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1 Introduction
The Swedish mathematician Gosta Mittag-Leffler in the year 1903 introduced the function

(L, 2]
00 P
E,(2) = 20: TansD (¢ € C;Re(@) >0). (1)

In the year 1905, Wiman [3] introduced a generalization of (1) in the form

Eoup(2) = X(; m (a, B € CiRe(@) > 0,Re(B) > 0). @)

In connection with the solution of an integral equation, Prabhakar [4] in the year 1971
introduced a very interesting useful generalization of (2) in the form

Ely@=Y F(VL 3)

= T(an+p)
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where &, 8,y € C,Re(x) > 0, Re(8) >0, (y)o =1, and

Pn=y(y +1) -y +n-1) = - y 40, @)

In the year 2007, Shukla and Prajapati [5] introduced the following generalization of (3):

oo

v.q (V)qnzn
FHO=T rs gy 6

where o, 8,y € C; Re(e) >0, Re(8) >0 (g € (0,1) UN).

The above generalization is studied by Shukla and Prajapati [5], Prajapati et al. [6] and
established relation with Wright function [7-10]. In the year 2009, a generalization of (5)
was introduced by Srivastava and Tomovski [11],

o]

Yoy (¥ )enz"
EJ5(2) = Xoj Tans B 6)

where «, 8,y € C; Re(a) > max[0,Re(x) — 1], min{Re(B), Re(k)} > 0.
The Pochhammer symbol is defined by

Fh+p) 1, uw=0,xu e C\(0),

(A = ra) |a+1D)---(h+n-1), nw=neN;LeC.

7)

A further generalization of the Mittag-Leffler function defined by Shukla and Prajapati [5]
was given by Saxena et al. [12] in the year 2010 as

(V)qnzn
Ey (0, 1)y s (@ Bz Z < [17%, T (na + B))(m)! o

where a;, 8,y € C, Re(ej) > 0, Re(8)) >0 (j = 1,...,m), Re(Z;Z1 oj) > max[0,g —1] (g €
(0,1) UN).

This was further generalized by Saxena and Nishimoto [13, 14] in the year 2010 in the
following form:

n
KVIZ

F(na] + ﬁ,)(n)‘ ©

Ey,l( [(alr ﬂl)"“r(am’ ﬁm)z Z 1—[
j=1

where «;, 8, y,k € C, Re(ej) > 0, Re(B)) > 0 (j = 1,...,m); Re(k) > 0, Re(z 105) >
max [0,k —1].

If we set y = k =1in (9), it reduces to the following multiindex Mittag-Leffler function
studied by Kiryakova [15-17]:

El,l[(al’ ﬁl)w"r(amr ﬁm)z Z 1—[ F(l’lOl : ﬁ) (10)
j=1 ] ]

where a;, B € C, Re(a)) >0, Re(B) >0 (j=1,...,m).
For k =g (q € (0,1) UN), (9) reduces to the one studied by Saxena et al. [12].
The following lemma was proved by Saxena and Nishimoto [14].
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Lemma [18] Letwj, B, v,k € C,Re(ej) >0,Re(B)) >0(j=1,...,m);Re(k) >0, Re(Z;Zlaj) >
max|[0, x — 1], then the function defined by (10) is represented by the Mellin-Barnes type in-
tegral as follows:

1 MR TE) (v —kE)(-2)* dk

Evsllen b o Bzl =5y | T 06, - e

, (11)

where the contour of integration starts at —ico and ends at +ioco and separates the poles at
the point & = —n (n € Ny) to the left and all the poles of T'(y — k&) at the point & = % +n
(n € Ny) to the right.

The Riemann-Liouville fractional integral operator of f(¢) is defined as [14, 19-22]

1 X
(I8.f) (&) = ) / (x-0)*f(O)dt (« € CRe(a)>0). 12)
) Ja
The Riemann-Liouville fractional derivative operator of f(¢) is defined by [14, 19-23]

(DZJ)(x)Z: TRl S R 13)

& Dl () (1 <Re() < m) (m & N).
The Caputo fractional derivative was defined by Caputo [24] in the form

a"f(2) 1 L fm(r)dr

Cy%eisy _ .
oD, f(t) = aom Ton—a) Jy (¢ oyt (m-1<a<mRe(@)>0,meN)
"f(t
= S ifa=m, (14)
™
where 2 3 t,,, ) is the mth partial derivative of f(£) with respect to ¢.

