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ABSTRACT
Background. Schizophrenia (SZ) and bipolar disorder (BD) have both been associated
with reduced microstructural white matter integrity using, as a proxy, fractional
anisotropy (FA) detected using diffusion tensor imaging (DTI). Genetic susceptibility
for both illnesses has also been positively correlated in recent genome-wide association
studies with allele A (adenine) of single nucleotide polymorphism (SNP) rs1344706
of the ZNF804A gene. However, little is known about how the genomic linkage
disequilibrium region tagged by this SNP impacts on the brain to increase risk for
psychosis. This study aimed to assess the impact of this risk variant on FA in patients
with SZ, in those with BD and in healthy controls.
Methods. 230 individuals were genotyped for the rs1344706 SNP and underwent DTI.
We used tract-based spatial statistics (TBSS) followed by an analysis of variance, with
threshold-free cluster enhancement (TFCE), to assess underlying effects of genotype,
diagnosis and their interaction, on FA.
Results. As predicted, statistically significant reductions in FA across a widely dis-
tributed brain network (p< 0.05, TFCE-corrected) were positively associated both with
a diagnosis of SZ or BD and with the double (homozygous) presence of the ZNF804A
rs1344706 risk variant (A). The main effect of genotype was medium (d = 0.48 in a
44,054-voxel cluster) and the effect in the SZ group alone was large (d = 1.01 in a
51,260-voxel cluster), with no significant effects in BD or controls, in isolation. No
areas under a significant diagnosis by genotype interaction were found.
Discussion.Weprovide the first evidence in a predominantlyCaucasian clinical sample,
of an association between ZNF804A rs1344706 A-homozygosity and reduced FA, both
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irrespective of diagnosis and particularly in SZ (in overlapping brain areas). This
suggests that the previously observed involvement of this genomic region in psychosis
susceptibility, and in impaired functional connectivity, may be conferred through it
inducing abnormalities in white matter microstructure.

Subjects Genetics, Neuroscience, Psychiatry and Psychology, Radiology and Medical Imaging
Keywords Genome-wide association, White matter, ZNF804A, Psychosis, Fractional anisotropy,
Diffusion tensor imaging, Schizophrenia, Bipolar disorder

INTRODUCTION
Schizophrenia (SZ) and bipolar disorder (BD) are major psychiatric illnesses that have a
profound effect on an individual’s mood, cognition and behavior. Lifetime prevalence of
SZ and BD is about 4% (Bhugra, 2005) and 0.5% (Merikangas et al., 2007) respectively.
Both illnesses are highly heritable: up to 80% (SZ) and 93% (BD), but their common
and specific etiological and pathophysiological causes are poorly understood (Gurung &
Prata, 2015).

One of the first genetic variants to achieve genome-wide significance for an association
with both disorders, as well as independent replications, was the single nucleotide
polymorphism (SNP) rs1344706 tagging an intronic region of the zinc-finger protein (ZNF)
804A gene (Gurung & Prata, 2015). The human ZNF804A gene, located on chromosome
2q32.1, codes for a protein consisting of 1210 amino acids. The protein contains one
C2H2 type zinc-finger domain (Walters et al., 2010), which being typical of DNA/RNA-
binding motifs, indicates that it may act as a transcription factor. Expressed in the brain
(Bernstein et al., 2014), ZNF804A does seem to be involved in gene regulation (Donohoe,
Morris & Corvin, 2010), including that of genes that are known to be SZ-candidate risk
genes: COMT, DRD2, PRSS16 and PDE4 (Girgenti, LoTurco & Maher, 2012). It has been
implicated in neurodevelopmental processes (Chung et al., 2010), cell adhesion, neurite
outgrowth, dendritic branching and synapse formation (Hill et al., 2012), differentiation
of oligodendrocytes and proliferation of oligodendrocyte progenitors (Riley et al., 2010).

The rs1344706 psychosis risk allele (i.e., A) of ZNF804A has lower binding affinity
for proteins in the cell nucleus, such as transcription factors (Hill & Bray, 2011) and,
potentially as a result of this, shows significantly increased expression compared to its
counterpart (C allele) in healthy controls (Riley et al., 2010). Furthermore, this SNP
appears to selectively modulate a novel mRNA isoform, ZNF804AE3E4 in the human
fetal brain (risk allele homozygotes demonstrating lower expression than heterozygotes
or non-risk homozygotes), with no effect on the full-length ZNF804A mRNA (Tao et
al., 2014). The authors propose these findings suggest the ZNF804AE3E4 isoform may
mediate the association of rs1344706 with psychosis. Nevertheless, the role of ZNF804A,
or rs1344706, in psychiatric illness remains relatively unknown, with in vivo research of its
involvement in brain structure and function highly warranted.

Neuroimaging studies of ZNF804A rs1344706 have not found an effect of the risk allele
on regional brain activation, but rather on functional connectivity disruption between
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prefrontal regions (Walters et al., 2010; Esslinger et al., 2011; Walter et al., 2011; Paulus et
al., 2013), which suggests its impact is on white matter (WM). Functional connectivity
abnormalities are a common finding in BD and more so in SZ (Ohtani et al., 2014;
Wang et al., 2014; Meyer-Lindenberg et al., 2005). WM abnormalities are also found in SZ
(Makris et al., 2010) and BD (McDonald et al., 2005), including regional deficits common
to both (McDonald et al., 2004;McIntosh et al., 2005; Kuswanto et al., 2012a). However, the
impact of rs1344706 on WM volume, density and integrity is still unclear, as we reviewed
elsewhere (Gurung & Prata, 2015). Fractional anisotropy (FA), measured using diffusion
tensor imaging (DTI) is a putative proxy of WM microstructural integrity (Jones, Knosche
& Turner, 2013). It is robustly found to be lower in SZ, and to a lesser extent, in BD, in
a diverse range of brain regions (Ellison-Wright & Bullmore, 2009; Vederine et al., 2011).
Reduced FA can be detected in very early stages of illness (Carletti et al., 2012), suggesting
microstructuralWMabnormalities are involved in the underlying neuropathophysiology of
these diseases. FA, and other measures of WMmicrostructure (such as geodesic anisotropy
and diffusivity), is reported to be highly heritable (Kochunov et al., 2015). Several studies
also report FA abnormalities in first-degree relatives of patients with SZ and BD (Prasad
et al., 2015; Skudlarski et al., 2013; Sprooten et al., 2013) with FA decreasing with increasing
genetic liability to psychosis (Phillips et al., 2011; Emsell et al., 2013). This evidence provides
support for FA being a potentially useful endophenotype for exploration of the mechanism
of action through which ZNF804A rs1344706 is exerting increased disease risk.

