold standard indels, similarity among the
tools, hierarchical clustering, and ranking of the tools.
For each sample, we executed the tools and re-
corded the number of indels called by each tool as
well as the running time. To see the relation between
running time and coverage of the read, besides the
low-coverage samples, we also included the sample
NA12878 with ~64X coverage. All analyses were done
on a Linux machine with Intel Core i7-2600 CPU @

Page 6 of 14

3.40 GHz * 8 processors, 16 GB RAM and Ubuntu 12.04
LTS operating system.

Indels called by the seven tools were compared with
those identified in Mills et al. [43]. From this compari-
son, we calculated the corresponding recall and preci-
sion for each of the tools using formulas (1) and (2).

TP
I = —— 1
Reca TP 1 EN ()
TP
Precision = TP ~ Fp T Fp (2)

For comparing the accuracy of the tools, we used
F-measure, the harmonic mean of the precision and
recall, where an F-measure reaches its best value at 1
and worst score at 0. The F-measure was calculated
using formula (3).

2 x Recall x Precision

F- = 3
measure Recall + Precision (3)

Note that the position of an indel with respect to the
reference sequence sometimes cannot be defined unam-
biguously by a single coordinate [20, 47]. As shown in
Fig. 2, the insertion of a guanine into the local sequence
of T;G;,1G;,,C;, 3 after position i produces the same
mutated sequence as inserting guanine after position i +
1 or i+2. Hence, these insertions have identical bio-
logical meaning, and therefore, an unambiguous annota-
tion for this insertion should list all equivalent indel
positions, ie., +G {i, i+1, i+ 2} [20]. For this reason,
while comparing an indel called by each tool with the
indel in position i in the gold standard data, we treated
the indel called by the tool as true positive if it is within
the range of i + 5 positions.

Based on the indel calling results, these tools were
ranked in the receiver operating characteristic (ROC)
space [48], where the X and Y axes are denoted by
false-positive rate (FPR) and true-positive rate (TPR),
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Fig. 2 Example of identical indels taking place in relative positions. (Adapted from Krawitz et al. [20])
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respectively. Here TPR is equivalent to recall and FPR is
simply (1 — precision) as calculated using formulas (1) and
(2). In the ROC space, each point represents the prediction
result or instance of a confusion matrix. The diagonal (Y =
X) that divides the ROC space represents the decision from
a “Random Guess.” Points above the diagonal represent
good classification results, whereas points below the line
represent poor results. For each sample, we first calculated
the TPR and FPR for each tool and plotted as a point in
the ROC space, then ranked the tools based on the perpen-
dicular distance of each point from the diagonal.

We also examined the similarity among the results
produced by different tools. Jaccard index, also known
as Jaccard similarity coefficient, is used to compare the
similarity between indel predictions. For two finite sets
A and B, the Jaccard index can be calculated using

|AnB|

,0< J(A, B)< 1. (4)

The maximum value of the Jaccard index is 1 when
two indel sets are the same, whereas the minimum is 0
when two indel sets are completely different.

Another interesting question to ask is “how are the
seven indel calling tools related to one another on the
whole”? To answer this question, we clustered the tools
using the following three steps: (1) Divide the reference
sequence into windows of equal size. We tested with
different window sizes (1000, 10,000, 100,000, and
1,000,000 bps) and found that the window size does not
affect the clustering result. For computational conveni-
ence, we set the window size to 1,000,000 bps. (2) For
each window, calculate the number of indels called by
each tool. (3) Construct a vector of indel counts of all
windows for each tool and apply the UPGMA hierarch-
ical clustering algorithm to the seven vectors.

Results

Running time

We compared the tools on the average running time
taken to call indels for a sample. Table 1 shows the
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average running time for samples with low coverage
(average coverage ~6X) and high coverage (~64X). For
both high- and low-coverage data, Platypus is the fastest
and Dindel is the slowest of all the tools investigated.
Clearly, indel calling is more time consuming for high-
coverage data than for low-coverage data, which is
especially evident for Dindel due to its complicated
model for realignment. Since Dindel tests all indels
identified by the read mapper, many of which might be
sequencing errors, with the increase of number of reads
and increase in sequencing errors, the computation time
increases quadratically [26].