The Fox’s H-function [20, 25] is defined in terms of the Mellin-Barnes type integral in
the form

: : (by> By) :
HyE) = Hy { AL

(b1,BY), ..., (bq,Bq):|

(ﬂp’ p) (al;Al);uw(ﬂp»Ap)
1
_ —&
=0 /Q O)z* de, (15)
where
" T(b; . n —a —A;
@(%_) _ l_[z IF +B$ [1_[] IF 1 6{1 J‘i:)] (16)

[Hz =m+1 F(l b - B; E)][ j=n+1 (af +AJE)]

A detailed definition, properties, asymptotic expansion and a comprehensive account of
the H-function is available from the monographs written by Mathai et al. [20].
The generalized Wright function ,¥, (p,q € No) is defined as ([26], p.183)

(a1, A1),...5(ap, Ap); 2 = Tlay +n4;) - - F(ap+nAp)i
p%[(”l’Bl)’“"("q’Bq)} 2156, upy 10, + By (17)

n=0 n=
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. Do(ul)An...(a) n 2"
R |:(a1,A1),...,(ap,Ap), :| 1 P apn 2"

(buB)s.., (b By | =2 By (bg)g,, 7!

T Ty (@A @pay)
" @) Ty’ [(bl,&),...,(bq,s,,); Z] S

where
q )4
Aj€R(=1,...,p)Bi€R(=1,....q; 1+) Bi—» A;>0, (19)

and the equality in the above condition holds true for suitably bounded values of |z| given
by Izl < V := ([T, 4 )([TL, B™).
In particular, when A; =By =1 (j=1,...,p and k = 1,...,¢), the following relationship

holds true:
(ﬂl,l),...,(ﬂp, 1); ai...,p; > (al)n o '(ap)n z"
v, * z | =,F, zl=) ——2—
P [(bl,l),,..,(bq, 1); v bl;---;bq; ; (b)n(bq)n n!

@) T’ | o), . (b 1) (20)

T(by)...T(by) |:(a1,1),...,(ap,1);zi|
in terms of the generalized hypergeometric function ,F, (p,q € No).

Recently, Gorska et al. [27] studied operator solution for fractional Fokkar-Planck equa-
tions and Babusci et al. [28] investigated Mittag-leffler function and associated polynomi-
als.

A generalization of Riemann-Liouville fractional derivative operator (13) as well as
Caputo fractional derivative operator (14) was given by Hilfer [18] by introducing a right-
sided fractional derivative operator of two parameters of order 0 < u <1land 0 <v <1in
the form

d
DZ;VN(X, £) = (C;il—ﬂ) a (Ic(llJr—V)(l—l/-)N(x’ t))) , (21)

where the initial value term (I(()fv)(lf”)f)(0+) involves the Riemann-Liouville fractional in-
tegral of order (1 — v)(1 — ) evaluated in the limit as ¢ — 0+ provided that the Laplace
transform exists.

The object of this paper is to derive certain properties including the Laplace transform
and the Mellin transform of the integral operator associated with the generalized Mittag-
Leffler function defined by

X
(E‘;“Kﬁ‘:’” ﬁm;wﬂ)r(p)(x) = f (x— t)ﬁl_lEfff,’(';';qu . [a)(x - t)“l]go(t) dt (x> a), (22)

where «;, 8, y,k,w € C, Re(ej) >0, Re(B)) >0 (j =1,...,m); RC(Z,Z ;) > max[0,x —1],
Re(y) > 0, Re(k) > 0.

This operator includes, as special cases, the operators defined and studied by Kilbas
et al. [29], Shukla and Prajapati [5], Srivastava and Tomovski [11] and Kiryakova [16]. If
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x =m =11in (22) we obtain the following fractional integration operator defined by Kilbas
etal. [29]:

(E‘}’f,ﬁ;wmgo)(x) = /ﬂ (x — t)ﬁ_lE;‘,ﬁ [a)(x - t)"‘]go(t) dt (x> a), (23)

where «, 8,y,w € C; Re(x) > 0, Re(B) > 0.
As y tends to zero, then by virtue of the limit formula

/oy’ (24)

equation (22) reduces to the familiar Riemann-Liouville fractional integral defined by (12).
If we set m =1 in (22), it gives the integral operator defined by Srivastava and Tomovski
(11]

X
(B s ) () = / (- P E S [w(x - O ]p(O) dt (x> a), (25)
where «, B,y,w € C; Re(a) > 0, Re(8) > 0, Re(x) > 0, Re(r) = Re(k) —1 > 0, which for k = g
reduces to the one given by Shukla and Prajapati [5].