The effect of rs1344706 on FA is still unclear, with three negative (Fernandes et al., 2014;
Sprooten et al., 2012; Wei et al., 2013) and the following two positive association reports
(Kuswanto et al., 2012b; Ikuta et al., 2014). Within the Chinese SZ population, risk allele
homozygotes were found to have reduced FA in bilateral parietal lobes and left cingulate
gyrus compared to non-risk allele carriers (Kuswanto et al., 2012b). Furthermore, within
risk allele homozygotes, SZ patients showed decreased FA in the aforementioned areas, as
well as the right medial temporal lobe (Kuswanto et al., 2012b). Consistently, in the healthy
Caucasian population, reduced FA was associated with the risk allele A in a dose-dependent
manner, in right parietal WM, left forceps minor and the anterior body/genu of the corpus
callosum (Ikuta et al., 2014).

Taken together, the associations of reduced FA with SZ, BD, and the rs1344706 risk allele
A, suggest that WM microstructural abnormalities may be part of the pathophysiological
mechanism through which ZNF804A rs1344706 (or other polymorphism(s) in high linkage
disequilibrium with it) increases risk for SZ ad BD. However, given that assessments of the
impact of ZNF804A rs1344706 on WM microstructure have thus far yielded mixed results
and are hard to compare given that they were found in different ethnicities or diagnosis
statuses (Gurung & Prata, 2015), the present further study of the effect of rs1344706 on FA
in a predominantly Caucasian and healthy as well as clinical sample, is highly warranted.

In the present study, we aimed to test two main hypotheses: (1) We aimed to assess
the effect of ZNF804A rs1344706 genotype on FA in a predominantly Caucasian sample.
We hypothesized that risk allele homozygotes (AA) would show reduced FA compared
to C (cytokine) carriers, across diagnoses, at least in some WM regions; (2) We aimed to
explore whether this genotype impacted FA differentially between the different diagnostic
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groups. Given that both allele A and reduced FA are correlated to SZ and, somewhat less
strongly, to BD (Riley et al., 2010; Vederine et al., 2011; Skudlarski et al., 2013; Nortje et al.,
2013; Schwab et al., 2013), we hypothesized that the genotype effect would be stronger in SZ
and BD, compared to controls, and perhaps more so in SZ compared to BD. A whole brain
approach, without a priori region-specific hypotheses, was taken given previous reports
implicating a wide range of spatially extensive brain regions. In addition, we report the
impact of SZ or BD on FA for completeness.

METHODS
Participants
Our sample (n= 230) consisted of patients with SZ (n= 63), BD (type 1 or type 2; 77%
of which with psychosis; n= 43) and controls (n= 124), which had participated in seven
previous research studies (Allin et al., 2011; Chaddock et al., 2009; Chaddock, 2009; Kane,
2008; Kyriakopoulos et al., 2009; Picchioni et al., 2006; Shergill et al., 2007) at the Institute
of Psychiatry, Psychology and Neuroscience (IoPPN), King’s College London. Individuals
were collated from those sub-samples, with any relatives excluded. In the case of concordant
monozygotic twins, one twin from each pair was removed at random; for discordant or
dizygotic twin pairs, priority of inclusion was given to the individual with the genotype
or, in this order of preference, the diagnosis, that was less frequent—in order to balance
genotype and diagnostic group sizes as much as possible. Each participant was assigned
to two groups: a diagnosis group (SZ, BD or control) and, after genotyping (see below),
a genotype group (ZNF+ which included risk allele (A) homozygotes, or ZNF− which
included heterozygotes and non-risk allele (C) homozygotes). Again, the merge within
ZNF− had the purpose of maximizing counterbalance for this SNP (as is commonly
practiced in the literature e.g., Kuswanto et al., 2012b; Schultz et al., 2014; Donohoe et
al., 2011; Saville et al., 2015), given the very low frequency of allele C in the Caucasian
population.

The study was approved by the National Health Service South East London Research
Ethics Committee, UK (Project ‘‘Genetics and Psychosis (GAP)’’ reference number 047/04).
All subjects provided written informed consent at the time of participation. Patients were
recruited from the South London and Maudsley National Health Service Trust (SLaM).
Diagnosis, according to the criteria of the Diagnostic and Statistical Manual of Mental
Disorders (DSM) 4th edition (American Psychiatric Association, 1994) was ascertained by
an experienced psychiatrist using a structured diagnostic interview (with instruments
detailed elsewhere, Prata et al., 2009). All SZ and BD patients were in a stable clinical
state and all SZ and some BD were treated with antipsychotic medication (from which
Chlorpromazine-equivalence was calculated, see Table 1). Exclusion criteria applied to
all participants were a history of significant head injury and current (last 12 months)
substance dependency according to DSM-IV diagnostic criteria. Controls were excluded
if they had any personal or family history of a psychotic spectrum disorder. In order to
follow the gold standard of experimental design that a control group must be matched
to the experimental group on all variables except the one isolated for study, and avoid a
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Table 1 Participant’s demographics per diagnosis and genotype groups.

