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Abstract
The paper considers the problem of exponential stability and convergence rate to
solutions of perturbed linear discrete homogeneous systems. New criteria on
exponential stability are derived by using the second method of Lyapunov. We
consider non-delayed systems as well as systems with a single delay. Simultaneously,
explicit exponential estimates of the solutions are derived. The results are illustrated
by examples.

1 Introduction
The dynamics of discontinuous transition states of dynamic systems is most naturally de-
scribed by difference equations and investigating the properties of difference equations is
a very important area of research (we mention at least the monographs [–]). If processes
are modeled by systems of equations, in general, some of the model parameters may be
uncertain and we have to deal with systems with inaccurately specified parameters.

In the paper, we consider the exponential stability of systems of perturbed linear homo-
geneous difference equations and give explicit exponential estimates of solutions. In such
systems, it is usually appropriate to describe the inaccurately specified parameters as per-
turbations of some initial systems. Investigated are non-delayed homogeneous systems of
difference equations and homogeneous systems of difference equations with a single delay.

Let A be a symmetric positive definite matrix. Denote by λmax(A), λmin(A) its maximum
and minimum eigenvalues and let

ϕ(A) :=
λmax(A)
λmin(A)

.

Throughout the paper, for an arbitrary matrix B, we use the matrix norm

|B| =
√

λmax
(
BTB

)
.

This norm reduces to the Euclidean norm

|x| =

√√√√
n∑

i=

x
i

if B = x = (x, . . . , xn)T .
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Now we describe the problems solved in the paper and the methods frequently used to
investigate stability.

1.1 Non-delayed systems
The simplest class of systems of difference equations is that of linear autonomous systems

x(k + ) = Ax(k), k = , , . . . , ()

where A = (aij)n
i,j= is a real constant matrix and x is an n-dimensional unknown vector. In

the paper, we consider systems

x(k + ) =
(
A + B(k)

)
x(k), k = , , . . . , ()

where the norm |B(k)| of the real matrix B(k) = (bij(k))n
i,j= is small in a certain sense speci-

fied below. System () can be viewed as a perturbation of system (). Recall that the solution
of () or () is uniquely determined by the given initial value x().

Definition  The zero solution x(k) = , k = , , . . . of () is called (Lyapunov) stable if,
for an arbitrary ε > , there exists a δ(ε) >  such that, for any solution x∗(k) of system (),
we have |x∗(k)| < ε for k = , , . . . , provided that |x∗()| < δ(ε). If, moreover,

lim
k→+∞

∣∣x∗(k)
∣∣ = ,

the zero solution is called asymptotically stable. The zero solution of () is called expo-
nentially stable if there exist constants N >  and θ ∈ (, ) not depending on x∗ such that

∣∣x∗(k)
∣∣ ≤ N

∣∣x∗()
∣∣θ k , k = , , . . . . ()

For the basic notions, properties, and results we refer, e.g., to [, , , ] and to the ref-
erences therein. For linear systems, all solutions are simultaneously stable (exponentially
stable) if the zero solution is stable (exponentially stable). Therefore, in contrast to nonlin-
ear systems, for linear systems, the concept of a stable system (exponentially stable system)
is meaningful.

The stability of system () is often analyzed through the characteristic equation

det(λI – A) = , ()

where I is an n × n identity matrix and λ is a suitable complex constant. Expanding (),
we obtain

λn + pλ
n– + pλ

n– + · · · + pn–λ + pn =  ()

with real pi, i = , , . . . , n. Necessary and sufficient for the exponential stability of the linear
system () is the condition ρ(A) <  (see, e.g., [, ]) where ρ(A) is the spectral radius of
the matrix A. For discrete equations, unfortunately, such a simple and effective tool of
investigation of the roots of the characteristic equation for the differential systems, as the
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Hurwitz criterion giving the necessary and sufficient condition for Reλi < , i = , , . . . , n,
is not available. The well-known Schur-Cohn criterion [, , ], to verify ρ(A) < , is not
easily applicable because the higher the order of the characteristic equation (), the more
difficult the computation becomes.

An alternative to studying the stability by algebraic methods is the method of Lyapunov
functions (described, e.g., in [, ]). For linear stationary systems (), the Lyapunov func-
tion is sought in the form of a quadratic form V (x) = xT Hx where a symmetric positive
definite n × n matrix H is the solution of the matrix Lyapunov equation

AT HA – H = –C. ()

System () is exponentially stable if and only if, for an arbitrary positive definite symmetric
n × n matrix C, the matrix equation () is solvable and has a unique solution - a positive
definite symmetric matrix H [].

The parameters of mathematical models of dynamic systems are, generally speaking,
determined experimentally and are known with some degree of adequacy. The stability of
such systems can be investigated as the stability of a perturbed system to a given initial
system.

The investigation of the stability of system () is, in essence, close to the investigation of
what is called interval stability of linear differential equations. Such an investigation was
carried out by Haritonov, we refer at least to one of his founding papers [] where the
necessary and sufficient conditions for stability were formulated.

1.2 Systems with a single delay
In Section , we study linear homogeneous difference systems with a single delay,

x(k + ) =
(
A + B(k)

)
x(k) +

(
D + E(k)

)
x(k – m), k = , , . . . , ()

where A = (aij)n
i,j= and D = (dij)n

i,j= are real constant matrices, m ∈ N, and norms |B(k)|,
|E(k)| of the real matrices B(k) = (bij(k))n

i,j=, E(k) = (eij(k))n
i,j= are small in a sense. System

() can be viewed as a perturbation of the system

x(k + ) = Ax(k) + Dx(k – m), k = , , . . . . ()

Recall that the initial problem x(k) = x∗
k , k = –m, –m + , . . . ,  for () or () where x∗

k ∈ R
n

is uniquely solvable. Below, we utilize the norm

∥∥x()
∥∥

m := max
{∣∣x(i)

∣∣, i = –m, –m + , . . . , 
}

.

