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Abstract
The present paper deals with the study of a generalized Mittag-Leffler function opera-
tor. This paper is based on the generalizedMittag-Leffler function introduced and stud-
ied by Saxena and Nishimoto (J. Fract. Calc. 37:43-52, 2010). Laplace and Mellin trans-
forms of this new operator are investigated. The results are useful where the Mittag-
Leffler function occurs naturally. The boundedness and composition properties of this
operator are established. The importance of the derived results further lies in the fact
that the results of the generalized Mittag-Leffler function defined by Prabhakar (Yoko-
hama Math. J. 19:7-15, 1971), Shukla and Prajapati (J. Math. Anal. Appl. 336:797-811,
2007), and the multiindex Mittag-Leffler function due to Kiryakova (Fract. Calc. Appl.
Anal. 2:445-462, 1999; J. Comput. Appl. Math. 118:214-259, 2000; J. Fract. Calc. 40:29-41,
2011) readily follow as a special case of our findings. Further the results obtained
are of general nature and include the results given earlier by Prajapati et al. (J. Inequal.
Appl. 2013:33, 2013) and Srivastava and Tomovski (Appl. Math. Comput. 211:198-210,
2009). Some special cases of the established results are also given as corollaries.
MSC: 33E12; 44A10; 26A33
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1 Introduction
The Swedish mathematician Gösta Mittag-Leffler in the year  introduced the function
[, ]

Eα(z) =
∞∑

n=

zn

�(αn + )
(
α ∈ C; Re(α) > 

)
. ()

In the year , Wiman [] introduced a generalization of () in the form

Eα,β (z) =
∞∑

n=

zn

�(αn + β)
(
α,β ∈ C; Re(α) > , Re(β) > 

)
. ()

In connection with the solution of an integral equation, Prabhakar [] in the year 
introduced a very interesting useful generalization of () in the form

Eγ

α,β (z) =
∞∑

n=

(γ )nzn

�(αn + β)
, ()
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where α,β ,γ ∈ C, Re(α) > , Re(β) > , (γ ) = , and

(γ )n = γ (γ + ) · · · (γ + n – ) =
�(γ + n)

�(γ )
; γ �= . ()

In the year , Shukla and Prajapati [] introduced the following generalization of ():

Eγ ,q
α,β (z) =

∞∑

n=

(γ )qnzn

�(αn + β)
, ()

where α,β ,γ ∈ C; Re(α) > , Re(β) >  (q ∈ (, ) ∪ N).
The above generalization is studied by Shukla and Prajapati [], Prajapati et al. [] and

established relation with Wright function [–]. In the year , a generalization of ()
was introduced by Srivastava and Tomovski [],

Eγ ,κ
α,β (z) =

∞∑

n=

(γ )κnzn

�(αn + β)
, ()

where α,β ,γ ∈ C; Re(α) > max[, Re(κ) – ], min{Re(β), Re(κ)} > .
The Pochhammer symbol is defined by

(λ)μ =
�(λ + μ)

�(λ)
=

{
, μ = ,λ,μ ∈ C\(),
λ(λ + ) · · · (λ + n – ), μ = n ∈ N;λ ∈ C.

()

A further generalization of the Mittag-Leffler function defined by Shukla and Prajapati []
was given by Saxena et al. [] in the year  as

Eγ ,q
[
(α,β), . . . , (αm,βm); z

]
=

∞∑

n=

(γ )qnzn
∏m

j= �(nαj + βj)(n)!
, ()

where αj,βj,γ ∈ C, Re(αj) > , Re(βj) >  (j = , . . . , m), Re(
∑m

j= αj) > max[, q – ] (q ∈
(, ) ∪ N).

This was further generalized by Saxena and Nishimoto [, ] in the year  in the
following form:

Eγ ,κ
[
(α,β), . . . , (αm,βm)z

]
=

∞∑

n=

(γ )κnzn
∏m

j= �(nαj + βj)(n)!
, ()

where αj,βj,γ ,κ ∈ C, Re(αj) > , Re(βj) >  (j = , . . . , m); Re(κ) > , Re(
∑m

j= αj) >
max[,κ – ].