Participants’
demographics
(n= 230)

Diagnosis ZNF804A rs1344706 Genotype

SZ (n= 63) BD (n= 43) Controls
(n= 124)

Statistic, df,
p-value

ZNF+ (AA;
n= 105)

ZNF− (AC&
CC; n= 125)

Statistic, df,
p-value

Age (SD) 33.78 (10.70) 41.07 (12.33) 35.79 (13.40) F = 4.5,
df = 2,
p= 0.01a

36.94 (13.66) 35.62 (11.87) t =−0.77,
df = 207.6,
p= 0.44

IQ z-scores (SD)b −0.75 (2.89) −0.87 (0.97) −0.68 (3.51) F = 0.70,
df = 2,
p= 0.50

−0.85 (3.35) −0.33 (2.61) t = 1.22,
df = 197,
p= 0.23

CPZ- equivalent antipsychotics dose (SD) 696.94
(613.02)

341.60 (434.56) n/a t = 3.28,
df = 104,
p< 0.001a

641.93
(634.06)

484.45
(516.18)

t =−1.41,
df = 104,
p= 0.16

Years of education (SD) 13.74 (2.61) 14.81 (3.10) 14.90 (2.79) F = 2.51,
df = 2,
p= 0.08

14.36 (2.73) 14.74 (2.95) t = 0.85,
df = 162,
p= 0.40

Sex (M/F) 50/13 18/25 67/57 χ 2
= 17.24,

df = 2,
p=< 0.001

60/45 75/50 χ 2
= 0.19,

df = 1,
p= 0.66

Ethnicity (n) Caucasian 46 40 104 79 111
Black Caribbean 6 1 4 11 0
Black African 5 2 6 10 3
Central Asian 3 0 4 2 5
Mixed African-
Caucasian

2 0 1 1 2

Eastern Asian 0 0 3 1 2
Other 1 0 2

χ 2
= 13.90,

df = 12,
p= 0.31

1 2

χ 2
= 20.86,

df = 6,
p=< 0.001
< 0.001

(continued on next page)
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Table 1 (continued)

Participants’
demographics
(n= 230)

Diagnosis ZNF804A rs1344706 Genotype

SZ (n= 63) BD (n= 43) Controls
(n= 124)

Statistic, df,
p-value

ZNF+ (AA;
n= 105)

ZNF− (AC&
CC; n= 125)

Statistic, df,
p-value

Handedness (n) Right 62 38 112 93 119
Left 0 3 5 6 2
Mixed 1 2 7

χ 2
= 5.79,

df = 4,
p= 0.22 6 4

χ 2
= 3.88,

df = 2,
p= 0.14

Genotype counts (%) AA 27 (42.9) 19 (44.2) 59 (47.6)
AC 28 (44.4) 16 (37.2) 51 (41.1)
CC 8 (12.7) 8 (18.6) 14 (11.3)

Notes.
aStatistically significant at p< 0.05.
bScores of full scale IQ from the Wechsler Abbreviated Scale of Intelligence (WASI) (Wechsler, 1999), the Wechsler Adult Intelligence Scale–Revised (WAIS-R) (Wechsler, 1981) or the National Adult Read-
ing Test (NART) (Nelson & Willison, 1991) were standardised to Z-scores to permit between-group IQ comparison. (The type of test used was balanced between diagnostic or genotype groups.)
n/a, not applicable; ZNF+, High risk (AA genotypes); ZNF−, Low risk (AC& CC genotypes); BD, bipolar disorder; SZ, schizophrenia; SD, standard deviation; df, degrees of freedom.
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biased ‘super-normal’ control group (Kendler, 2003), healthy participants with a previous
diagnosis of any other Axis I disorder (or family history) were not excluded given these are
frequently present in SZ and BD. Nevertheless, none were psychiatrically unwell or on any
psychiatric medication at the time of participation.

Genotyping
DNA was extracted from blood samples or buccal swabs following a standard protocol
(Freeman et al., 2003). The TaqMan SNP Genotyping Assay (Applied Biosystems, 2010) was
performed for SNP rs1344706 (A/C) blind to any phenotype, at the Social Genetic and
Developmental Psychiatry Centre (SGDP) lab, King’s College London. Possible genotype
outcomes were thus C homozygous (CC, cytokine–cytokine), heterozygous (AC, adenine-
cytokine) or A homozygous (AA, adenine–adenine). Distribution of Caucasian genotype
frequencies (0.13 CC, 0.41 CA, 0.46 AA) was consistent with Hardy-Weinberg Equilibrium,
calculated using Michael H. Court’s online calculator (Court, 2005) in Caucasian patients
and controls (patients χ2

= 0.62, df = 1, p= 0.43; controls χ2
= 0.29, df = 1, p= 0.59)

and African–American and Black Caribbean (patients χ2
= 0.29, df = 1, p= 0.77; controls

χ2
= 0.03, df = 1, p= 0.87). Genotype counts are in Table 1.

Image acquisition
Magnetic Resonance Imaging (MRI) data were acquired using a 1.5T GE Signal LX system
(General Electric, Milwaukee, WI, USA) in the Mapother House MR unit at the Maudsley
Hospital, SLaM, London, UK, with actively shielded magnetic field gradients (maximum
amplitude 40 mT/m1). A standard quadrature birdcage head coil was used for both
radiofrequency (RF) transmission and signal reception. DTI data was acquired using a
multi-slice peripherally-gated echo planar imaging (EPI) sequence, optimized for precise
measurement of the diffusion tensor in parenchyma, from 60 contiguous near-axial slice
locations for whole brain coverage, with isotropic (2.5 × 2.5 × 2.5 mm) resolution. At
each slice location, 7 images were acquired with no diffusion gradients applied (b= 0),
together with 64 diffusion-weighted images in which gradient directions were uniformly
distributed in space. Acquisition parameters were: echo time (TE) = 107 ms, effective
repetition time= 15 R-R intervals, duration of the diffusion encoding gradients=17.3 ms,
with a maximum diffusion weighting = 1,300 s/mm2. Further details are given elsewhere
(Jones et al., 2002).