Definition  The zero solution x(k) = , k = –m, –m + , . . . of system () is called
(Lyapunov) stable if, for an arbitrary ε > , there exists a δ(ε) >  such that, for any solu-
tion x∗(k) of system (), we have |x∗(k)| < ε for k = , , . . . , provided that ‖x∗()‖m < δ(ε).
If, moreover,

lim
k→+∞

∣∣x∗(k)
∣∣ = ,
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the zero solution is called asymptotically stable. The zero solution of system () is called
exponentially stable if there exist constants N >  and θ ∈ (, ) not depending on x∗ such
that

∣∣x∗(k)
∣∣ ≤ N

∥∥x∗()
∥∥

mθ k , k = , , . . . . ()

To establish the fact of the asymptotic stability of system (), we consider the associated
characteristic equation

det
(
λm+I – λmA – D

)
= .

Expanding the determinant on the right-hand side, we obtain, in general, an algebraic
equation of degree (m + )n and we are facing an even greater difficulty than in the case
of equation (). Recently, for the asymptotic stability of special classes of linear discrete
equations with constant complex coefficients and with delay, simple criterions have been
derived in [–] (the criteria derived in [] are fully explicit with respect to the delay).

The paper is organized as follows. Sufficient conditions for the exponential stability and
explicit exponential estimates of solutions of non-delayed systems () are derived in Sec-
tion  by the second method of Lyapunov. For systems with a single delay (), such an in-
vestigation is performed in Section . The investigations of both classes of systems () and
() differ. The difference is caused by the presence of delay in (). The difficulty caused by
the Lyapunov function being estimated was overcome by using what is called Razumikhin
condition while applying of several auxiliary inequalities. The applicability of the results
is illustrated by examples and concluding remarks are included in Section .

2 Exponential stability of non-delayed systems
Theorem  below gives sufficient conditions for exponential stability of the perturbed sys-
tem (), and suitable parameters N and θ in the definition of exponential stability () of so-
lutions are explicitly defined. In the proof, Lyapunov function V (x) = xT Hx is used where
H solves the matrix Lyapunov equation (). With respect to the matrix of perturbation
B(k), k = , , . . . we assume that there exists a number D such that, for every k = , , . . . ,
we have

∣∣B(k)
∣∣ ≤D.

First, we need auxiliary lemmas. Denote

D∗ :=


λmax(H)
[√∣∣AT H

∣∣ + λmin(C)λmax(H) –
∣∣AT H

∣∣]

and

ξ := λmin(C) – 
∣∣AT H

∣∣D – |H|D.

Lemma  Let ρ(A) < . Let C be a fixed positive definite matrix and let matrix H solve
matrix equation (). Then D∗ >  and, if D < D∗, then ξ > .
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Proof Inequality D∗ >  is obvious. Solve the quadratic equation ξ =  with respect to D.
Its roots D, are

D, =


λmax(H)
[
–
∣∣AT H

∣∣ ±
√∣∣AT H

∣∣ + λmin(C)λmax(H)
]

and ξ >  if D ∈ (D,D) = (D,D∗), D < . Since, by its definition, D ≥ , we conclude
that ξ >  if D ∈ [,D∗). �

The following result is taken from Chapter , Section  in [].

Lemma  Let A and A be positive definite matrices. Then

λmin(A + A) ≥ λmin(A) + λmin(A). ()

In the Russian translation of [], it is noted that () holds even for arbitrary Hermitian
matrices A, A.

Theorem  Let ρ(A) < . Let C be a fixed positive definite matrix and let matrix H solve
the matrix Lyapunov equation (). If

D < D∗, ()

then system () is exponentially stable and, for any of its solutions x = x(k), the inequality

∣∣x(k)
∣∣ ≤

[
 –

ξ

λmax(H)

]k/√
ϕ(H)

∣∣x()
∣∣, k ≥ , ()

holds where

 <  –
ξ

λmax(H)
< . ()

Proof Recall that H is a symmetric positive definite matrix and, by Lemma , ξ >  since
() is assumed. Define a Lyapunov function

V (x) := xT Hx.

For the first difference of V (x) along the trajectories of system (), we have (k ≥ )

	V
(
x(k)

)
= V

(
x(k + )

)
– V

(
x(k)

)

=
(
Ax(k) + B(k)x(k)

)T H
(
Ax(k) + B(k)x(k)

)
– xT (k)Hx(k).

We transform the last difference to

	V
(
x(k)

)
= xT (k)

(
AT HA – H

)
x(k) + xT (k)AT HB(k)x(k)

+ xT (k)
(
B(k)

)T HB(k)x(k)
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≤ –λmin(C)
∣∣x(k)

∣∣ + 
∣∣AT H

∣∣D∣∣x(k)
∣∣ + |H|D∣∣x(k)

∣∣

= –ξ
∣∣x(k)

∣∣. ()

Consequently, 	V (x(k)) ≤ , and the zero equilibrium (and, therefore, system ()) is sta-
ble. Now we derive an explicit estimate () of the exponential type. Since

λmin(H)|x| ≤ V (x) ≤ λmax(H)|x|, ()

from inequality () we get

V
(
x(k + )

)
– V

(
x(k)

) ≤ –ξ
∣∣x(k)

∣∣ ≤ –
ξ

λmax(H)
V

(
x(k)

)

or

V
(
x(k + )

) ≤
[

 –
ξ

λmax(H)

]
V

(
x(k)

)
. ()

Below we solve this difference inequality, but first we show that the coefficient

 –
ξ

λmax(H)

on the right-hand side of () satisfies estimates (). The right-hand side of inequality ()
is a simple consequence of inequality ξ > .