If, however, we take y = k =1, (22) yields the following integral operator associated with
the multiindex Mittag-Leftler function defined by Kiryakova [16]:

X
(it o)) = [ =0 B o0l de woa,  26)
0

where o, B, w € C, Re(a;) >0, Re(8) >0 (j = 1,...,m).
We now proceed to derive the Mellin transform of the integral operator defined by (22).

2 Mellin transform of the integral operator defined by (22)
Theorem 2.1 It will be shown here that

M[(E(;}I’(‘;ETTnﬁm;w,a+ (ﬂ) (?C), S]

1 2,1 o (1_7/!K)
E.— & S
F(V)F(l - S) L+l |: “ (01 l)r (1 —§— /8]» O51)’ (1 —S— ,Bj» aj)Z,m:|

x M[tPo(8)], (27)

where o, Bj,v,k,0 € C, Re(aj) > 0, Re(B)) >0 (j=1,...,m); Re(Z;Z1 ;) > max[0,x — 1],
Re(y) > 0,Re(k) >0,Re(1 —s— B;) > 0 and Hi’,lml(-) is the H-function defined by (15).

Proof The Mellin transform of a function f(¢) is defined by
o0
M[p(x);s] = / *Lo(x) dx. (28)
0
Therefore we have

sooes

o0 X
M [(E‘;};;gf'" oar®) ®);s] = /0 x5! /0 (x — t)ﬁl‘lEj};;gfjjﬁm [w@ — )™ ]e(t) dt dx,
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where x > 0 and interchanging the order of integration, which is permissible under the
conditions stated in Theorem 2.1, we find that

MBS pioar®) @)is]

= /0 (t) /t M- ES e [w(x - )] dxdt. (29)

If we set x = ¢ + u on the right-hand side of (29), it gives

M{(ESm o ar®)®)is] = / o(t) /0 (+uf T EN S [out | dudt. (30)

To evaluate the u-integral, we express the generalized Mittag-Leffler function in terms
of its Mellin-Barnes contour integral by means of formula (11), then the above integral
transforms into the form

M[(E;’j lycjél ﬂmwa+(p)(x) ]
z/oo ) /-HOO C(=&E)C(y + k&) (~ou )Edé
0 2mF(y) 1_[]'=1F :Bj_gaj)

oo
X / t+u)uPV du. (31)
0

Now we evaluate the u-integral with the help of the formula [30]

/0 P t+a) dt= o) a’"*, (32)

where Re(v) > 0,Re(p—v) > | arg(—a)| < w; we observe that the right-hand side of the above
equation (32) and the definition of H-function (15) yields the desired result (27). |

Corollary 2.1 For k = g, Theorem 2.1 reduces to the following result:

[( Vliyll.étlxm ﬁm;w,a+¢z)(x);3]

1 21 « (I-v,9)
Ny Teo N
1_‘()’)r(l—s)x 1’m+1|: “ ) ):(1_S_,leal):(l_S_ﬁj:aj)2,m:|

x M[tPo(8)], (33)
which holds under the conditions as given with (27) with k = q (g € (0,1) UN).
When m =1, Corollary 2.1 reduces to the following one given by Prajapati et al. [6].
Corollary 2.2 There holds the following result:
M[(E;O;,q;ﬂ;w,oJr(")(x);S]

= 71 x H> —wt*
C(y)r-s !

(1-v.9) 5
(0,1),(1-5 - ,3,01):| M6 ()] (34)
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If we further take g = 1, Corollary 2.2 reduces to the following result [6].

Corollary 2.3 There holds the following result:

M[(E;(;ﬁ;w,0+(p) (x)’ S]

(1-y,1) 5
(0,1),(1—s~ ﬁ,a):| M[to(®)]. (35)

_ 1 x H2,1 —wt®
L(y)r-s ="
For m =1, Theorem 2.1 gives the following result given in [6].
Corollary 2.4 There holds the formula

M[(E;)j,f(;ﬂ;a),0+(p) (x)’ S]

1 2,1
=——— X H) | —0t*
L(y)r-s 1’2[

(1=y.k) 5
0,1),1-s- ,B,Ol):| M[t W(t)]» (36)

where a, 8,y € C; Re(a) > max[0,Re(x) — 1], Re(8) > 0, Re(x) > 0.

When « =1, it yields the following result associated with the multiindex Mittag-Leffler
function [15, 16].