DTI data processing
The rawDTI data were corrected for headmovement and eddy current induced distortions,
and brain-extracted using the Brain Extraction Tool (BET) (Smith, 2002) to exclude non-
brain voxels. After visual inspection, the BET threshold was adjusted to 0.2 to ensure a
balance between complete scalp removal and inappropriate erosion of brain tissue, not
achieved with the default parameter of 0.5. FA images were created (with a mask defined
by a binarised version of this brain-extracted image) by fitting a tensor model to the raw
diffusion data using the Functional MRI of the Brain lab (FMRIB)’s Diffusion Toolbox
(FDT) within FMRIB software library (FSL) as described elsewhere (Behrens et al., 2003).
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Voxel-wise statistical analysis of the FA data was carried out using tract-based spatial
statistics (TBSS) (Smith et al., 2006), part of FSL (Smith et al., 2004). All subjects’ FA data
were aligned to FMRIB58_FA 1 × 1 × 1 mm standard space (an average of the FA images
of 58 healthy adults) using the nonlinear registration tool FNIRT (Andersson, Jenkinson &
Smith, 2007a; Andersson, Jenkinson & Smith, 2007b), which uses a b-spline representation
of the registration warp field (Rueckert et al., 1999). The entire aligned dataset was then
affine-transformed into a 1 × 1 × 1 mm MNI152 space, resulting in a standard space
version of each subject’s FA image, from which the mean FA image was created and
thinned, creating a mean FA skeleton. Each subject’s aligned FA data were projected onto
this skeleton and the resulting data fed into voxel-wise cross-subject statistics.

Statistical analyses
Demographic differences between diagnostic or genotype groupswere analyzed in Statistical
Package for Social Sciences (SPSS, 2012) using independent t -tests, chi-square and analysis
of variance (ANOVA). Scores of full scale IQ from the Wechsler Abbreviated Scale
of Intelligence (WASI) (Wechsler, 1999), the Wechsler Adult Intelligence Scale–Revised
(WAIS-R) (Wechsler, 1981) or theNational Adult Reading Test (NART) (Nelson & Willison,
1991), were standardised to z-scores to permit between-group demographic comparison.
The type of test used was balanced between diagnostic or genotype groups (Table 1).

The FSL Randomise tool (Anderson & Robinson, 2001) was used to perform
permutation-based non-parametric inference on the skeletonized FA data at a threshold of
0.2 (TBSS default) with 10,000 permutations. The significance level was set at p< 0.05 after
multiple comparisons correction using threshold-free cluster enhancement (TFCE) (Smith
& Nichols, 2009), an approach that allows the significance of a target voxel to take into
account not only the amplitude of the signal (in this case FA) but also the contribution of
both the spatial extent and the magnitude of supporting voxels. To assess the main effect of
genotype, of diagnostic group and their interaction on FA, an ANOVA-style design matrix
was built with genotype (ZNF+ vs. ZNF−) and diagnosis (SZ, BD and controls) as the two
independent variables. Mean FA in the largest cluster of each effect was graphically plotted
for a visual overview. Cohen’s d measure of effect was calculated using mean FA of the
largest cluster, to provide an approximate representation of the magnitude of effect found
via TFCE analysis.

WM labelling, in accordance with JHU ICBM-DTI-81 WM Atlas (Mori et al., 2008),
provided in FSL, was used to determine the anatomical location of significant FA clusters;
only those with >1% probability were included in the cluster table. Where results were
retrieved as ‘Unclassified’, labelling was carried outmanually using theMRIAtlas ofHuman
WM (Mori et al., 2005). Results were overlaid on MNI152 (1 mm) standard template and
displayed in radiological convention.

RESULTS
Demographics
Table 1 displays the participants’ demographics. BD patients (mean age = 41.1, SD =
12.3) were significantly (p< 0.05) older than SZ patients (mean age = 33.8, SD = 10.7;
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Figure 1 Main effect of rs1344706 genotype on fractional anisotropy. (A) FA was significantly lower in
the high-risk (A homozygotes; ZNF+) group compared to the low-risk (C-carriers; ZNF−) group (p <
0.05, TFCE-corrected), irrespective of diagnosis in brain areas mapped in Fig. 2. Post-hoc analysis revealed
that mean FA of ZNF+ was lower by half of a standard deviation (Cohen’s d = 0.47) than ZNF−, which
equates to a ‘medium’-sized effect. (B) Within the largest cluster under a main effect of genotype cluster
(44,054 voxels), the effect in SZ (Cohen’s d = 0.83) and BD (Cohen’s d = 0.89) was, all voxels averaged,
‘large’ while the effect in controls was ‘small’ (Cohen’s d = 0.2)—from a post-hoc analysis. As in subse-
quent figures, ‘Mean FA’ refers to the mean FA of the largest TFCE-corrected significant cluster, rather
than to mean FA across the whole brain; with individual data points in ‘‘A’’ representing the mean FA of
each individual within the same cluster.

t (104)=−3.2, p< 0.001 and controls (mean age = 35.8, SD = 13.4; t (165)=−2.3,
p= 0.02). There was no significant difference in age between controls and SZ (t (185)=
−1.11,p= 0.27). SZ patients (mean CPZ score = 696.9, SD = 613.0) had a significantly
higher (t (104)= 3.3,p< 0.001) CPZ-equivalent score than BD (mean CPZ score = 341.6,
SD = 434.6). There were significantly (χ2

= 17.2,p< 0.001) more males (50M:13F) in SZ
than BD (18M:25F) or control (67M:57F) groups. There were no significant differences be-
tween diagnostic groups in IQ, years of education, ethnicity or handedness. Between ZNF+
and ZNF− groups, there were no significant differences in age, IQ, CPZ equivalents, years
of education, sex or handedness. There was a lower proportion of Black African-American
and Black Caribbean ethnicities in the ZNF− (n= 3) group compared to ZNF+ (n= 21)
group (χ2

= 20.9,df = 6,p< 0.001), which was due to the A allele being naturally more
common in these ethnicities than in the Caucasian population (Sherry et al., 2001).

