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Abstract

Background andmotivations: Module identification has been studied extensively in order to gain deeper
understanding of complex systems, such as social networks as well as biological networks. Modules are often defined
as groups of vertices in these networks that are topologically cohesive with similar interaction patterns with the rest of
the vertices. Most of the existing module identification algorithms assume that the given networks are faithfully
measured without errors. However, in many real-world applications, for example, when analyzing protein-protein
interaction networks from high-throughput profiling techniques, there is significant noise with both false positive and
missing links between vertices. In this paper, we propose a new model for more robust module identification by
taking advantage of multiple observed networks with significant noise so that signals in multiple networks can be
strengthened and help improve the solution quality by combining information from various sources.

Methods: We adopt a hierarchical Bayesian model to integrate multiple noisy snapshots that capture the underlying
modular structure of the networks under study. By introducing a latent root assignment matrix and its relations to
instantaneous module assignments in all the observed networks to capture the underlying modular structure and
combine information across multiple networks, an efficient variational Bayes algorithm can be derived to accurately
and robustly identify the underlying modules from multiple noisy networks.

Results: Experiments on synthetic and protein-protein interaction data sets show that our proposed model enhances
both the accuracy and resolution in detecting cohesive modules, and it is less vulnerable to noise in the observed
data. In addition, it shows higher power in predicting missing edges compared to individual-network methods.

Keywords: Module identification, Stochastic block model, Multiple-network clustering, Bayesian clustering,
Variational Bayes algorithm

1 Introduction
Identifying modular structures within large-scale net-
works has attracted significant attention in many research
fields, including social science, biology, and information
technology, just to name a few. For these applications,
the ultimate goal is to group vertices in given networks
into cohesive modules or communities, in which the ver-
tices share similar properties, specifically their interaction
patterns. Typically, densely connected sub-networks in
given networks are considered desirable modular struc-
tures [1]. There have been many existing approaches pro-
posed to study this problem in the literature, including
spectral clustering algorithms based on graph cut [2, 3],
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modularity-based algorithms [4, 5], as well as matrix fac-
torization algorithms for network clustering [6, 7].
In addition to these optimization algorithms based on

graph theory and mathematical programming, in statis-
tical inference, stochastic block models (SBM) originally
proposed by [8] adopt amultinomial-Bernoulli probabilis-
tic model to capture the inherent modular structures in
observed networks. Hofman and Wiggins [9] developed
a Bayesian framework to find the module or community
memberships of vertices in networks under study and
took advantage of variational approximation to efficiently
sample from the corresponding posterior distributions.
Extending the analysis to dynamic networks has

attracted major attention recently. Authors in [10] stud-
ied community evolution in blogosphere based on
graph characteristics such as in-degrees and out-degrees.
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Chi et al. [11] used graph cut size as a measure of com-
munity evolution and proposed a dynamic version of
spectral clustering. In [12], an algorithm called FacetNet
was developed by extending the graph factorization
method for analysis of evolutionary networks. A Markov
model [13] was adopted to capture temporal commu-
nity variation in stochastic block models with Gibbs
sampling implemented for inference of unknown model
parameters.
In this paper, we focus on module identification in bio-

logical networks. On one hand, it is often the case that
biological networks in public databases [14, 15], by either
high-throughput profiling techniques or laboriousmanual
curations, contain significant errors (both false positives
and false negatives). On the other hand, usually, sev-
eral independent such empirical networks are available
for studying the species of interest, creating the oppor-
tunity to integrate information from different sources
and gain higher accuracy and better reproducibility. With
these noisy networks, we aim to develop an integrated
stochastic model and solution methods to improve the
accuracy of module identification by combining informa-
tion from multiple observed networks. Figure 1 provides
the schematic illustration of our basic idea. With multiple
noisy observations in the top row of Fig. 1a, the proposed
stochastic model assumes that there is a consistent virtual
graph that captures the coherent root modular structure.
As a specific application of our approach, we can think
of multiple networks profiled with different techniques or