If we set γ = κ =  in (), it reduces to the following multiindex Mittag-Leffler function
studied by Kiryakova [–]:

E,
[
(α,β), . . . , (αm,βm)z

]
=

∞∑

n=

zn
∏m

j= �(nαj + βj)
, ()

where αj,βj ∈ C, Re(αj) > , Re(βj) >  (j = , . . . , m).
For κ = q (q ∈ (, ) ∪ N), () reduces to the one studied by Saxena et al. [].
The following lemma was proved by Saxena and Nishimoto [].
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Lemma [] Let αj,βj,γ ,κ ∈ C, Re(αj) > , Re(βj) >  (j = , . . . , m); Re(κ) > , Re(
∑m

j=αj) >
max[,κ – ], then the function defined by () is represented by the Mellin-Barnes type in-
tegral as follows:

Eγ ,κ
[
(α,β), . . . , (αm,βm); z

]
=


π i�(γ )

∫ +i∞

–i∞
�(ξ )�(γ – κξ )(–z)–ξ dξ∏m

j= �(βj – ξαj)
, ()

where the contour of integration starts at –i∞ and ends at +i∞ and separates the poles at
the point ξ = –n (n ∈ N) to the left and all the poles of �(γ – κξ ) at the point ξ = γ

κ
+ n

(n ∈ N) to the right.

The Riemann-Liouville fractional integral operator of f (t) is defined as [, –]

(
Iα

a+f
)
(x) =


�(α)

∫ x

a
(x – t)α–f (t) dt

(
α ∈ C; Re(α) > 

)
. ()

The Riemann-Liouville fractional derivative operator of f (t) is defined by [, –]

(
Dμ

a+f
)
(x) =

{


�(–μ)
∫ x

a (x – t)–μ–f (t) dt (Re(μ) < ),
dm

dxm Dμ–m
a+ f (x) (m –  ≤ Re(μ) < m) (m ∈ N).

()

The Caputo fractional derivative was defined by Caputo [] in the form

C
 Dα

t f (t) =
∂mf (t)
∂tm


�(m – α)

∫ t



f m(τ ) dτ

(t – τ )α+–m

(
m –  < α < m; Re(α) > , m ∈ N

)

=
∂mf (t)
∂tm if α = m, ()

where ∂mf (t)
∂tm is the mth partial derivative of f (t) with respect to t.

The Fox’s H-function [, ] is defined in terms of the Mellin-Barnes type integral in
the form

Hm,n
p,q (z) = Hm,n

p,q

[
z
∣∣∣∣

(bq, Bq)
(ap, Ap)

]
= Hm,n

p,q

[
z
∣∣∣∣

(b, B), . . . , (bq, Bq)
(a, A), . . . , (ap, Ap)

]

=


π i

∫

�

(ξ )z–ξ dξ , ()

where

(ξ ) =
[
∏m

i= �(bi + Biξ )][
∏n

j= �( – aj – Ajξ )]
[
∏q

i=m+ �( – bi – Biξ )][
∏p

j=n+ �(aj + Ajξ )]
. ()

A detailed definition, properties, asymptotic expansion and a comprehensive account of
the H-function is available from the monographs written by Mathai et al. [].

The generalized Wright function p�q (p, q ∈ N) is defined as ([], p.)

p�q

[
(a, A), . . . , (ap, Ap);
(b, B), . . . , (bq, Bq);

z

]
=

∞∑

n=

∞∏

n=

�(a + nA) · · ·�(ap + nAp)
�(b + nB) · · ·�(bq + nBq)

zn

n!
, ()
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p�q ∗
[

(a, A), . . . , (ap, Ap);
(b, B), . . . , (bq, Bq);

z

]
=

∞∑

n=

(a)An · · · (ap)Apn

(b)Bn · · · (bq)Bqn

zn

n!

=
�(b) · · ·�(bq)
�(a) · · ·�(ap) p�q

[
(a, A), . . . , (ap, Ap);
(b, B), . . . , (bq, Bq);

z

]
, ()

where

Aj ∈ R (j = , . . . , p), Bj ∈ R (j = , . . . , q);  +
q∑

j=

Bj –
p∑

j=

Aj ≥ , ()

and the equality in the above condition holds true for suitably bounded values of |z| given
by |z| < ∇ := (

∏p
j= Aj

–Aj )(
∏q

j= Bj
Bj ).