Main effect of genotype on FA
Irrespective of diagnosis, the ZNF+ showed significantly reduced FA compared to
the ZNF− group in the genu and body of the corpus callosum, bilaterally in the
anterior corona radiata, external capsule, superior longitudinal fasciculus, posterior
thalamic radiation, middle cerebellar peduncle and in the right inferior and superior
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Table 2 White matter tracts in clusters showing significant effects.

Cluster size
(Voxels)

Z-statistic
of cluster
maximum

Cluster maximum (X,
Y, Z coordinates)

White matter labelsa

Main effect of ZNF804A rs1344706: ZNF+ < ZNF−
44,054 0.998 14 94 12 Genu of corpus callosum; Body of corpus callosum; R/L Anterior corona

radiata; R Superior corona radiata; L Posterior thalamic radiation (include
optic radiation); R/L External capsule; R/L Superior longitudinal fasciculus

2,132 0.993 55 −40 −16 R Sagittal stratum (include inferior longitudinal fasciculus and inferior
fronto-occipital fasciculus); R Superior longitudinal fasciculus

1,214 0.993 34 −57 −45 Middle cerebellar peduncle; R Inferior cerebellar peduncle; R Superior
cerebellar peduncle

278 0.984 31 −47 −30 Middle cerebellar peduncle*
218 0.98 45 −51 25 Unclassified
216 0.979 10 32 51 Unclassified
201 0.982 −8 39 −19 Genu of corpus callosum; L Anterior corona radiata
182 0.986 9 −54 14 Unclassified
109 0.968 −21 3 25 L Anterior limb of internal capsule; L Anterior corona radiata; L Superior

corona radiata; L Superior fronto-occipital fasciculus (could be a part of
anterior internal capsule)

102 0.965 −16 15 −1 L Anterior limb of internal capsule
90 0.974 34 −41 48 R Superior longitudinal fasciculus *
78 0.973 7 14 37 R Cingulum (cingulate gyrus)
69 0.964 −30 0 16 L Superior corona radiata; L External capsule
63 0.982 −16 1 59 Unclassified
63 0.971 −7 15 61 R Sagittal stratum (include inferior longitudinal fasciculus and inferior

fronto-occipital fasciculus)*
55 0.988 15 −3 61 R Corticopontine tract*
36 0.966 −8 1 64 R Cingulum (hippocampus)*
32 0.978 27 17 39 R Superior longitudinal fasciculus*
28 0.976 35 19 −2 R Uncinate fasciculus *

SZ-specific effect of ZNF804A rs1344706: SZ ZNF+ < SZ ZNF−
51,260 1 14 −84 34 Genu of corpus callosum; Body of corpus callosum; Splenium of corpus

callosum; R/L Anterior corona radiata; R Superior corona radiata; R Posterior
thalamic radiation (include optic radiation); R External capsule; R Superior
longitudinal fasciculus

1,522 0.988 33 −57 −44 Middle cerebellar peduncle; R Superior cerebellar peduncle
456 0.983 −8 −43 67 Unclassified
261 0.989 −24 27 33 Unclassified
117 0.976 −28 −6 −20 L External capsule; L Uncinate fasciculus
110 0.994 34 −42 48 R Superior longitudinal fasciculus
58 0.963 23 −12 −28 R Cingulum (hippocampus)
53 0.963 −2 −36 −45 L Pontine crossing tract; Corticospinal tract; L Medial lemniscus
49 0.975 3 −59 −12 R Uncinate fasciculus*
36 0.964 −39 4 44 Unclassified
34 0.979 16 −46 −24 R Inferior cerebellar peduncle

(continued on next page)
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Table 2 (continued)

Cluster size
(Voxels)

Z-statistic
of cluster
maximum

Cluster maximum (X,
Y, Z coordinates)

White matter labelsa

29 0.967 11 27 20 R Cingulum (cingulate gyrus)
29 0.983 −7 −51 −48 Unclassified
22 0.961 41 34 6 R Sagittal stratum (include inferior longitudinal fasciculus and inferior

fronto-occipital fasciculus)*
21 0.976 −31 2 29 L Superior longitudinal fasciculus
21 0.963 29 −4 −31 Unclassified

Main effect of BD diagnosis: BD < Controls
3,882 0.998 −17 25 23 Genu of corpus callosum; Body of corpus callosum; Splenium of corpus

callosum; L Cerebral peduncle; R/L Retrolenticular part of internal capsule;
R/L Anterior corona radiata; L Superior corona radiata; R/L Posterior
thalamic radiation (include optic radiation); R Sagittal stratum (include
inferior longitudinal fasciculus and inferior fronto-occipital fasciculus); L
External capsule; L Superior longitudinal fasciculus

Main effect of SZ diagnosis: SZ < Controls
72,428 1 45 −10 −31 Genu of corpus callosum; Body of corpus callosum; Splenium of corpus

callosum; R/L Anterior corona radiata; R/L Posterior thalamic radiation
(include optic radiation); L External capsule; R/L Superior longitudinal
fasciculus