To prove the left-hand side of inequality (), we use Lemma  with matrices A, A

defined as A := H – AT HA and A := AT HA. Then

λmin(H) = λmin
((

H – AT HA
)

+ AT HA
)

= λmin(A + A) ≥ λmin(A) + λmin(A)

= λmin
(
H – AT HA

)
+ λmin

(
AT HA

)

and

λmin(C) = λmin
(
H – AT HA

) ≤ λmin(H) – λmin
(
AT HA

)

≤ λmax(H) – λmin
(
AT HA

)
< λmax(H).

Therefore,

ξ = λmin(C) – 
∣∣AT H

∣∣D – |H|D < λmax(H)

and the left-hand side of inequality () holds.
Solving the difference inequality (), we obtain

V
(
x(k)

) ≤
[

 –
ξ

λmax(H)

]k

V
(
x()

)
, k ≥ .
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Using () together with the obtained inequality, we get

λmin(H)
∣∣x(k)

∣∣ ≤ V
(
x(k)

) ≤
[

 –
ξ

λmax(H)

]k

V
(
x()

)

≤ λmax(H)
∣∣x()

∣∣
[

 –
ξ

λmax(H)

]k

, k ≥ ,

and, consequently,

∣∣x(k)
∣∣ ≤

[
 –

ξ

λmax(H)

]k
λmax(H)
λmin(H)

∣∣x()
∣∣ =

[
 –

ξ

λmax(H)

]k

ϕ(H)
∣∣x()

∣∣, k ≥ 

or

∣∣x(k)
∣∣ ≤

[
 –

ξ

λmax(H)

]k/√
ϕ(H)

∣∣x()
∣∣, k ≥ ,

i.e., we get inequality (). �

Example  Let n =  and

A =

(
. .
. .

)

be specified in system (). Let

C =

(
. –.

–. .

)
.

The matrix

H =

(
 
 

)

solves the matrix Lyapunov equation (), λmin(C) = ., λmin(H) = λmax(H) = ϕ(H) = ,
|H| = , |AT H| = . and D∗ = .. If |B(k)| ≤ D < D∗ = ., k = , , . . . , then system () is
exponentially stable. For, say, D = ., we have ξ = . and () becomes

∣∣x(k)
∣∣ ≤

[
 –

ξ

λmax(H)

]k/√
ϕ(H)

∣∣x()
∣∣ = (.)k/ · ∣∣x()

∣∣, k ≥ .

3 Exponential stability and estimation of convergence of linear systems with
delay

In this part we study linear difference systems with single delay () by the second Lyapunov
method. A short survey of the use of the second Lyapunov method for the investigation
of stability of discrete systems with delay now follows. Often, two modifications are used.
The first is what is called the method of finite-dimensional Lyapunov functions, and the
second one is the method of functionals of Lyapunov-Krasovskii. Strictly speaking, the
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latter method is called the method of functionals only because it is a discrete analog of the
method of functionals for functional differential equations with delay. In the following, we
use the former method.

If the method of Lyapunov functions is to be applied to systems of differential equations
with delay ẋ(t) = f (x(t), x(t – τ )) where f : Rn ×R

n →R
n and τ > , it is necessary to find a

positive definite and continuously differentiable function V (x) such that its total derivative
along solutions of the system is negative definite provided that a so-called Razumikhin
condition holds, i.e., that the solutions approach the surface level

∂V α =
{

x ∈ Rn : V (x) = α
}

,

where α is a positive constant from the domain

V α =
{

x ∈ Rn : V (x) < α
}

.

Formally, the Razumikhin condition can be written as V (x(s)) < V (x(t)) where t –τ ≤ s < t.
For quadratic Lyapunov functions V (x) = xT Hx with a symmetric positive definite matrix
H , this inequality implies |x(s)| <

√
ϕ(H)|x(t)| where t – τ ≤ s < t. Below, we consider a

similar approach for studying the stability of difference systems with delay.

3.1 Auxiliary inequalities
First we derive three lemmas related to auxiliary inequalities. Such inequalities are used
in the proof of Theorem  in Section ..

Lemma  Let L > , a ≥ , b ≥ , c > , d ≥ , and e >  be constants. If there exist
positive constants ξ and η such that

∣∣B(k)
∣∣ < ξ ,

∣∣E(k)
∣∣ < η, k ≥ , ()

and ξ < ξ, η < η where

ξ =
–a +

√
a

 + cL

c
, ()

η =
–(b + dξ) +

√
(b + dξ) + eL

e
, ()

then

L – a
∣∣B(k)

∣∣ – b
∣∣E(k)

∣∣ – c
∣∣B(k)

∣∣ – d
∣∣B(k)

∣∣∣∣E(k)
∣∣ – e

∣∣E(k)
∣∣ > , k ≥ . ()

Proof If

L – aξ – bη – cξ
 – dξη – eη

 > ,

then () holds. Let ξ be such that

cξ
 + aξ –




L < .
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The above inequality holds if  < ξ < ξ where ξ is defined by (). Now we find η such
that

eη
 + (b + dξ)η –




L < .