In particular, when Aj = Bk =  (j = , . . . , p and k = , . . . , q), the following relationship
holds true:

p�q ∗
[

(a, ), . . . , (ap, );
(b, ), . . . , (bq, );

z

]
= pFq

[
a, . . . , ap;
b, . . . , bq;

z

]
=

∞∑

n=

(a)n · · · (ap)n
(b)n · · · (bq)n

zn

n!

=
�(b) . . .�(bq)
�(a) · · ·�(ap) p�q

[
(a, ), . . . , (ap, );
(b, ), . . . , (bq, );

z

]
, ()

in terms of the generalized hypergeometric function pFq (p, q ∈ N).
Recently, Górska et al. [] studied operator solution for fractional Fokkar-Planck equa-

tions and Babusci et al. [] investigated Mittag-leffler function and associated polynomi-
als.

A generalization of Riemann-Liouville fractional derivative operator () as well as
Caputo fractional derivative operator () was given by Hilfer [] by introducing a right-
sided fractional derivative operator of two parameters of order  < μ <  and  ≤ ν ≤  in
the form

Dμ,ν
a+ N(x, t) =

(
Iν(–μ)

a+
∂

∂x
(
I(–ν)(–μ)

a+ N(x, t)
))

, ()

where the initial value term (I(–ν)(–μ)
+ f )(+) involves the Riemann-Liouville fractional in-

tegral of order ( – ν)( – μ) evaluated in the limit as t → + provided that the Laplace
transform exists.

The object of this paper is to derive certain properties including the Laplace transform
and the Mellin transform of the integral operator associated with the generalized Mittag-
Leffler function defined by

(
Eα,...,αm

γ ,κ ;β,...,βm ;ω,a+ϕ
)
(x) =

∫ x

a
(x – t)β–Eα,...,αm

γ ,κ ;β,...,βm

[
ω(x – t)α

]
ϕ(t) dt (x > a), ()

where αj,βj,γ ,κ ,ω ∈ C, Re(αj) > , Re(βj) >  (j = , . . . , m); Re(
∑m

j= αj) > max[,κ – ],
Re(γ ) > , Re(κ) > .

This operator includes, as special cases, the operators defined and studied by Kilbas
et al. [], Shukla and Prajapati [], Srivastava and Tomovski [] and Kiryakova []. If
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κ = m =  in () we obtain the following fractional integration operator defined by Kilbas
et al. []:

(
Eα

γ ,β ;ω,a+ϕ
)
(x) =

∫ x

a
(x – t)β–Eα

γ ,β
[
ω(x – t)α

]
ϕ(t) dt (x > a), ()

where α,β ,γ ,ω ∈ C; Re(α) > , Re(β) > .
As γ tends to zero, then by virtue of the limit formula

Eα
γ ,β(z) =


�(β)

, ()

equation () reduces to the familiar Riemann-Liouville fractional integral defined by ().
If we set m =  in (), it gives the integral operator defined by Srivastava and Tomovski

[]

(
Eα

γ ,κ ,β ;ω,a+ϕ
)
(x) =

∫ x

a
(x – t)β–Eγ ,κ

α,β
[
ω(x – t)α

]
ϕ(t) dt (x > a), ()

where α,β ,γ ,ω ∈ C; Re(α) > , Re(β) > , Re(κ) > , Re(α) = Re(κ) –  > , which for κ = q
reduces to the one given by Shukla and Prajapati [].

If, however, we take γ = κ = , () yields the following integral operator associated with
the multiindex Mittag-Leffler function defined by Kiryakova []:

(
Eα,...,αm

γ ,κ ;β,...,βm ;ω,a+ϕ
)
(x) =

∫ x


(x – t)β–Eα,...,αm

γ ,κ ;β,...,βm

[
ω(x – t)α

]
ϕ(t) dt (x > a), ()

where αj,βj,ω ∈ C, Re(αj) > , Re(βj) >  (j = , . . . , m).
We now proceed to derive the Mellin transform of the integral operator defined by ().