Number of indels called

Figure 3 shows the number of indels called by each tool
for each sample. The seven tools under consideration
call different numbers of indels. The numbers of indels
called across the 78 samples range from 1431 to 15,585
for GATK_UG, from 114 to 10,619 for VarScan, from
1845 to 11,455 for Pindel, from 9351 to 20,245 for SAM-
tools, from 9864 to 19,876 for Dindel, from 10,915 to
24,786 for GATK_HC, and from 15,062 to 34,600 for
Platypus. On average, Platypus calls the maximum num-
ber of indels (average number = 23,321), whereas VarS-
can calls the minimum (2,775). The average number of
indels called by SAMtools (14,719) follows closely to that
by Dindel across the samples. Similarly, the average num-
bers of indels called by GATK UG (6733) and Pindel
(6382) are very similar to each other across the samples.
As we can see from these results, VarScan is evidently the
most conservative one in calling indels. It calls much
fewer indels than others. This might be due to its rather
stringent filtering step during which all the unmapped and
ambiguous reads are discarded. Although this step is help-
ful in keeping the false positives down, it also reduces the
power of detecting true indels.

The lengths of indels called

We examined the distributions of lengths of indels called
by the seven tools and compared them to that of the
gold standard dataset. All the indel distributions based

Table 1 Average running time spent in calling indels for samples with low/high coverage

Tool Time

Low Coverage (~6X)

High Coverage (~64X)

GATK_UG 16 minutes 43 seconds
VarScan 16 minutes 1 second
Pindel 25 minutes 36 seconds
SAMtools 11 minutes 26 seconds
Dindel 165 minutes 22 seconds
GATK_HC 58 minutes 27 seconds

Platypus

3 minutes 36 seconds

24 minutes 19 seconds
84 minutes 02 seconds
139 minutes 09 seconds
64 minutes 14 seconds
1549 minutes 18 seconds
91 minutes 13 seconds

5 minutes 59 seconds
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on lengths are shown in Additional file 1: Figure S1
which shows that 96.2 % of the indels in the benchmark
dataset are 1-10 bps, 98.6 % in GATK_UG, 99.0 % in
VarScan, 93.4 % in Pindel, 92.2 % in SAMtools, 95.1 %
in Dindel, 94.01 % in GATK_HC, and 97.19 % in
Platypus. Therefore, most of the indels in the benchmark
and the ones called by the tools are <10 bps. Chi-square
statistical tests show that the distributions of indel sizes
are not significantly different between the calling results
of the tools and the gold standard (p values for compar-
ing the gold standard with GATK_UG, VarScan, Pindel,
SAMtools, Dindel, GATK_HC, and Platypus are 0.89,
0.81, 0.96, 0.28, 0.94, 0.95, and 0.99, respectively). Note
that Pindel is known for calling medium to large indels,
but here most of the indels called by Pindel are small
indels.

Regardless of the gold standard indels, we are interested
to see the similarity/dissimilarity of the distribution of
indel sizes among the tools themselves. From chi-square
statistical test between intra-tools, we see that the

distributions of indel sizes are not significantly different
among the tools. The p values for intra-tool comparisons
are showed in Additional file 1: Table S2.

Effect of the depth of coverage on the number of indels
called

To see how the number of indels called by these tools is
affected by the depth of coverage, we estimated the depth
of coverage for each human sample (shown in Additional
file 1: Table S1). Figure 4 shows the relationship between
the number of indels called by the seven tools and the
coverage depth. Overall, the higher the coverage is,
the more indels are called. Pearson correlation coeffi-
cients between the coverage and the number of indels
called by GATK_UG, VarScan, Pindel, SAMtools, Dindel,
GATK_HC, and Platypus are 0.97 (p value = 8.02 x 10™*%),
0.97 (p value =525 x 107*%), 0.91 (p value = 3.10 x 107%°),
0.89 (p value = 4.64 x 107%"), 0.88 (p value = 2.76 x 107%%),
0.86 (p value = 2.24 x 107**), and 0.82 (p value = 6.84 x
107%°), respectively. Thus, consistent with previous
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findings [49], the number of indels called, regardless of
the tools, is significantly positively correlated with the
coverage depth.