The last inequality is valid if  < η < η where η is defined by (). Therefore, () will be
valid for  < ξ < ξ,  < η < η and k ≥ . �

Lemma  Let L > , a ≥ , b ≥ , c > , and d >  be constants. If there exist positive
constants ξ and η such that

∣∣B(k)
∣∣ < ξ ,

∣∣E(k)
∣∣ < η, k ≥ , ()

and ξ < ξ, η < η where

ξ =
–a +

√
a

 + cL

c
, ()

η =
L

(b + dξ)
, ()

then

L – a
∣∣B(k)

∣∣ – b
∣∣E(k)

∣∣ – c
∣∣B(k)

∣∣ – d
∣∣B(k)

∣∣∣∣E(k)
∣∣ > , k ≥ . ()

Proof If

L – aξ – bη – cξ
 – dξη > ,

then () holds. Assume that ξ satisfies

cξ
 + aξ –




L < .

This inequality holds if  < ξ < ξ where ξ is defined by (). Now we find η satisfying

(b + dξ)η –



L < .

This inequality is valid if  < η < η where η is defined by (). Therefore, () will be valid
for  < ξ < ξ,  < η < η, and k ≥ . �

Lemma  Let L > , a ≥ , b ≥ , d > , and e >  be constants. If there exist positive
constants ξ and η such that

∣∣B(k)
∣∣ < ξ ,

∣∣E(k)
∣∣ < η, k ≥ , ()

and ξ < ξ, η < η where

η =
–b +

√
b

 + eL

e
, ()
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ξ =
L

(a + dη)
, ()

then

L – a
∣∣B(k)

∣∣ – b
∣∣E(k)

∣∣ – d
∣∣B(k)

∣∣∣∣E(k)
∣∣ – e

∣∣E(k)
∣∣ > , k ≥ . ()

Proof If

L – aξ – bη – dξη – eη
 > ,

then () holds. We find η such that

eη
 + bη –




L < .

The last inequality will hold if  < η < η where η is defined by (). Now we choose ξ

such that inequality

aξ + dηξ –



L < 

holds, i.e., only inequality  < ξ < ξ needs to be satisfied where ξ is defined by (). There-
fore, () will be valid for  < ξ < ξ,  < η < η, and k ≥ . �

3.2 Exponential stability and estimation of solutions
Let γ > . To apply the auxiliary lemmas from the previous part in the proof of Theorem ,
the following quantities are needed:

L := λmin(C) –
(
 + γ ϕ(H)

)∣∣AT HD
∣∣ – γ ϕ(H)

∣∣DT HD
∣∣ – ( – /γ )|H|, ()

a := |HA| +
(
 + γ ϕ(H)

)|HD|, b := |HA| +
[
|HD| + |HA|]γ ϕ(H), ()

c := |H|, d :=
(
 + γ ϕ(H)

)|H|, e := γ |H|ϕ(H), ()

L := λmin(C) –
∣∣AT HD

∣∣ – ( – /γ )|H|, ()

a :=
(
|HA| + |HD|), b := |HA|, c = d := |H|, ()

L := λmax(H) – γ
[
λmin(C) –

∣∣AT HD
∣∣] – (γ – )|H|, ()

a := γ
(
|HA| + |HD|), b := γ |HA|, c = d := γ |H|, ()

L := λmin(H) – γ m+[∣∣AT HD
∣∣ +

∣∣DT HD
∣∣]ϕ(H), ()

a := γ m+|HD|ϕ(H), b := γ m+(|HD| + |HA|)ϕ(H),

d = e := γ m+|H|ϕ(H).
()

Moreover, we set

D := min{ξ, ξa, ξb, ξ},
D := min{η,ηa,ηb,η}

with
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ξ, η defined by equations (), () where L, a, b, c, d and e are defined by
()-(),
ξa, ηa defined by equations (), () for ξ, η (in () is ξ replaced by ξa) where
L = L, a = a, b = b, c = c, d = d and L, a, b, c, d are defined by the
right-hand sides of (), (),
ξb, ηb defined by equations (), () for ξ, η (in () is ξ replaced by ξb) where
L = L, a = a, b = b, c = c, d = d and L, a, b, c, d are defined by the
right-hand sides of (), (),
η, ξ defined by equations (), () where L, a, b, d and e are defined by
(), ().

The following theorem provides us with sufficient conditions for the exponential stabil-
ity and an estimate of the exponential rate of convergence of solutions.

Theorem  Let ρ(A) < , C be a fixed positive definite matrix and let matrix H solve the
corresponding Lyapunov matrix equation (). Assume that, for a fixed γ > , the inequali-
ties L > , L > , L > , and L >  hold. If

∣∣B(k)
∣∣ ≤D∗

 , k ≥ , ()
∣∣E(k)

∣∣ ≤D∗
, k ≥ , ()

where D∗
 < D, D∗

 < D, then system () is exponentially stable and, for an arbitrary solu-
tion x(k) of (), an exponential convergence estimate

∣∣x(k)
∣∣ ≤ √

ϕ(H)
∥∥x()

∥∥
mγ –k/, k ≥ , ()

holds.