2 Mellin transform of the integral operator defined by (22)
Theorem . It will be shown here that

M
[(

Eα,...,αm
γ ,κ ;β,...,βm ;ω,a+ϕ

)
(x); s

]

=


�(γ )�( – s)
H,

,m+

[
–ωtα

∣∣∣∣
( – γ ,κ)

(, ), ( – s – β,α), ( – s – βj,αj),m

]

× M
[
tβϕ(t)

]
, ()

where αj,βj,γ ,κ ,ω ∈ C, Re(αj) > , Re(βj) >  (j = , . . . , m); Re(
∑m

j= αj) > max[,κ – ],
Re(γ ) > , Re(κ) > , Re( – s – β) >  and H,

,m+(·) is the H-function defined by ().

Proof The Mellin transform of a function f (t) is defined by

M
[
ϕ(x); s

]
=

∫ ∞


xs–ϕ(x) dx. ()

Therefore we have

M
[(

Eα,...,αm
γ ,κ ;β,...,βm ;ω,a+ϕ

)
(x); s

]
=

∫ ∞


xs–

∫ x


(x – t)β–Eα,...,αm

γ ,κ ;β,...,βm

[
ω(x – t)α

]
ϕ(t) dt dx,
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where x >  and interchanging the order of integration, which is permissible under the
conditions stated in Theorem ., we find that

M
[(

Eα,...,αm
γ ,κ ;β,...,βm ;ω,a+ϕ

)
(x); s

]

=
∫ ∞


ϕ(t)

∫ ∞

t
xs–(x – t)β–Eα,...,αm

γ ,κ ;β,...,βm

[
ω(x – t)α

]
dx dt. ()

If we set x = t + u on the right-hand side of (), it gives

M
[(

Eα,...,αm
γ ,κ ;β,...,βm ;ω,a+ϕ

)
(x); s

]
=

∫ ∞


ϕ(t)

∫ ∞


(t + u)s–uβ–Eα,...,αm

γ ,κ ;β,...,βm

[
ωuα

]
du dt. ()

To evaluate the u-integral, we express the generalized Mittag-Leffler function in terms
of its Mellin-Barnes contour integral by means of formula (), then the above integral
transforms into the form

M
[(

Eα,...,αm
γ ,κ ;β,...,βm ;ω,a+ϕ

)
(x); s

]

=
∫ ∞


ϕ(t) dt


π i�(γ )

∫ +i∞

–i∞
�(–ξ )�(γ + κξ )(–ωuα)ξ dξ∏m

j= �(βj – ξαj)

×
∫ ∞


(t + u)s–uβ– du. ()

Now we evaluate the u-integral with the help of the formula []

∫ ∞


tν–(t + a)–ρ dt =

�(ν)�(ρ – ν)
�(ρ)

aν–ρ , ()

where Re(ν) > , Re(ρ –ν) > | arg(–a)| < π ; we observe that the right-hand side of the above
equation () and the definition of H-function () yields the desired result (). �

Corollary . For κ = q, Theorem . reduces to the following result:

M
[(

Eα,...,αm
γ ,q;β,...,βm ;ω,a+ϕ

)
(x); s

]

=


�(γ )�( – s)
×H,

,m+

[
–ωtα

∣∣∣∣
( – γ , q)

(, ), ( – s – β,α), ( – s – βj,αj),m

]

× M
[
tβϕ(t)

]
, ()

which holds under the conditions as given with () with κ = q (q ∈ (, ) ∪ N).

When m = , Corollary . reduces to the following one given by Prajapati et al. [].

Corollary . There holds the following result:

M
[(

Eα
γ ,q;β ;ω,+ϕ

)
(x); s

]

=


�(γ )�( – s)
×H,

,m+

[
–ωtα

∣∣∣∣
( – γ , q)

(, ), ( – s – β ,α)

]
M

[
tβϕ(t)

]
. ()
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If we further take q = , Corollary . reduces to the following result [].