Comparison with the set of “gold standard” indels and
ranking of the tools

Figure 5 shows the percentage of gold standard indels
called by the tools across the 78 samples. For chromo-
some 11, on average, only about 1.51 % of the gold
standard indels are called by all seven tools, whereas
about 76.91 % are undetected by any of the tools. The
remaining ~21.58 % are called by at least one tool. We
also compared the tools for the percentage of their own
indels called by others regardless of the gold standard
indels. For this purpose, we picked up Dindel, SAMtools,
GATK_HC, and Platypus as they call more indels than
the other three tools. The Venn diagram in Additional
file 1: Figure S2 shows that only 15.64 % of the indels
were called by all of these four tools revealing that
regardless of the gold standard indels, a major percent-
age of indels remain undetected.

We also examined the overall performance of each
tool on the 78 samples. The average F-measure values
for GATK UG, VarScan, Pindel, SAMtools, Dindel,
GATK_HC, and Platypus are 0.14, 0.06, 0.12, 0.26, 0.27,
0.28, and 0.31, respectively.

In the ROC analysis, we ranked the seven tools based
on their distance from the “Random Guess” line in the
ROC space. Table 2 shows the frequency of the ranks of
the tools based on the 78 samples. Platypus ranked the
best for all 78 samples, and GATK_HC ranked the
second best. VarScan performed poorly, ranking the
worst for 76 samples. Pindel performed also poorly,
ranking the worst for 2 samples and second worst for 60
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samples. In addition to the ranking, we also computed
the average recall, precision, and F-measure for the tools
in Table 2. For the average recall of the 78 samples,
Platypus ranks the highest (0.22), followed closely by
GATK_HC (0.18), and VarScan the lowest (0.03). For
the average precision, GATK UG ranks the highest
(0.72), followed closely by VarScan (0.71). GATK_HC
(0.61) and Platypus (0.56) have slightly lower average
precision. For the average F-measure, Platypus (0.31)
ranks the highest and VarScan (0.06) the lowest. To get
a clear idea about how the performance of the tools
depends on the indel types, i.e., insertion and deletion,
we split the benchmark dataset based on the indel types
and results are shown in Additional file 1: Figure S3.
Results show that except Pindel, performance of the
other tools remains consistent regardless of the indel
type. Pindel shows better performance in calling deletion
than insertion.

Performance of the tools on indels of different lengths

A natural question to ask is whether the seven tools’
performance changes with different indel sizes. We
computed the average F-measure (Fig. 6), false-negative
rate (Fig. 7), recall (Additional file 1: Figure S4), and
precision (Additional file 1: Figure S5) of the seven tools
for indels of lengths 1-10 bps. Results show that for all
the tools, the performance of calling indels correctly
shows a slight decrease with the increase of indel lengths.
Platypus, GATK_HC, Dindel, and SAMtools show highly
similar patterns for four metrics (i.e, F-measure, false-
negative rate, recall, and precision) with respect to indel
lengths. Altogether, this comparison based on indels of
different lengths shows that these tools achieve similar
performance for different subcategories of indels with
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Table 2 Frequency of the ranks of the tools based on the ROC curve for the 78 samples. Average recall, precision, and F-measure

across the samples are also provided

Rank 1 2 3 4 5 6 7 Average Average Average
Name Recall Precision F-measure
GATK_UG 0 0 0 0 62 16 0 0.081884 0.72141 0.14435
VarScan 0 0 0 0 0 2 76 0.033987 0717315 0.063333
Pindel 0 0 0 0 16 60 2 0.068635 0.636704 0.122591
SAMtools 0 0 1 77 0 0 0 0.160989 0.645108 0.256343
Dindel 0 5 73 0 0 0 0 0.170076 0.662287 0.269404
GATK_HC 0 73 4 1 0 0 0 0.181928 0.608907 0.278323
Platypus 78 0 0 0 0 0 0 0220391 0.559842 0314071

certain length. In other words, indel length is not a con-
founding factor that affects the performance of these
calling tools.

Similarity among the tools

We also compared the tools for their similarity regard-
less of the gold standard. For each sample, the Jaccard
index of each pair of the tools is shown in Fig. 8, and
the average Jaccard index across all samples is listed in
Table 3. From the Jaccard index, we found high similar-
ity between SAMtools and Dindel. A possible reason is
that both tools use the Bayesian approach for calling
indels. SAMtools calculates the Bayesian prior probabil-
ity and uses it to calculate the actual genotype for the
variants detected. Dindel, on the other hand, calls indels
by realigning the reads against candidate haplotypes for
which prior probabilities calculated using the Bayesian
approach are already known. Both SAMtools and Dindel
perform local realignment and base quality assessment
for calling indels, and that is also another possible reason
for their similarity. Similarly, Platypus and GATK_HC also
have high Jaccard index value that represents their strong
similarity. Being a haplotype caller, they have underlying
similarity such as generating candidate haplotypes and

then realigning reads to each of these candidate haplo-
types for variant calling which explains the reason of their
similarity.