Proof We use the Lyapunov function V (x, k) = γ kxT Hx. Obviously,

γ kλmin(H)|x| ≤ V (x, k) ≤ γ kλmax(H)|x|. ()

For an arbitrary ε > , we choose δ(ε) := ε/
√

ϕ(H). If a solution x(k) of () satisfies
‖x()‖m = δ(ε), then, for k = –m, –m + , . . . , ,

V
(
x(k), k

) ≤ γ kλmax(H)
∣∣x(k)

∣∣ ≤ γ kλmax(H)
∥∥x()

∥∥
m

= γ kλmax(H)δ(ε) = γ kλmax(H)
ε

ϕ(H)
≤ ελmin(H)

or

V
(
x(k), k

) ≤ ελmin(H). ()

We show that () holds for all k ≥  as well. Suppose this is not the case. Then there exists
k = k ≥ , such that

V
(
x(k), k

) ≤ ελmin(H), k = –m, –m + , . . . , k,

V
(
x(k + ), k + 

)
> ελmin(H) ≥ V

(
x(k), k

)
, ()
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i.e., at k = k +  for the first time, the function value x(k + ) lies outside the area

V α =
{

k = –m, –m + , . . . : V
(
x(k), k

) ≤ α
}

,

where α = ελmin(H). The first difference of V (x, k) along the trajectories of system () has
the form

	V
(
x(k), k

)
= γ k+[(A + B(k)

)
x(k) +

(
D + E(k)

)
x(k – m)

]T H

× [(
A + B(k)

)
x(k) +

(
D + E(k)

)
x(k – m)

]
– γ kxT (k)Hx(k).

We rewrite this expression as follows:

	V
(
x(k), k

)
= γ k+[Ax(k) + Dx(k – m)

]T H
[
Ax(k) + Dx(k – m)

]

+ γ k+[B(k)x(k) + E(k)x(k – m)
]T H

[
Ax(k) + Dx(k – m)

]

+ γ k+[B(k)x(k) + E(k)x(k – m)
]T H

[
B(k)x(k) + E(k)x(k – m)

]

– γ kxT (k)Hx(k).

A further reorganization of the right-hand side of the last expression leads to

	V
(
x(k), k

)
= –γ k+xT (k)

[
H – AT HA

]
x(k) + γ k+xT (k)AT HDx(k – m)

+ γ k+xT (k – m)DT HDx(k – m)

+ γ k+[xT (k)BT (k)HAx(k) + xT (k)BT (k)HDx(k – m)

+ xT (k – m)ET (k)HAx(k)+xT (k – m)ET (k)HDx(k – m)
]

+ γ k+[xT (k)BT (k)HB(k)x(k) + xT (k)BT (k)HE(k)x(k – m)

+ xT (k – m)ET (k)HE(k)x(k – m)
]

+ γ k(γ – )xT Hx.

Using the Lyapunov matrix equation () and estimating the right-hand side, we get, for
k = k,

V
(
x(k + ), k + 

)
– V

(
x(k), k

)

≤ –γ k+λmin(C)
∣∣x(k)

∣∣ + γ k+∣∣AT HD
∣∣∣∣x(k)

∣∣∣∣x(k – m)
∣∣

+ γ k+∣∣DT HD
∣∣∣∣x(k – m)

∣∣ + γ k+[|HA|∣∣B(k)
∣∣∣∣x(k)

∣∣

+
(|HD|∣∣B(k)

∣∣ + |HA|∣∣E(k)
∣∣)∣∣x(k)

∣∣∣∣x(k – m)
∣∣ + |HD|∣∣E(k)

∣∣∣∣x(k – m)
∣∣]

+ γ k+|H|[∣∣B(k)
∣∣∣∣x(k)

∣∣ + 
∣∣B(k)

∣∣∣∣E(k)
∣∣∣∣x(k)

∣∣∣∣x(k – m)
∣∣

+
∣∣E(k)

∣∣∣∣x(k – m)
∣∣] + γ k (γ – )|H|∣∣x(k)

∣∣

and, applying inequality x(k)x(k – m) ≤ (x(k) + x(k – m))/,

V
(
x(k + ), k + 

)
– V

(
x(k), k

)

≤ –γ k+λmin(C)
∣∣x(k)

∣∣



Diblík et al. Advances in Difference Equations  (2016) 2016:2 Page 13 of 20

+ γ k+∣∣AT HD
∣∣[∣∣x(k)

∣∣ +
∣∣x(k – m)

∣∣]

+ γ k+∣∣DT HD
∣∣∣∣x(k – m)

∣∣ + γ k+|HA|∣∣B(k)
∣∣∣∣x(k)

∣∣

+ γ k+(|HD|∣∣B(k)
∣∣ + |HA|∣∣E(k)

∣∣)[∣∣x(k)
∣∣ +

∣∣x(k – m)
∣∣]

+ γ k+|HD|∣∣E(k)
∣∣∣∣x(k – m)

∣∣

+ γ k+|H|∣∣B(k)
∣∣∣∣x(k)

∣∣ + γ k+|H|∣∣B(k)
∣∣∣∣E(k)

∣∣[∣∣x(k)
∣∣ +

∣∣x(k – m)
∣∣]

+ γ k+|H|∣∣E(k)
∣∣∣∣x(k – m)

∣∣ + γ k (γ – )|H|∣∣x(k)
∣∣.

Since the chain of inequalities

γ kλmin(H)
∣∣x(k)

∣∣ ≤ V
(
x(k), k

) ≤ α = ελmin(H)

< V
(
x(k + ), k + 

)

≤ γ k+λmax(H)
∣∣x(k + )

∣∣

holds for k = –m, –m + , . . . , k, we deduce

∣∣x(k)
∣∣ <

√
ϕ(H)

∣∣x(k + )
∣∣γ (k+–k)/, k = –m, –m + , . . . , k. ()

Applying () in the last expression of the estimate of the first difference of the Lyapunov
function V (x(k), k) at k = k to terms with the argument k – m, i.e., putting k = k – m in
(), we get

V
(
x(k + ), k + 

)
– V

(
x(k), k

)

≤ –γ k+(λmin(C) –
∣∣AT HD

∣∣)∣∣x(k)
∣∣

+ γ (k+)+(m+)[∣∣AT HD
∣∣ +

∣∣DT HD
∣∣]ϕ(H)