Notes.
aOnly tracts with clusters at >1% probability, after threshold-free cluster enhancement (TFCE) correction, are included. White matter labels are provided in accordance with JHU
ICBM-DTI-81 White Matter Atlas (Mori et al., 2008) using AtlasQuery in FSL unless marked with ‘‘*’’, in which case they were based on MRI Atlas of Human White Matter (1st
Edition byMori et al., 2005—see methods) due to retrieval from AtlasQuery as ‘Unclassified’. When this was not possible, regions remained ‘‘Unclassified’’ as stated.
ZNF+, High risk (AA genotypes); ZNF−, Low risk (AC&CC genotypes); BD, bipolar disorder; SZ, schizophrenia; FA, fractional anisotropy (a putative proxy for white matter
microstructural integrity).

cerebellar peduncle and left anterior limb of internal capsule, with the largest TFCE-
corrected significant cluster encompassing 44,054 voxels (Fig. 1 and Table 2). A post-
hoc analysis in SPSS showed that neither sex (F = 1.15,df = 1,p= 0.29) nor ethnicity
(F = 0.58,df = 1,p= 0.45) explained FA variance in the largest cluster. Agewas a significant
contributor (F = 19.32,df = 1,p< 0.001) but when it was included in the model, genotype
remained a significant explanatory variable (F = 12.27,df = 1,p< 0.001). There were no
regions where FA was significantly lower in the ZNF− group compared to ZNF+ group.

For a better characterization of this main effect, a post-hoc inspection comparing the
mean FA within the largest cluster, between genotype groups, in each diagnostic group,
further revealed that this main effect was mainly driven by the genotype effect in SZ and in
BD (Fig. 1B).

Effect of Genotype on FA in SZ
When we tested, across the brain, for an effect of genotype in each diagnostic group
separately, we found no significant effect of genotype in controls or in BD (p< 0.05,
TFCE-corrected). There was however a significant effect of genotype within the SZ
group on its own in the genu, body and splenium of the corpus callosum, bilaterally
in the anterior corona radiata, superior longitudinal fasciculus and uncinate fasciculus,
right superior corona radiata, posterior thalamic radiation (including optic radiation),
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Figure 2 Effect of rs1344706 genotype on fractional anisotropy in schizophrenia. (A) FA was signifi-
cantly higher in ZNF+ group of SZ patients compared to the ZNF− group of SZ patients (p< 0.05, TFCE
corrected) with a post-hoc large effect size given by a Cohen’s d of 1.01, i.e. a difference of one standard
deviation between genotype groups, in the largest cluster (51,260 voxels). (B) Areas where FA was signif-
icantly lower in ZNF+ compared to ZNF− irrespective of diagnosis (i.e. main effect of genotype, plotted
in Fig. 1B) are shown here in yellow. Areas where FA was significantly lower in ZNF+ compared to ZNF−
in SZ alone, are shown in red. The overlapping areas where both these effects are significant are shown in
orange.

external capsule, superior cerebellar peduncle, inferior cerebellar peduncle, cingulum
(cingulate gyrus) and the left corticospinal tract and medial lemniscus, with the largest
TFCE-corrected significant cluster encompassing 51,260 voxels (Fig. 2 and Table 2). Again,
taking the largest cluster as representative, neither sex (F = 0.50,df = 1,p= 0.49) nor
ethnicity (F = 0.64,df = 1,p= 0.43) were significant predictors of mean FA, but age was
so (F = 17.60,df = 1,p< 0.001). Nevertheless, as above, the effect of genotype on FA in
this cluster remained significant (F = 5.80,df = 1,p= 0.02) after co-varying for age.

Main effect of diagnosis on FA
SZ and BD showed, individually, significantly reduced FA compared to controls
(p < 0.05, TFCE-corrected) across a spatially extensive cluster (Fig. 3), measuring
respectively 72,428 and 3,882 voxels. The clusters overlapped extensively (Fig. 3 and
Table 2) in the genu, body and splenium of the corpus callosum, anterior corona
radiata (including the optic radiation) bilaterally, left external capsule and left superior
longitudinal fasciculus. Neither ethnicity nor sex were significant contributors to the
variance in the mean FA of the largest cluster of the ‘SZ < Control’ contrast (ethnicity:
F = 0.73,df = 1,p= 0.39; sex: F = 2.79,df = 1,p= 0.10) or the ‘BD < Control’ contrast
(ethnicity: F = 1.17,df = 1,p= 0.28; sex: F = 1.46,df = 1,p= 0.23) contrasts. Age
contributed significantly to FA variance in both clusters, as expected given that it is
well known to correlate with FA (Sullivan & Pfefferbaum, 2006), but the contribution
of diagnosis remained highly significant as an explanatory factor of FA variance after
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Figure 3 Main effect of diagnosis on fractional anisotropy. (A) FA was significantly reduced in SZ com-
pared to controls (marked **) and in BD compared to controls (marked *), p < 0.05, TFCE corrected.
Post-hoc analyses in the largest significant clusters revealed a respective Cohen’s d of 0.91 and 1.19, both
considered ‘large’. The difference in FA between SZ and BD was not statistically significant. Individual
data points show mean FA value for each participant within the largest cluster of the effect. b. Areas in
which FA was significantly lower in SZ compared to controls are shown in red and areas where FA was sig-
nificantly lower in BD compared to controls are shown in blue. Each effect encompassed one spatially ex-
tensive cluster. The overlapping areas where both effects are significant are shown in purple.

controlling for age (for the ‘SZ < Control’ cluster: F = 26.99,df = 2,p< 0.001; for the
‘BD < Control’ cluster: F = 28.51,df = 2,p< 0.001). There was no significant difference
in FA between patient groups, nor regions where FA was significantly decreased in controls
compared to patients.