Corollary . There holds the following result:

M
[(

Eα
γ ;β ;ω,+ϕ

)
(x); s

]

=


�(γ )�( – s)
× H,

,

[
–ωtα

∣∣∣∣
( – γ , )

(, ), ( – s – β ,α)

]
M

[
tβϕ(t)

]
. ()

For m = , Theorem . gives the following result given in [].

Corollary . There holds the formula

M
[(

Eα
γ ,κ ;β ;ω,+ϕ

)
(x); s

]

=


�(γ )�( – s)
× H,

,

[
–ωtα

∣∣∣∣
( – γ ,κ)

(, ), ( – s – β ,α)

]
M

[
tβϕ(t)

]
, ()

where α,β ,γ ∈ C; Re(α) > max[, Re(κ) – ], Re(β) > , Re(κ) > .

When κ = , it yields the following result associated with the multiindex Mittag-Leffler
function [, ].

Corollary . The following result holds:

M
[(

Eα,...,αm
β,...,βm ;ω,+ϕ

)
(x); s

]

=


�(γ )�( – s)
×H,

,m+

[
–ωtα

∣∣∣∣
(, )

(, ), ( – s – β,α), ( – s – βj,αj),m

]

× M
[
tβϕ(t)

]
. ()

3 Laplace transform of the operator defined by (22)
Theorem . It will be shown here that

L
[(

Eα,...,αm
γ ,κ ;β,...,βm ;ω,+ϕ

)
(x); p

]
=


�(γ )

p–β �m–

[
(γ ,κ);

(βj,αj),m;
ω

pα

]
ϕ̃(p), ()

where αj,βj,γ ,κ ,ω ∈ C, Re(αj) > , Re(βj) >  (j = , . . . , m); Re(
∑m

j= αj) > max[, Re(κ) – ],
�m– is the Fox-Wright function defined by

L
[(

Eα
γ ;β ;ω,+ϕ

)
(x); p

]
=


�(γ )

p–β

[
 –

ω

pα

]–γ

ϕ̃(p), ()

where α,β ,γ ,ω ∈ C; Re(p) > , Re(α) > , Re(β) > , Re(γ ) >  and

L
[
f (t); p

]
=

∫ ∞


e–ptf (t) dt, ()

where Re(p) >  and the integral is convergent.
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Proof By virtue of the results () and (), we find that

L
[(

Eα,...,αm
γ ,κ ;β,...,βm ;ω,+ϕ

)
(x); p

]

=
∫ ∞


e–px

∫ x


(x – t)β–Eα,...,αm

γ ,κ ;β,...,βm

[
ω(x – t)α

]
ϕ(t) dt dx.

Interchanging the order of integration, which is permissible under the conditions stated
in Theorem ., we find that

L
[(

Eα,...,αm
γ ,κ ;β,...,βm ;ω,+ϕ

)
(x); p

]

=
∫ ∞


ϕ(t)

∫ ∞

t
e–px(x – t)β–Eα,...,αm

γ ,κ ;β,...,βm

[
ω(x – t)α

]
dx dt. ()

If we set x = t + u on the right-hand side of (), it becomes

L
[(

Eα,...,αm
γ ,κ ;β,...,βm ;ω,a+ϕ

)
(x); p

]

=
∫ ∞


ϕ(t)

∫ ∞


e–p(t+u)uβ–Eα,...,αm

γ ,κ ;β,...,βm

[
ωuα

]
du dt. ()

On making use of the series definition of function (), we see that

L
[(

Eα,...,αm
γ ,κ ;β,...,βm ;ω,+ϕ

)
(x); p

]

=
∞∑

n=

(γ )κnω
n

∏m
j= �(nαj + βj)

∫ ∞


e–ptϕ(t) dt

∫ ∞


e–puuβ+αn– du

=
∞∑

n=

(γ )κnω
n

pβ+αn ∏m
j= �(nαj + βj)

∫ ∞


e–ptϕ(t) dt

=


�(γ )
p–β �m–

[
(γ ,κ);

(βj,αj),m;
ω

pα

]
ϕ̃(p),

where ϕ̃(p) is the Laplace transform of ϕ(t).
This completes the proof of Theorem .. �

If we set κ = q, we obtain the following Corollary ..