∣∣x(k + )
∣∣

+ γ k+[(|HA| + |HD|)∣∣B(k)
∣∣ + |HA|∣∣E(k)

∣∣]∣∣x(k)
∣∣

+ γ (k+)+(m+)[(|HD| + |HA|)∣∣E(k)
∣∣ + |HD|∣∣B(k)

∣∣]ϕ(H)
∣∣x(k + )

∣∣

+ γ k+|H|∣∣B(k)
∣∣[∣∣B(k)

∣∣ +
∣∣E(k)

∣∣]∣∣x(k)
∣∣

+ γ (k+)+(m+)|H|∣∣E(k)
∣∣[∣∣B(k)

∣∣ +
∣∣E(k)

∣∣]ϕ(H)
∣∣x(k + )

∣∣

+ γ k (γ – )|H|∣∣x(k)
∣∣.

We can rewrite this inequality, adding up the multiples of |x(k)| and of |x(k + )|, as

V
(
x(k + ), k + 

)
– V

(
x(k), k

)

≤ –γ k+(λmin(C) –
∣∣AT HD

∣∣ –
((

|HA| + |HD|)∣∣B(k)
∣∣ + |HA|∣∣E(k)

∣∣)

– |H|∣∣B(k)
∣∣(∣∣B(k)

∣∣ +
∣∣E(k)

∣∣) – ( – /γ )|H|)∣∣x(k)
∣∣

+ γ (k+)+(m+)(∣∣AT HD
∣∣ +

∣∣DT HD
∣∣ +

(
|HD| + |HA|)∣∣E(k)

∣∣ + |HD|∣∣B(k)
∣∣

+ |H|∣∣E(k)
∣∣(∣∣B(k)

∣∣ +
∣∣E(k)

∣∣))ϕ(H)
∣∣x(k + )

∣∣. ()
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We derive sufficient conditions for the positivity of the first coefficient in the round brack-
ets in (), i.e., for

λmin(C) –
∣∣AT HD

∣∣ –
((

|HA| + |HD|)∣∣B(k)
∣∣ + |HA|∣∣E(k)

∣∣)

– |H|∣∣B(k)
∣∣(∣∣B(k)

∣∣ +
∣∣E(k)

∣∣) – ( – /γ )|H| > .

We apply Lemma  with L := L, a := a, b := b, c := c, d := d where L, a, b, c,
and d are defined by (), () (obviously c = d > ). It is sufficient to satisfy inequality
(), i.e.,

∣∣B(k)
∣∣ < ξ , where we set ξ = D∗

 ,
∣∣E(k)

∣∣ < η, where we set η = D∗
.

Both inequalities are valid due to assumptions (), ().
Therefore, we can continue to estimate the first difference of the Lyapunov function.

Using (), from (), we get

V
(
x(k + ), k + 

)
– V

(
x(k), k

)

≤ –γ
(
λmin(C) –

∣∣AT HD
∣∣ –

[(
|HA| + |HD|)∣∣B(k)

∣∣ + |HA|∣∣E(k)
∣∣]

– |H|∣∣B(k)
∣∣(∣∣B(k)

∣∣ +
∣∣E(k)

∣∣) – ( – /γ )|H|)V (x(k), k)
λmax(H)

+ γ m+(∣∣AT HD
∣∣ +

∣∣DT HD
∣∣ +

(
|HD| + |HA|)∣∣E(k)

∣∣ + |HD|∣∣B(k)
∣∣

+ |H|∣∣E(k)
∣∣(∣∣B(k)

∣∣ +
∣∣E(k)

∣∣))ϕ(H)V (x(k + ), k + )
λmin(H)

.

The resulting inequality can be rewritten in the form
[

 – γ m+(∣∣AT HD
∣∣ +

∣∣DT HD
∣∣ +

(
|HD| + |HA|)∣∣E(k)

∣∣ + |HD|∣∣B(k)
∣∣

+ |H|∣∣E(k)
∣∣(∣∣B(k)

∣∣ +
∣∣E(k)

∣∣)) ϕ(H)
λmin(H)

]
V

(
x(k + ), k + 

)

≤
[

 – γ
(
λmin(C) –

∣∣AT HD
∣∣ –

[(
|HA| + |HD|)∣∣B(k)

∣∣ + |HA|∣∣E(k)
∣∣]

– |H|∣∣E(k)
∣∣[∣∣B(k)

∣∣ +
∣∣E(k)

∣∣] – ( – /γ )|H|) 
λmax(H)

]
V

(
x(k), k

)
.

We derive sufficient conditions for the positivity of coefficients in the big square brackets,
i.e., for

�(k) := λmin(H) – γ m+(∣∣AT HD
∣∣ +

∣∣DT HD
∣∣ +

(
|HD| + |HA|)∣∣E(k)

∣∣

+ |HD|∣∣B(k)
∣∣ + |H|∣∣E(k)

∣∣(∣∣B(k)
∣∣ +

∣∣E(k)
∣∣))ϕ(H) >  ()

and

�(k) := λmax(H) – γ
(
λmin(C) –

∣∣AT HD
∣∣ –

((
|HA| + |HD|)∣∣B(k)

∣∣ + |HA|∣∣E(k)
∣∣)

– |H|∣∣B(k)
∣∣(∣∣B(k)

∣∣ +
∣∣E(k)

∣∣) – ( – /γ )|H|) > . ()
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Consider inequality (). We apply Lemma  with L, a, b, d, and e defined by (),
() (obviously d = e > ). It is sufficient to satisfy the inequalities (), i.e.,

∣∣B(k)
∣∣ < ξ , where we set ξ = D∗

 ,
∣∣E(k)

∣∣ < η, where we set η = D∗
.