Genotype x diagnosis interaction on FA
We found no WM areas where a genotype effect (in any direction) differed significantly
between diagnosis groups (p< 0.05, TFCE-corrected), testing every possible diagnosis-wise
comparison.

DISCUSSION
We assessed the effect of ZNF804A rs1344706 genotype on FA, unprecedentedly, in a
Caucasian clinical sample, as well as in health, and whether this genotype effect was
different between diagnostic groups. For completeness, we also report FA differences
between diagnostic groups. We found three statistically significant effects (p< 0.05,
TFCE-corrected): (1) a main effect of genotype (irrespective of diagnosis), (2) an effect of
genotype in the SZ patients group alone and 3) a main effect of diagnosis. We also detected
no significant genotype by diagnosis interaction effects. Our results provide further support
for the involvement of the GWA-discovered ZNF804A, in particular rs1344706 allele A,
at least when in double-dose within a homozygous genotype, in inducing susceptibility to
psychosis by demonstrating its effect in reducing FA in WM microstructure. We found
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unprecedented evidence in a predominantly Caucasian clinical sample, of an association
between rs1344706 risk allele A and reduced FA in a wide WM network. Moreover, the
opposite effect was found nowhere in the brain.

Our complementary post-hoc analyses using (for each individual) the mean FA across
of the most significant TFCE-corrected clusters of each effect provide a representative
measure of size magnitude and also allowed a better characterization of the significant
main effect of genotype. Irrespective of diagnosis, the FA high-risk group (ZNF+, i.e., A
homozygotes) was about half of a standard deviation lower (Cohen’s d = 0.48; Fig. 1A)
than that of the low-risk group (ZNF−, i.e., C-carriers), which represents a ‘medium’-sized
effect (Cohen, 1988). In the same ‘main effect of genotype’ cluster, both SZ and BD groups
showed a ‘large’ effect of ZNF804A (SZ Cohen’s d of 0.83 and 0.89 respectively; Fig. 1B),
which are effects almost as large as the diagnosis effects on FA (see below). In contrast,
the effect of genotype in controls had a ‘small’ effect (Cohen’s d = 0.2). These effect sizes’
comparison serve to demonstrate that the effect of genotype in patients (both SZ and
in BD) rather than in controls, was driving this main effect of ZNF804A rs1344706 on
FA. A strong effect in patients is further supported, at least for SZ, by our findings of a
large overlapping network (Fig. 2B) where an effect of genotype in SZ alone, is significant.
Nevertheless, this difference in genotype effect size between diagnostic groups was not
reflected in a significant TFCE-corrected genotype by diagnosis interaction in any area nor
in the main genotype effect cluster.

The present main effect of genotype has been recently replicated in a Caucasian
sample (Ikuta et al., 2014) who found that higher A allele dosage predicted reduced
FA in right parietal WM and left forceps minor and, as in our study, the anterior
body/genu of the corpus callosum. Importantly, both their and our independent
findings in the (inter-hemispheric) corpus callosum provide the structural support to
previous robust associations of this risk allele with reduced inter-hemispheric functional
connectivity between dorsolateral prefrontal cortices during working memory, emotional
face recognition and resting state (Esslinger et al., 2011; Esslinger et al., 2009). Indeed,
the observation that a SZ risk allele could contribute to decreased prefrontal inter-
hemispheric connectivity is consistent with the disconnection hypothesis of SZ, which
has been particularly verified between the two hemispheres (Stephan, Baldeweg & Friston,
2006). Moreover, the risk allele has also been associated with increased fronto-temporal
inter-hemispheric functional connectivity during working memory (Paulus et al., 2013;
Esslinger et al., 2009), which was explained by this particular coupling being abnormally
persistent during working memory in SZ (Meyer-Lindenberg et al., 2005). Furthermore,
our observation that the genotype effect we found was at its highest in the genu and body of
the corpus callosum is consistent with a previous report of inter-hemispheric connections
being more heritable than intra-hemispheric or cortico-spinal ones (Shen et al., 2014). This
evidence suggests that at least some of the genetic liability for psychosis may be acting on
inter-hemispheric WM microstructure.

The allele-wise direction of the present genotype effect is not only consistent with
neuroimaging and GWA findings, but also links particularly well with gene-transcription
findings. The risk allele (A) has been associated with significantly higher gene expression
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than the C allele, in the human dorso-lateral prefrontal cortex of healthy controls, and, at
trend level, in SZ (Riley et al., 2010). As alluded to above, this region has been implicated
in abnormalities in function and connectivity associated with both SZ (Makris et al., 2005)
and this polymorphism, and is directly reliant on a major WM tract where we report a
large genotype effect: the superior longitudinal fasciculus. The same study (Riley et al.,
2010) also found, bioinformatically, that the risk allele leads to the binding of two brain-
expressed transcription factors (Myt1L and POU3F1/Oct-6), involved in oligodendrocyte
differentiation and transition of pro-myelinating to myelinating Schwann cells. The C
allele, however, results in binding of a non-brain associated transcription factor. Taken
with the present and current findings, this suggests that the genomic region tagged
by ZNF804A rs1344706 may be influencing risk for SZ and BD, or affecting symptom
dimensions putatively more dependent on FA in SZ patients (see paragraph below),
through differential provision of binding sites for transcription factors involved in WM
tract myelination.