Figure 9 shows the dendrogram on hierarchical clus-
tering of the tools. Again we see that Dindel and SAM-
tools group together and Platypus and GATK_HC group
together which is supporting our previous observation of
similarity between these tools.

Discussion

In this paper, we investigated seven tools that are publicly
available and well known for calling indels from short
reads. Using 78 whole genome short-read data from the
1000 Genomes project, we evaluated these tools based on
several criteria, including running time, number of indels
called, recall, precision, F-measure based on the “gold
standard” data, and ranking and clustering of the tools.
Results show that Platypus outperforms other tools in
most of the aspects.

The low percentage of the called indels over the “gold
standard” indels indicates that all these tools exhibit
limited power in detecting indels. Several factors could
contribute to the low true-positive rate. Firstly, since
existing read mappers map each read to the reference
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sequence independently of other reads, due to the
alignment artifacts, insertions and deletions can be
improperly placed relative to their true positions and it
affects the indel calling results greatly. Secondly, most of
the indel calling tools do not have sophisticated methods
for checking sequencing errors before calling indels.
Though Platypus, GATK_HC, and Dindel realign the
candidate indels to the known haplotypes, especially for
Dindel and GATK_HC, due to their high computational
time, it is not an efficilent way when the depth of
coverage of the reads is high. Therefore, indel calling
results can be improved if these factors are considered.
Thirdly, the indels we used as gold standard were identi-
fied from the DNA traces obtained from the trace
archive at NCBI [50], and though it is more reliable than

using short reads, indels identified in this way neverthe-
less can still be false positives, which could lead to an
artificial decrease of true-positive rate. Fourthly, the set
of gold standard indels is the pooled result of indels
from 79 individuals, which naturally has more indels
than individual humans. However, this might not be the
dominating factor causing the low false-positive rate as
the number of pooled indels for 78 humans is still very
low compared to the “gold standard”. Finally, the low
true-positive rate might also be due to the chromosome-
specific behavior of the calling tools. Although we have
no particular reason to suspect that the indel calling
results for chromosome 11 should be different from
those for other autosomes, we examined the perform-
ance of the seven tools on chromosome 20 to see
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Table 3 Average Jaccard index for each pair of the tools (Jaccard index is computed for each pair of the tools for each human

sample and then averaged across all the 78 samples)

GATK_UG VarScan Pindel SAMtools Dindel GATK_HC Platypus

GATK_UG 1 035 030 034 032 035 028
VarScan 1 0.15 0.15 0.14 0.14 0.1
Pindel 1 0.27 027 032 025
SAMtools T 0.73 0.60 0.56
Dindel 1 0.65 0.57
GATK_HC 1 0.64
Platypus 1

whether the result is chromosome specific. Results show
that all the metrics (i.e., recall, precision, and F-measures)
follow closely those of chromosome 11 (Additional file 1:
Figure S6), and therefore, the poor performance of the tools
evaluated by the gold standard indels is not chromosome
specific.

Clearly, an important issue in evaluating various indel
calling tools is the lack of a gold standard dataset or
benchmark dataset. In the current study, the perform-
ance comparison is done based on the “gold standard”
dataset that is the best possible resource available.
Although it lists two million short and long indels
extracted from the genomes of 79 diverse human, it does
not list all the indels that take place in the genomes of
the human samples we considered here. Though we can
say that Platypus performs better than other tools based
on the “gold standard” dataset, however, in general, we
cannot make a decision about which tool is the best