Corollary 2.5 The following result holds:

M[(E:;;::;Z,w,odﬂ) (%); S]

— 1 2,1 o (07 1)
TN ) XHI m+1 —wt
F(V)F(l_s) ’ (0,1),(1—5—,31,(11), (l_s_/gﬁaj)z,m

x M[t"¢(t)]. (37)

3 Laplace transform of the operator defined by (22)
Theorem 3.1 It will be shown here that

ﬁjy aj)2,m; pal

1 ,K); -
4@%%&MMMWﬂ=ﬁ%f%%H[JV” ﬁiﬂm (38)

wherea;, B,y ,k,w € C,Re(a;) >0,Re(8) >0 (j=1,...,m); Re(Z;Zl ;) > max[0,Re(x) —1],
1,1 is the Fox-Wright function defined by

w

1 g
LI, yon )] = v [1- 2| 0, 39)

where a, 8,7, € C; Re(p) > 0, Re(a) > 0, Re(8) >0, Re(y) >0 and

meﬂ=ﬂ () dt, (40)

where Re(p) > 0 and the integral is convergent.
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Proof By virtue of the results (22) and (40), we find that

LU(ES 3 400+ ®) )i ]

:/ e"”‘/ (x =)~ IE;II’("ET’” B [w(x — ) ]o(t) dt dx.
0 0

Interchanging the order of integration, which is permissible under the conditions stated
in Theorem 3.1, we find that

LU(ESS 5 giar0s @) )i 2]

:./o <P(t)/t e P (x—t)1” lEf,‘lKﬁl [ (x—t)“l]dxdt. (41)

If we set x = ¢ + u on the right-hand side of (41), it becomes

[( leﬂzlxm Bmsw,a+ §0) (x);p]

= /0 ¢(t) /0 PO B g, o™ dudt. (42)

On making use of the series definition of function (10), we see that

L[(E;Z "f,él:m ﬂm;a},0+(p) (x);p]

oo

Z W / e op(t) dt/ e Puybrean-l gy
]_[] T (na + B)) o

- Z Der” et
pﬂlml" ]_[ [(noj + B;) Jo ¢

1 -8 (v,
= — LY,
P |:(ﬂ}ya1)2m:pal:| (p)

where ¢(p) is the Laplace transform of ¢(t).
This completes the proof of Theorem 3.1. g

If we set k = g, we obtain the following Corollary 3.1.

Corollary 3.1 The following result holds:

cm 1 .
[( ylz}"ﬁ'l ﬂm;w,m‘/))(x);l?] = TV)P PLw,, |:(V»61); (ﬁj:a/)z,m;%}ﬁ’(p),

where o, Bj,y,w € C, Re(a;) > 0, Re(B) >0 (j = 1,...,m); Re(Z;Z1 o) > max[0,q — 1],
Re(p) > 0, Re(y) > 0.

When m =1, the above result reduces to the following.

Corollary 3.2 The following result holds:

1

L[(Eloqu;/g;w,oﬂp) (x),p] = m

p‘ﬂlwm_l[(%q);— %]@(p),
p
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where o, B,v,w € C; Re(p) >0, Re(a) > 0, Re(8) > 0, Re(y) >0, (g € (0,1) UN), here ¢(p)
is the Laplace transform of ¢(t).

When g =1, the above corollary yields the following result given in [6].

Corollary 3.3 There holds the formula

1 o7
L[(E‘;;/g;w,0+90) (x)’P] = Wy)piﬂ |:1 - ];] 90(19), (43)

where o, 8,y,w € C; Re(p) > 0, Re(x) > 0, Re(B) > 0, Re(y) > 0.

For y = k = 1, we obtain the following result associated with the multiindex Mittag-
Leftler function [16].

Corollary 3.4 There holds the formula

w

Lol . _L -8 (v, q); w
L[(E;f,q;ﬂl,...,ﬂm;w,Oer)(x)’p]_l—w(y)p L Wys (ﬁj,aj)z,m;P“I (/)(p)’

where o, Bj, v, w € C, Re(ej) > 0,Re(B)) >0 (j=1,...,m), Re(p) > 0, Re(y) > 0.
For m =1, Theorem 3.1 yields the following result [6].

Corollary 3.5 There holds the formula

YiK); @

1
L[(E;[,K;ﬂ;w,m‘p)(x);p] = Fy)p_ﬂllym*I |:( _ pa:| ¢(@),

where o, 8,y,w € C; Re(p) > 0, Re(«r) > max[0,Re(x) — 1], Re(B) > 0, Re(y) > 0, when y
tends to zero and B is replaced by «, then by virtue of the limit formula (24), the result (10)
reduces to the Riemann-Liouville fractional integral and we arrive at an important result
given in Samko et al. [17].