characterized by multiple types of interactions between
vertices. Figure 1b shows the graphical representation of
our extended SBM from traditional SBM for analyzing
multiple noisy networks. In our model, every observed
network A(t) is associated with a latent modular struc-
ture �z(t). These instantaneous structures are considered
as the results from stochastic transitions from a latent
root modular structure �z that is coherent in all net-
works. Note that this is in contrast to previous dynamic
models that concentrate on the evolution of modular
structures rather than embedding them. The probabilistic
inference task is to simultaneously learn the root as well
as instantaneous modular structures from multiple noisy
networks. With such a probabilistic model, we are able to
elicit the essential modular structure in all the observed
networks. By combining information from these various
sources, we can compensate for the perturbation effect
from noisy observations. To infer this extended SBM
for multiple-network clustering, a variational Bayes
method is derived to efficiently quantify uncertainties
over unknown model parameters. We apply our method
to protein-protein interaction (PPI) data sets and show
that by taking advantage of different sources of informa-
tion, our method outperforms the existing SBM-based
methods implemented on individual networks in predict-
ing new protein complexes. Furthermore, the capability of
predicting missing edges from our Bayesian modeling cre-
ates the opportunity for our method to be used in active
learning scenarios, where the task is to efficiently infer

Fig. 1 Schematic illustration. a An example of multiple noisy networks with a coherent modular structure. bGraphical representation of the proposed
probabilistic model for module identification across multiple networks as an extension of the module identification model for individual networks
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protein-protein interactions from new sets of experiments
and concurrently by taking advantage of prior knowl-
edge from the existing experimental results, which the
individual network SBM lacks.

2 Background
We first briefly review the stochastic block model for
module identification in individual networks to study
the modular structures [8], for which a Bayesian mod-
ule identification algorithm has recently been proposed to
efficiently solve the problem [9].
Given a network in a graph representation, G = (V ,E),

where V denotes the set of all N vertices in the given
network and E is the set of edges connecting the corre-
sponding vertices in the networkG. Let A be the observed
N ×N adjacency matrix whose elements take the values 0
or 1: Aij = 1 indicating that there is a corresponding edge
eij ∈ E between vertices vi and vj ∈ V and Aij = 0 oth-
erwise. We introduce the latent variable zi ∈ {1, 2, . . . ,K}
to represent the module assignment of vertices vi, and
K is the total number of desirable modules. In SBM,
the probability that an edge exists between two vertices
depends on their module memberships. Conditioning on
module assignments, the probabilities that correspond-
ing vertices are linked follow Bernoulli distributions with
the corresponding bias parameters θc = p(Aij = 1|zi =
zj) and θd = p(Aij = 1|zi �= zj), which are called
within- and between-module edge probabilities, respec-
tively. Also, SBM assumes a multinomial distribution over
module assignment probabilities with parameters πk =
p(zi = k| �π). With these assumptions, the joint probability
of an adjacency matrix A and the corresponding module
assignment vector �z can be written as

p
(
A, �z|�θ , �π ,K

)
= p

(
A|�z, �θ

)
p
(
�z| �π
)

(1)

= θ c
+

c (1 − θc)
c− θd

+
d (1 − θd)

d−
K∏

k=1
π
nk
k ,

in which c+ = ∑
i>j AijI

[
zi = zj

]
is the number of edges

contained within potential modules; c− = ∑
i>j(1 −

Aij)I
[
zi = zj

]
is the number of non-edges contained

within modules; d+ = ∑
i>j AijI

[
zi �= zj

]
is the number

of edges between vertices across different modules; d− =∑
i>j(1−Aij)I

[
zi �= zj

]
is the number of non-edges across

potential modules; and nk denotes the number of vertices
assigned to the kth potential module with

∑
k nk = N . I[x]

denotes the indicator function, which equals to one if its
argument x is a true logic statement and zero otherwise.
The factorization of the joint probability follows from the
fact that the probability of the observed adjacency matrix
can be completely determined based on the given model
parameters, including module assignment probabilities �π
and within- and between-module edge probabilities θc, θd.