Both inequalities are valid due to assumptions (), ().
Consider inequality (). We apply Lemma  with L := L, a := a, b := b, c := c,

d := d where L, a, b, c, and d are defined by (), () (obviously c = d > ).
It is sufficient to satisfy inequality (), i.e.,

∣∣B(k)
∣∣ < ξ , where we set ξ = D∗

 ,
∣∣E(k)

∣∣ < η, where we set η = D∗
.

Both inequalities are valid due to assumptions (), ().
Then for an estimate of the Lyapunov function we get the inequality

V
(
x(k + ), k + 

) ≤ �(k)V
(
x(k), k

)
, ()

where

�(k) :=
�(k)

�(k)ϕ(H)
.

We show that

 < �(k) < . ()

The left-hand side of () holds due to the above arguments. The inequality

�(k)ϕ(H) > �(k)

is a sufficient condition for the right-hand side of () to be valid, i.e. (after a minor rear-
rangement),

λmin(C) –
∣∣AT HD

∣∣

–
((

|HA| + |HD|)∣∣B(k)
∣∣ + |HA|∣∣E(k)

∣∣)

– |H|∣∣B(k)
∣∣(∣∣B(k)

∣∣ +
∣∣E(k)

∣∣) – ( – /γ )|H|
> γ m(∣∣AT HD

∣∣ +
∣∣DT HD

∣∣ +
(
|HD| + |HA|)∣∣E(k)

∣∣ + |HD|∣∣B(k)
∣∣

+ |H|∣∣E(k)
∣∣[∣∣B(k)

∣∣ +
∣∣E(k)

∣∣])ϕ(H)

or

λmin(C) –
∣∣AT HD

∣∣( + γ mϕ(H)
)

– γ m∣∣DT HD
∣∣ϕ(H) – ( – /γ )|H|

–
(
|HA| + |HD|( + γ mϕ(H)

))∣∣B(k)
∣∣
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–
(|HA| +

(
|HD| + |HA|)γ mϕ(H)

)∣∣E(k)
∣∣ – |H|∣∣B(k)

∣∣

– |H|( + γ mϕ(H)
)∣∣B(k)

∣∣∣∣E(k)
∣∣ – |H|γ mϕ(H)

∣∣E(k)
∣∣ > . ()

As follows from (), (), and (), inequality () can be rewritten as

L – a
∣∣B(k)

∣∣ – b
∣∣E(k)

∣∣ – c
∣∣B(k)

∣∣ – d
∣∣B(k)

∣∣∣∣E(k)
∣∣ – e

∣∣E(k)
∣∣ > .

We apply Lemma  with L, a, b, c, d, and e defined by ()-() (obviously c > ,
e > ). It is sufficient to satisfy inequality (), i.e.,

∣∣B(k)
∣∣ < ξ , where we set ξ = D∗

 ,
∣∣E(k)

∣∣ < η, where we set η = D∗
.

Both inequalities are valid due to assumptions (), (). Consequently, () holds and,
from (), we get

V
(
x(k), k

)
< V

(
x(k + ), k + 

)
< V

(
x(k), k

)
.

Therefore, assumption () is false and () holds for every k ≥ –m. From () and ()
we get

γ kλmin(H)|x| ≤ V (x, k) ≤ ελmin(H) = δ(ε)λmax(H) =
∥∥x()

∥∥
mλmax(H), ()

where k ≥ , and

∣∣x(k)
∣∣ ≤ √

ϕ(H)
∥∥x()

∥∥
mγ –k/, k ≥ , ()

i.e., equation () holds. �

Example  Let n = , m = ,

A =

(
. .
. .

)

and, for simplicity, D be a  ×  null matrix specified in system (). Let

C =

(
. –.

–. .

)
.

The matrix

H =

(
 
 

)

solves the matrix Lyapunov equation (). As in Example , we get λmin(C) = ., λmin(H) =
λmax(H) = ϕ(H) = , |H| =  and |AT H| = .. Moreover, let γ = .. Then

L = λmin(C) – ( – /γ )|H| .= .,
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a = |HA| = ., b = |HA| + |HA|γ ϕ(H) = .,

c = |H| = , d =
(
 + γ ϕ(H)

)|H| = ., e = γ |H|ϕ(H) = .,

L = L
.= .,

a = a = ., b = |HA| = ., c = d = |H| = ,

L = λmax(H) – γ λmin(C) – (γ – )|H| .= .,

a = γ |HA| = ., b = γ |HA| = ., c = d = γ |H| = .,

L = λmin(H) = ,

a = , b = γ m+|HA|ϕ(H) .= ., d = e = γ m+|H|ϕ(H) .= .,

and

ξ
.= ., η

.= .,

ξa
.= ., ηa

.= .,

ξb
.= ., ηa

.= .,

ξ
.= ., η

.= ..

Let

 < D∗
 < D = min{ξ, ξa, ξb, ξ} = ξ

.= .

and

 < D∗
 < D = min{η,ηa,ηb,η} = η

.= ..

If |B(k)| ≤D∗
 , |E(k)| ≤D∗

 , k = , , . . . , then system () is exponentially stable. From (),
we get

∣∣x(k)
∣∣ ≤ √

ϕ(H)
∥∥x()

∥∥
mγ –k/ = (.)–k/ · ∥∥x()

∥∥
, k ≥ .