Corollary 3.6 There holds the following result:
L[(I5,0)®)p] =4 (p), (44)
where a € C; Re(p) > 0, Re(w) > 0 and ¢(p) is the Laplace transform of ¢(¢).

4 Further properties of the operator defined by (22)

By using the technique analogous to that employed by Kilbas et al. [29], we obtain the
composition properties of the Riemann-Liouville fractional integral operator I, involving
the operator defined by (22).

Theorem 4.1 Under the various constraints already stated with definition (22), let the
function f be the nth space L(a, b) of the Lebesgue measurable functions on finite interval
[a,b] (b > a) of the real line R given by

b
L@ b) = (¢ lalh) = / @) dx < oo, (45)
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The space C(a,b) is of continuous functions on [a,b], the integral defined by (22) is
bounded on L(a, b) and

”Ei;ﬁ;] ﬂmw0+¢” <dllolh, (46)
where the constant d is given by

(¥ )enll(b — @)Ree) |

< [T F(na, + Bj)I Re(on)n + Br](m)!” 47)

d= (b (l)Re a1) Z

For k =m =1, (47) reduces to the one given by Kilbas et al. [29].

Theorem 4.2 Under the various constraints mentioned already with the parameters, there
hold the following results:

,,,,, O - Lreres@im
L 0+? = Epip e, pso0e® = By i o0 Lar® (48)

and

.....

Q] 5ee Ol
DZJrEleﬂl /3;,,,(4)0+(/J E}/Kﬂl—a ﬂmw0+(p Eykﬁl ﬁmw0+Da+(p (49)

,,,,,

For m =1, (48) and (49) reduce to the result given by Srivastava and Tomovski [11].

5 Applications
In this section, we present the solution of the following differential equation associated
with a Hilfer derivative. The following result readily follows from paper [31]:

where «;, B, v,k € C, Re(ej) > 0, Re(Bj) > 0 (j = 1,...,m); Re(x) > 0, Re(}_"

j 10[,‘) >
max[0,« — 1] and Re(p) > 0.

Theorem 5.1 It will be shown here that the solution of the fractional differential equation

(Do f) () = A(ES s ﬁm;w,ﬁwx"‘l)(x) +g(x), (51)

where0<u<1,0<v<l,weC, Re(z 19;) >max[0,Re(k) —1], Re(8;) >0 (j=1,...,m),
min{Re(y),Re(x)} > 0,

(1670 F) (04) = e (52)

has the solution given by

Kty (p=1)-1 Axith
SO = ere o * ey Bl B D o )]

+ ﬁ /Ox (x— t)“’lg(t) dt, (53)

where e is an arbitrary constant.
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Proof Applying the Laplace transform to each side of (53) and using (21) along with con-
volution theorem of the Laplace transform, we find that

P'F(p) = ep™' ) = L[(EVSi 5as @) 2L D) + GR)

1 (y,k); o
Praw,, — |+ G(p), 54
F(J/)p P |:(/3/,a/)z,m;19“1} +6) G4

which readily gives

o Ty + Kn)(
E(p) = ep" -1 . % =pr1-n-1
(p)=ep TP ; [T T (n Re(ot,) + /3,)(?1')

r"Gp) (55)

Now, by taking the inverse Laplace transform of each side of (55), we obtain

i I'(y + Kl’l)( )" .
I'(y) ; [T T (nRe(a; + £))) () (

1 xh!
+ L L(F( ) g(x))

F(x) = el ! (p\)(l—u)—u;x) + —aw—fﬁ—u—l;x)

Y K= -v(1-p)-1 )Lxll*ﬂl Z ()/ + Kn)(a)x“‘)"
T(w—v(— < [T, T(nRe() + BT (ann + f1 + o+ 1)(m)!
L / (x - 0)“"Lg(t) dt
'(u) Jo
which yields
xu—v(lfﬂ)fl )Lxl“rﬂl
flx)=e Ey [(011,/31 +u+1),..., (Olmngm);a’xal]

T(u—vd-p)  TO)

;4 -1
T >/ gyt

This completes the proof of Theorem 5.1. g

It is interesting to observe that for m = 1, Theorem 5.1 reduces to the one given by

Srivastava and Tomovski [11].

6 Conclusion

In this paper we have derived the Laplace transform and the Mellin transform and various
properties of the operator defined by (21). These properties are useful in solving applied
problems of science, engineering and technology such as fractional kinetic equations, frac-

tional reaction-diffusion equation, etc.
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