3 Methods
We extend the above Bayesian framework for individual
networks to more robust and accurate module identi-
fication across multiple networks. A variational Bayes
approach is then derived to infer the unknown parame-
ters of our extended model to identify significant modules
across multiple noisy networks.

3.1 Multiple-network stochastic block model
Givenmultiple observed noisy networks with correspond-
ing adjacency matrices

{
A(1),A(2), . . . ,A(T)

}
, we aim to

study the hidden modular structures across these net-
works. Without loss of generality, we assume that the
set of vertices is fixed in all adjacency matrices. To infer
the modular structures of these observed networks, we
introduce a latent root module assignment �z, which can
be considered to determine the connectivity of a virtual
image graph illustrated in Fig. 1. ForT observed networks,
the corresponding instantaneous module assignments �zt
for A(t) evolve under a transition probability matrix P(t).
This model allows an inherent modular structure to unify
all other observations to borrow strengths from each other
when inferring modules of a certain network and thereby
compensates for the potential detrimental effect of noise
mixed with observations.
With the underlying assumption that multiple observed

networks have modular structures with similar within-
and between-module edge densities, we fix the edge prob-
abilities θc and θd to be the same for all the observed net-
works. To fully specify this new stochastic block model,
we set the root assignment matrix �z to be multinomial
with assignment probabilities �π . We can write the joint
distribution of assignment matrices and observed adja-
cency matrices of this model as follows:

p
(
A(1:T), �z, �z(1:T)|�θ , �π ,P(1:T),K

)

=
[ T∏
t=1

p
(
A(t)|�z(t), �θ

)
p
(
�z(t)|�z,P(t)

)]
p(�z| �π)

= θ

∑T
t=1 c

+
t

c (1 − θc)
∑T

t=1 c
−
t θ

∑T
t=1 d

+
t

d (1 − θd)
∑T

t=1 d
−
t

×
⎡
⎣ T∏
t=1

N∏
i=1

K∏
r,s=1

P
I
[
zi=r

]
·I
[
z(t)i =s

]
rs

⎤
⎦ K∏

k=1
π
nk
k ,

(2)

where a concise index representation (1 : T) is adopted
to denote the indices of the corresponding components
in the model for multiple networks. For example, A(1:T)

stands for T adjacency matrices
{
A(1), . . . ,A(T)

}
. The cor-

responding numbers of edges c+t , c−t , d+
t , and d−

t for the
tth network are defined similarly as in the model (1) for
individual networks, except that the adjacency matrix A is
replaced with A(t). Similarly, I

[
zi = r

]
· I
[
z(t)i = s

]
counts

the vertice vi when it is assigned to the sth module for
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the tth network and in the rth module in the root assign-
ment; nk is calculated from the root assignment. One
immediate consequence of suchmodeling is that the edges
that frequently appear in multiple observations have a
higher chance of being true positives. Such an intuition is
reflected in the likelihood function in our model. In addi-
tion, the model makes sure that the vertices connected
by these edges are more likely to be assigned to the same
modules in different observed networks by the proper
choice of transition probabilities, which is clarified in the
subsequent section.

3.2 Bayesian inference
To predict module assignments to assign memberships
to all the vertices in the given networks, we resort to
Bayesian inference to draw a joint posterior distribution
of all the latent variables and unknownmodel parameters.
To facilitate the computation of the posterior, we pre-
fer more efficient variational Bayes algorithms instead of
directly implementing Monte Carlo (MC) simulations. In
order to derive closed-form updates for variational Bayes
algorithms, we adopt conjugate prior distributions in our
multiple-network clustering model. The conjugate prior
for the root assignment probability distribution �π is a
Dirichlet distribution with a hyper-parameter vector �n0:

p (�π |�n0) =
�
(∑K

k=1 nk,0
)