4 Concluding remarks
The paper investigates the exponential stability assuming, without loss of generality, that
the initial point is always defined for the value of the independent variable k being equal
to  in the case of the non-delayed equation (), and that the initial functions in the case
of the delayed systems () are always defined for k = –m, –m + , . . . , . Obviously, our
investigation can easily be modified for an arbitrary integer value of independent variable
k = k in the case of the non-delayed equation () or if the initial functions, in the case of
the delayed systems () are defined for the values of k = k – m, k – m + , . . . , k. To this
end, some minor changes in Definitions  and  are necessary. We omit the details as well
as the relevant reformulation of the results.

Carefully tracing the proof of Theorem  we note that system () will be exponentially
stable if condition () is replaced by a more general assumption:

lim sup
k→∞

∣∣B(k)
∣∣ < D∗. ()
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Nevertheless, in such a case, inequality () is, in general, not preserved because the con-
stant N :=

√
ϕ(H) in () (see Definition ) can be different. Similarly, the exponential

stability of system () will be preserved if inequalities (), () in Theorem  are replaced
by

lim sup
k→∞

∣∣B(k)
∣∣ < D∗

 , ()

lim sup
k→∞

∣∣E(k)
∣∣ < D∗

. ()

In such a case, inequality () will be valid if, in general, the constant N :=
√

ϕ(H) in ()
(see Definition ) is different. An open problem arises if we discuss inequalities () and
(), () concerning their further improvement. Particularly, is it possible to replace ()
by the weaker condition

lim sup
k→∞

ρ
(
B(k)

)
< D∗,

and (), () by the weaker conditions

lim sup
k→∞

ρ
(
B(k)

)
< D∗

 ,

lim sup
k→∞

ρ
(
E(k)

)
< D∗

,

where ρ is the spectral radius of a matrix?
The admissible values of the parameter γ used in the proof of Theorem  are γ > . Set-

ting γ =  and tracing all steps of the proof, we conclude that the assertion of exponential
stability is not true. It can be seen, e.g., from (), that, in such a case, only the stability is
proved since, for ‖x()‖m = δ(ε) and k ≥ , from () we get

∣∣x(k)
∣∣ ≤ √

ϕ(H)
∥∥x()

∥∥
mγ –k/ =

√
ϕ(H)

∥∥x()
∥∥

m =
√

ϕ(H)δ(ε) =
√

ϕ(H)ε/
√

ϕ(H) = ε.

Let K be a set of consecutive integers such that k ≥ r for every k ∈ K (r is an integer). In
[] an exponential estimate of solutions of linearly perturbed linear systems

y(k + ) =
[
A(k) + B(k)

]
y(k), k ∈ K , ()

is studied assuming that matrices A(k) and B(k) are defined on K , ‖B(k)‖ ≤ β , k ∈ K ,
‖ · ‖ is a norm, and all solutions of the non-perturbed linear system

x(k + ) = A(k)x(k), k ∈ K , ()

satisfy the estimate

∥∥x(k)
∥∥ ≤ q

∥∥x(r)
∥∥αk–r, k ∈ K , ()

for some positive constants q and α.
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Then, by Theorem , part (i) in [] any (forward) solution y(k) of () satisfies

∥∥y(k)
∥∥ ≤ q

∥∥y(r)
∥∥(α + βq)k–r =

q
(α + βq)r

∥∥y(r)
∥∥[

(α + βq)]k/, k ∈ K . ()

To compare our results with those described above we assume α <  in () (in the case of
constant matrix A, this inequality is equivalent to the assumption ρ(A) <  in Theorem ).

Compare estimate () with estimation () in Theorem . The first one gives a quali-
tative result (since an estimate for q is not given and, therefore, it is not clear how small
β should be to guarantee the inequality α + βq <  and we cannot use () for numerical
computations). The constants

√
ϕ(H) and  –

ξ

λmax(H)

in () play the roles of the constants q(α + βq)–r and (α + βq) in (). We conclude that
inequality () gives, together with qualitative information, a quantitative result as well
and can be used for computational purposes.

Let B(k) = � for every k = , , . . . , where � is a n×n null matrix. Then we can set D := 
and ξ = λmin(C). In such a case, Theorem  becomes the following theorem.

Theorem  Let ρ(A) < . Let C be a fixed positive definite matrix, and let matrix H solve
matrix equation (). Then system () is exponentially stable and, for any of its solutions
x = x(k), the inequality

∣∣x(k)
∣∣ ≤

[
 –

λmin(C)
λmax(H)

]k/√
ϕ(H)

∣∣x()
∣∣, k ≥ , ()

holds where

 <  –
λmin(C)
λmax(H)

< .

Comparing inequality () with () (and assuming, for simplicity, that A(k) in () is a
constant matrix) we can explain the differences between both inequalities in a way similar
to the one we used above.

Let us discuss the relationship between Theorem  and Theorem . It is obvious that
they are independent since, in the case of system (), we assume m ≥ . Moreover, setting
D = � and E(k) ≡ � in system (), where � is the zero matrix, in order to turn it into
system (), does not turn the conclusion of Theorem  to the conclusion of Theorem .
A direct comparison leads to a conclusion that the latter is sharper. The reason for this is
that the auxiliary inequalities (Lemmas , , and ), used in the proof of Theorem , are
rather imprecise and cannot imply the same result.

The authors have recently published papers [, ] on a similar topic where further re-
lated results can be found, including their application to scalar equations and their com-
parison with known results. In [] the boundedness character of positive solutions is
studied. Let us refer as well to [] where some exact stability results are derived. Al-
though our results cannot give such exact results, the advantage of our approach is that
the estimates of the norms of the solutions are given by inequalities. Such estimates are
not derived in [].
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