The same effect of ZNF408A rs1344706 was statistically significant in the isolated SZ
group across widespread clusters which greatly overlapped with those where we found a
main effect of genotype (irrespective of diagnosis), reaching a large effect size (Cohen’s
d = 1.01; Fig. 3). No area showing a significant effect of ZNF804A was apparent for BD
or controls in isolation. It is thus plausible that there is some other etiological factor(s)
acting in SZ patients that increase(s) susceptibility to the effects of this risk variation on FA.
Alternatively, rs1344706 is conferring risk to specific symptom dimensions in SZ that may
be more dependent on WM microstructure in the reported areas. For example, healthy
subjects have shown an association of the risk allele and higher Schizotypal Personality
Questionnaire (SPQ) score elsewhere (Yasuda et al., 2011), with particular deficits in
disorganization domains, although this has been challenged by an allele-wise incongruent
finding (Stefanis et al., 2013). The fact that these genotype effects were larger than the
effect of the same genotype on (the complex phenotype of) SZ or BD, typical of GWAs
findings for mental illness (i.e., a ‘small’ odds ratio of 1.12) (Donohoe, Morris & Corvin,
2010) is expected given the rationale that intermediate phenotypes, or at least phenotypes
less complex than behavior, are more closely related to genetic variation.

The present significant genotype effect in SZ patients is consistent with the uncorrected
trend (Kuswanto et al., 2012b) found in Chinese SZ patients, in the parietal lobes bilaterally,
the right temporal lobe and the left cingulate gyrus. However, the fact that the authors have
not reported specific white fiber tracts impedes localized comparisonwith the present study.
The authors also report an opposite trend in controls (to that in SZ) but it is of uncorrected
statistical significance. In sum, our genotype-wise findings on FA are consistent with two
studies that have found a positive association between rs1344706 and FA (Kuswanto et al.,
2012b; Ikuta et al., 2014) and indirectly with nine studies that found an effect in functional
connectivity (Esslinger et al., 2011; Walter et al., 2011; Paulus et al., 2013; Esslinger et al.,
2009; Cousijn et al., 2015; Mohnke et al., 2014; Rasetti et al., 2011; Lencz et al., 2010; Linden
et al., 2013), while three have failed to find an association (Fernandes et al., 2014; Sprooten
et al., 2012;Wei et al., 2013).
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Regarding main effects of diagnosis (controls vs. BD and SZ: Cohen’s d = 1.19 and 0.91,
respectively), our findings replicate previous solid research showing that both BD (Vederine
et al., 2011) and SZ (Ellison-Wright & Bullmore, 2009) are associated with reduced FA but
with a larger difference in SZ (Skudlarski et al., 2013): although the effect sizes were similar,
the FA reductions (TFCE-corrected) in SZ were almost 20 times more widespread than that
in BD, compared to controls. Removing non-psychotic BD patients from the BD group
does not alter this estimate much (Cohen’s d = 1.09). Putting diagnosis and genotype-wise
effects in perspective, it should be noted that the (by far) largest significant clusters
(p< 0.05, TFCE-corrected) both of the main effect of genotype and of the genotype effect
in SZ were up to two thirds of that of the cluster size of the ‘SZ < Controls’ diagnosis effect
(and more than 10 times larger than the ‘BD > Controls’ cluster; Table 2).

As a potential limitation, not all diagnostic groups werematched for age and sex. There is
evidence of FA decreasing with age (Sullivan & Pfefferbaum, 2006) and perhaps differing by
sex (see below). Nevertheless, if the effect of age would be confounding, BD patients would
be expected to showdecreased FA (as their agewas higher) compared to SZ and controls, but
they in fact show higher FA compared to SZ. Furthermore, age could not have confounded
the finding of decreased FA in SZ compared to controls, which were well-matched age-wise,
since co-varying for age in this situation would be expected to explain more of the error
variance and thus further increase our power to detect a true group effect rather than
decreasing it. Finally, although the SZ group contained a higher proportion of men than
the control group, there is insufficient evidence to suspect that this would have artefactually
created the well-replicated finding of decreased FA in SZ (Ellison-Wright & Bullmore, 2009;
Reading et al., 2011; Scheel et al., 2013; Schneiderman et al., 2011) and BD (Vederine et al.,
2011; Nortje et al., 2013; Lagopoulos et al., 2013). Although higher FA for men was found
in the superior cerebellar peduncle, and for women in the corpus callosum (Kanaan et
al., 2014), there is also evidence (Takao, Hayashi & Ohtomo, 2014) that after controlling
for intracranial volume, sex differences seem to be due to differences in head size. Above
all, these issues did not affect the main findings we report, i.e., the genotype effects, since
the genotype groups were balanced for these demographic factors. Moreover, post-hoc
analyses with the mean FA of the largest clusters of each significant contrast confirmed that
the available demographic variables did not confound the effects of genotype or diagnosis.

Another limitation of FA studies is that, technically, reduced FA, although commonly
taken as a proxy for reducedWM ‘integrity’ arising fromdeficientmyelination, corresponds
to heightened water diffusion within a voxel which, in rigor, can be attributed not only
to reduced myelination but alternatively, or in conjunction, to several differences in
WM microstructure: e.g., larger axonal diameter, lower axonal density, higher membrane
permeability or lower intra-voxel orientational coherence of axonal fibers (Jones, Knosche
& Turner, 2013). Thus, interpretation of FA should remain open. Nevertheless, in
demyelinating diseases such as multiple sclerosis, the attribution of reduced FA to reduced
myelination is immediate (Werring et al., 1999), and evidence has also been pointing to
deficient myelination in SZ and BD (Du et al., 2013; Regenold et al., 2007), making the
interpretation of FA reductions in SZ and BD as a proxy for WMmicrostructural integrity
reductions increasingly plausible.
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CONCLUSIONS
In conclusion, the present findings support previous evidence that homozygosis for risk
allele A of SNP rs1344706 of ZNF804A confers risk for SZ and BD, and impaired functional
connectivity (Esslinger et al., 2011; Walter et al., 2011; Paulus et al., 2013), by offering a
possible pathophysiological mechanism whereby this genetic variant promotes reduced
WM integrity in a widespread network. These results link particularly well with previous
findings demonstrating that this risk variant, but not its counterpart, allows binding affinity
for transcription factors that might disrupt myelination (Riley et al., 2010).
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