∏K
k=1 �(nk,0)

K∏
k=1

π
nk,0−1
k . (3)

Here nk,0 is the kth component of vector �n0 and �(·)
is the gamma function. The conjugate priors for edge
weights θc and θd are beta distributions with hyper-
parameters (αc,0,βc,0) and (αd,0,βd,0), respectively,

p
(�θ |�α0, �β0

)
= p(θc|αc,0,βc,0)p(θd|αd,0,βd,0)

= �(αc,0 + βc,0)

�(αc,0)�(βc,0)
θ

αc,0−1
c (1 − θc)

βc,0−1

× �(αd,0 + βd,0)

�(αd,0)�(βd,0)
θ

αd,0−1
d (1 − θd)

βd,0−1.

(4)

The underlying assumption here is that prior to observ-
ing the data, within- and between-module edge weights
are independent, so their joint prior distribution factor-
izes. The transition probability matrices P(t) are stochas-
tic, and therefore, their rows add up to 1. For each matrix
P(t), where t ∈ {1, 2, . . . ,T}, we use Dirichlet prior dis-
tributions with a hyper-parameter vector �η(0)

k on rows

p
(
P(t)|�η(0)

1 , . . . , �η(0)
K

)
=

K∏
k=1

p
(�P(t)

k |�η(0)
k

)

=
K∏

k=1

�
(∑K

m=1 η
(0)
k,m

)
∏K

m=1 �
(
η

(0)
k,m

) ×
K∏

m=1

(
P(t)
km

)η
(0)
k,m−1

,

(5)

where �P(t)
k is the kth row of the transition probability

matrix P(t), P(t)
km is its mth element, and η

(0)
k,m is the mth

element of �η(0)
k . The rows of transition probability matri-

ces are assumed to be independent, and also, we set their
hyper-parameter vectors to be identical.
To further ensure that our model captures the modu-

lar structure inherent in the observed networks, we set
hyper-parameters of prior beta distributions over edge
weights to bias towards edge weights with within-module
edge weights being greater than between-module edge
weights, and this is controlled through appropriate set-
tings of hyper-parameters of prior beta distributions over
edge weights. For the model to be capable of benefiting
from the structural information inferred from other net-
works, we prefer that the diagonal entries of transition
probability matrices P(t) to be higher than the off-diagonal
entries of those matrices, which can be achieved by setting
higher hyper-parameters in the corresponding Dirichlet
distributions.
With these incorporated conjugate priors, their func-

tional forms are preserved in the posterior, a variational
Bayes algorithm with closed-form updates can be derived
to infer the model parameters, and, more importantly,
module memberships from the aforementioned model (2)
in the subsequent section.

3.3 Variational Bayes solution
Variational Bayes method is an efficient alternative to
Monte Carlo sampling methods [16, 17] for statistical
inference over complicated models as direct sampling
is not tractable and computationally prohibitive. Under
appropriate settings, variational Bayes algorithms can
be derived to infer the desired posterior distributions
with comparable accuracies at a greater speed, which is
essential for the analysis of large-scale networks. The vari-
ational Bayes method seeks a restricted family of approx-
imation distributions q(·), which minimize the Kullback-
Leibler (KL) divergence between the joint probability
distributions of unknown parameters and their approxi-
mate joint probability distributions [18]. For our proposed
model, the quantity to be minimized takes the following
form:

F
{
q,A(1:T)

}
= −

∑
�z,�z(1:T)

∫ ∫ [
q
(

�z, �z(1:T), �θ , �π
)

× ln
p
(
A(1:T), �z, �z(1:T), �θ , �π |K

)
q
(
�z, �z(1:T), �θ , �π

)
⎤
⎦ d�θd �π .