GATK HC

Platypus

Dindel

SAMtools

Pindel

GATK UG

VarScan
Fig. 9 Hierarchical clustering of the tools

unless we have the list of true indels for each sample. So
developing a list of indels for individual humans will be a
good direction for future research, and that list will be a
useful resource for validating the existing as well as newly
developed indel calling tools. Moreover, people from the
same ethnic group tend to have common indels [51, 52].
Therefore, creating a list of known indels for the same eth-
nic group and comparing the tools based on the indels
called for the samples from that ethnic group would be a
better way to evaluate the performance of the tools.
Besides improving the indel calling tools, another
strategy to improve the indel calling result is increasing
the depth of coverage of the reads. For each of the
tools, the performance shows positive correlation with
the coverage of the reads. Pearson correlation coeffi-
cients between coverage and F-measure for GATK_UG,
VarScan, Pindel, SAMtools, Dindel, GATK_HC, and
Platypus are 0.96 (p value=6.75x10"*), 098 (p
value = 1.38 x 107°%), 0.89 (p value = 1.56 x 107%’), 0.87
(p value = 1.22 x 1072%), 0.85 (p value = 3.65 x 107>, 0.85
(p value =9.47 x 107?%), and 0.81 (p value = 1.15 x 107*°),
respectively. Moreover, we also performed down-sampling
of the individual that has 64X coverage to create a 5X
coverage sample and conducted indel calling using the
seven tools. Results further confirm that higher coverage
yields better results, reflected by higher F-measures for all
seven tools in the 64X coverage. However, for all seven
tools, precision is higher in the 5X coverage sample than
in the 64X coverage sample. Detailed results are shown in
Additional file 1: Figure S7. Hence, the performance of the
tools can be significantly improved by increasing the
depth of coverage of the reads. Consistent with our find-
ing, a previous evaluation of indel calling tools based on
simulation data has shown that the sensitivity of indel call-
ing tools increases with coverage depth [39]. Joint sample
calling is another strategy to call indels from low-coverage
data, and greater sensitivity can be achieved through this.
However, it has a few limitations as follows: (i) Since it
calls variants simultaneously across all samples, computa-
tional expense increases exponentially with the increase of
the number of samples, and (ii) every time a new sample
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is added to the cohort, the process of variant calling needs
to start again from the scratch; this is known as the
(N + 1) problem [53]. HaplotypeCaller like GATK_HC and
Platypus are free from these limitations; however, the
other tools are yet to overcome these limitations.

Finally, although the indel calling results produced by
the tools show great discrepancy, these tools can show
strengths in different aspects such as running time, the
number of indels identified, and indels of different lengths.
Thus, integrating the strength of existing tools to call
indels and then passing the results to an aggregating ma-
chine learning model to increase true positives and reduce
false positives might be a good solution. Similar ideas were
discussed in [54] for creating highly confident SNP, indel,
and homozygous reference genotype calls.

Conclusion

Indel is one of the main types of disease-causing variation
in humans. Detecting indels in an efficient manner is ne-
cessary for discovering proper medication. The advent of
NGS technology has made it possible to sequence human
genomes at an individual level. We have investigated seven
well-known tools, GATK Unified Genotyper (GATK_UG),
VarScan, Pindel, SAMtools, Dindel, GATK HaplotypeCal-
ler (GATK_HC), and Platypus that call indels using NGS
data. Based on the benchmark dataset we used, Platypus
outperformed other tools. However, all of these tools have
limitations as a large number of indels listed in the bench-
mark dataset remain undetected. A sophisticated method
to check sequencing errors before calling indels and an in-
tegrative approach to combine the strengths of existing
indel calling tools might be a good solution to overcome
this problem. Using reads with high coverage is another
strategy to obtain better results. Although the benchmark
dataset we used for comparing the tools contain a large
number of short and long indels that take place in diverse
human genomes, it may not contain all the indels occur-
ring in the genome of the samples we considered here.
Hence, developing a list of known indels at an individual
level will be helpful for validating the existing and newly
developed tools.

Additional file

Additional file 1: Supplementary materials for Performance
evaluation of indel calling tools using real short-read data. This
additional file includes List of the input samples used in this study with
corresponding population and read coverage, P-value for Chi-square
statistical test of indel size distribution between the tools, Distribution of
indels based on lengths (1 to 10 bp) for the tools, Intra-tool comparison
among GATK_HC, Dindel, SAMtools, and Platypus for percentage of their
own indels called by others, Average Recall, Precision, and F-Measure of
each tool for insertion and deletion, average recall and precision for each
tool for different lengths of indels, Comparison between Chromosome 11
and Chromosome 20 for HG00157, and Comparison between High
(~64X) and Low (~5X) coverage samples for NA12878.
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