Corollary . The following result holds:

L
[(

Eα,...,αm
γ ,q;β,...,βm ;ω,+ϕ

)
(x); p

]
=


�(γ )

p–β �m–

[
(γ , q); (βj,αj),m;

ω

pα

]
ϕ̃(p),

where αj,βj,γ ,ω ∈ C, Re(αj) > , Re(βj) >  (j = , . . . , m); Re(
∑m

j= αj) > max[, q – ],
Re(p) > , Re(γ ) > .

When m = , the above result reduces to the following.

Corollary . The following result holds:

L
[(

Eα
γ ,q;β ;ω,+ϕ

)
(x); p

]
=


�(γ )

p–β
�m–

[
(γ , q); –

ω

pα

]
ϕ̃(p),
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where α,β ,γ ,ω ∈ C; Re(p) > , Re(α) > , Re(β) > , Re(γ ) > , (q ∈ (, ) ∪ N), here ϕ̃(p)
is the Laplace transform of ϕ(t).

When q = , the above corollary yields the following result given in [].

Corollary . There holds the formula

L
[(

Eα
γ ;β ;ω,+ϕ

)
(x); p

]
=


�(γ )

p–β

[
 –

ω

pα

]–γ

ϕ̃(p), ()

where α,β ,γ ,ω ∈ C; Re(p) > , Re(α) > , Re(β) > , Re(γ ) > .

For γ = κ = , we obtain the following result associated with the multiindex Mittag-
Leffler function [].

Corollary . There holds the formula

L
[(

Eα,...,αm
γ ,q;β,...,βm ;ω,+ϕ

)
(x); p

]
=


�(γ )

p–β �m–s

[
(γ , q);

(βj,αj),m;
ω

pα

]
ϕ̃(p),

where αj,βj,γ ,ω ∈ C, Re(αj) > , Re(βj) >  (j = , . . . , m), Re(p) > , Re(γ ) > .

For m = , Theorem . yields the following result [].

Corollary . There holds the formula

L
[(

Eα
γ ,κ ;β ;ω,+ϕ

)
(x); p

]
=


�(γ )

p–β
�m–

[
(γ ,κ);

–
ω

pα

]
ϕ̃(p),

where α,β ,γ ,ω ∈ C; Re(p) > , Re(α) > max[, Re(κ) – ], Re(β) > , Re(γ ) > , when γ

tends to zero and β is replaced by α, then by virtue of the limit formula (), the result ()
reduces to the Riemann-Liouville fractional integral and we arrive at an important result
given in Samko et al. [].

Corollary . There holds the following result:

L
[(

Iα
+ϕ

)
(x); p

]
= p–αϕ̃(p), ()

where α ∈ C; Re(p) > , Re(α) >  and ϕ̃(p) is the Laplace transform of ϕ(t).

4 Further properties of the operator defined by (22)
By using the technique analogous to that employed by Kilbas et al. [], we obtain the
composition properties of the Riemann-Liouville fractional integral operator Iμ

a+ involving
the operator defined by ().

Theorem . Under the various constraints already stated with definition (), let the
function f be the nth space L(a, b) of the Lebesgue measurable functions on finite interval
[a, b] (b > a) of the real line R given by

L(a, b) =
{

g(x) : ‖g‖
}

=
∫ b

a

∣∣g(x)
∣∣dx < ∞. ()
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The space C(a, b) is of continuous functions on [a, b], the integral defined by () is
bounded on L(a, b) and

∥∥Eα,...,αm
γ ,q;β,...,βm ;ω,+ϕ

∥∥ ≤ d‖ϕ‖, ()

where the constant d is given by

d = (b – a)Re(α)
∞∑

n=

|(γ )κn||ω(b – a)Re(α)|n∏m
j= �(nαj + βj)|Re(α)n + β|(n)!

. ()

For κ = m = , () reduces to the one given by Kilbas et al. [].

Theorem . Under the various constraints mentioned already with the parameters, there
hold the following results:

Iα
a+Eα,...,αm

γ ,κ ;β,...,βm ;ω,+ϕ = Eα,...,αm
γ ,κ ;β+α,...,βm ;ω,+ϕ = Eα,...,αm

γ ,κ ;β,...,βm ;ω,+Iα
a+ϕ ()

and

Dα
a+Eα,...,αm

γ ,κ ;β,...,βm ;ω,+ϕ = Eα,...,αm
γ ,κ ;β–α,...,βm ;ω,+ϕ = Eα,...,αm

γ ,κ ;β,...,βm ;ω,+Dα
a+ϕ. ()

For m = , () and () reduce to the result given by Srivastava and Tomovski [].

5 Applications
In this section, we present the solution of the following differential equation associated
with a Hilfer derivative. The following result readily follows from paper []:

L
[
Eγ ,κ

[
(α,β), . . . , (αm,βm); z

]
; p

]
=


�(γ )

p–β �m–

[
(γ ,κ);

(βj,αj),m;
ω

pα

]
, ()

where αj,βj,γ ,κ ∈ C, Re(αj) > , Re(βj) >  (j = , . . . , m); Re(κ) > , Re(
∑m

j= αj) >
max[,κ – ] and Re(p) > .

Theorem . It will be shown here that the solution of the fractional differential equation

(
Dμ,ν

+ f
)
(x) = λ

(
Eα,...,αm

γ ,κ ;β,...,βm ;ω,a+ωxα
)
(x) + g(x), ()

where  < μ < ,  ≤ v ≤ , ω ∈ C, Re(
∑m

j= αj) > max[, Re(κ) – ], Re(βj) >  (j = , . . . , m),
min{Re(γ ), Re(κ)} > ,

(
I(–ν)(–μ)

+ f
)
(+) = e, ()

has the solution given by

f (x) = e
xμ–ν(μ–)–

�(μ – ν + μν)
+

λxμ+β

�(γ )
Eγ ,κ

[
(α,β + μ + ), . . . , (αm,βm);ωxα

]

+


�(μ)

∫ x


(x – t)μ–g(t) dt, ()

where e is an arbitrary constant.



Saxena et al. Journal of Inequalities and Applications  (2015) 2015:75 Page 11 of 12

Proof Applying the Laplace transform to each side of () and using () along with con-
volution theorem of the Laplace transform, we find that

pμF(p) – epν(–μ) = L
[(

Eα,...,αm
γ ,κ ;β,...,βm ;ω,a+ϕ

)
; p

]
L(; p) + G(p)

=


�(γ )
p–β– �m–

[
(γ ,κ);

(βj,αj),m;
ω

pα

]
+ G(p), ()

which readily gives

F(p) = epν(–μ)–μ +
λ

�(γ )
p–β–μ–

∞∑

n=

�(γ + κn)( ω
pα )n

∏m
j= �(n Re(αj) + βj)(n!)

+ p–μG(p). ()

Now, by taking the inverse Laplace transform of each side of (), we obtain

F(x) = eL–(pν(–μ)–μ; x
)

+
λ

�(γ )

∞∑

n=

�(γ + κn)( ω
pα )n

∏m
j= �(n Re(αj + βj))(n!)

L–(p–αn–β–μ–; x
)

+ L–L
(

xμ–

�(μ)
∗ g(x)

)

= e
xμ–ν(–μ)–

�(μ – ν( – μ))
+

λxμ+β

�(γ )

∞∑

n=

�(γ + κn)(ωxα )n
∏m

j= �(n Re(αj) + βj)�(αn + β + μ + )(n)!

+


�(μ)

∫ x


(x – t)μ–g(t) dt,

which yields

f (x) = e
xμ–ν(–μ)–

�(μ – ν( – μ))
+

λxμ+β

�(γ )
Eγ ,κ

[
(α,β + μ + ), . . . , (αm,βm);ωxα

]

+


�(μ)

∫ x


(x – t)μ–g(t) dt.

This completes the proof of Theorem .. �

It is interesting to observe that for m = , Theorem . reduces to the one given by
Srivastava and Tomovski [].

6 Conclusion
In this paper we have derived the Laplace transform and the Mellin transform and various
properties of the operator defined by (). These properties are useful in solving applied
problems of science, engineering and technology such as fractional kinetic equations, frac-
tional reaction-diffusion equation, etc.
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