(6)

To simplify this optimization problem of minimizing
the free energy F

{
q,A(1:T)

}
, we follow the mean field

approximation framework developed in physics [9]. To
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be specific, we factorize the variational or approximate
distribution q(·) with respect to its arguments:

q
(
�z, �z (1:T), �θ , �π

)
= q�θ (�θ)q�π (�π)q�z(�z)

T∏
t=1

q�z(t)
(
�z(t)
)
. (7)

After this simplification, it can be shown that the opti-
mal approximate distribution q�z for the root module
assignment �z satisfies the following equation [18]:

ln q∗
�z (�z) ∝ E−�z

[
ln p

(
A(1:T), �z, �z(1:T), �θ , �π |K

)]
, (8)

where E−�z[ ·] denotes the expectation taken over all
the parameters and latent variables except �z. Similar
equations can be derived for �π , �θ , and �z(t) for t ∈
{1, 2, . . . ,T}. Solving the above Eq. (8) for all the unknown
parameters leads to the complete derivation of the approx-
imate distributions.
Particularly, these distributions belong to the same fam-

ily as prior distributions, i.e., the approximate distribu-
tions of θc, θd, and �π are respectively beta, beta, and
Dirichlet distributions with hyper-parameters

(
α̃c, β̃c

)
,(

α̃d , β̃d
)
, and �̃n. In order to calculate the posterior approx-

imate distribution of module assignments, we factorize
them as q(zi = k) = Qik and q

(
zti = k

) = Q(t)
ik for

i ∈ {1, 2, . . . ,N}, t ∈ {1, 2, . . . ,T}, and k ∈ {1, 2, . . . ,K}. Q
and Q(t) are N ×K matrices, in which the ith row denotes
the probability of assigning vertex vi to different potential
modules.
The variational Bayes algorithm iterates between two

stages. In the first step, the current distributions over the
model parameters are used to evaluate the module assign-
ment matrices Q and Q(t); and in the second step, these
memberships are fixed and variational distributions over
model parameters are updated. The resulting iterative
algorithm then can be summarized as:
Initialization. Initialize N × K matrices Q and Q(t) for

t ∈ {1, 2, . . . ,T} and set α̃c = αc,0, β̃c = βc,0, α̃d = αd,0,
β̃d = βd,0, and �̃n = �n0.
(i) Update the following expected values:

E [lnπk] = ψ(ñk) − ψ

( K∑
k=1

ñk

)
; (9)

E
[
lnP(t)

km

]
= ψ

(
η̃

(t)
k,m

)
− ψ

( K∑
m=1

η̃
(t)
k,m

)
; (10)

E
[
ln

1 − θd
1 − θc

]
= ψ

(
β̃d
)

− ψ
(
α̃d + β̃d

)
− ψ

(
β̃c
)

+ψ
(
α̃c + β̃c

)
; (11)

E
[
ln

1 − θd
1 − θc

+ ln
θc
θd

]
= ψ(α̃c) − ψ(β̃c) − ψ(α̃d)

+ψ(β̃d), (12)

where ψ(·) is the digamma function.
(ii) Update the variational distribution over the root

module assignment:

Qik ∝ exp
{
E [lnπk] +

T∑
t=1

K∑
m=1

Q(t)
imE

[
lnP(t)

km

]}
. (13)

Normalize Q such that
∑K

k=1Qik = 1 for all vertices
vi.

(iii) Update the variational distributions over
instantaneous module assignments for
t ∈ {1, 2, . . . ,T}:

Q(t)
ik ∝ exp

⎧⎨
⎩
∑
j �=i

(
E
[
ln

1 − θd
1 − θc

+ ln
θc
θd

]
A(t)
ij

− E
[
ln

1 − θd
1 − θc

])
Q(t)
jk +

K∑
s=1

Qis
[
lnP(t)

sk

]}
.(14)

Normalize Q(t) such that
∑K

k=1Q
(t)
ik = 1 for all

vertices vi.
(iv) Update the posterior hyper-parameters of the

Dirichlet distribution over the root module
assignment of vertices:

nk =
N∑
i=1

Qik + nk,0. (15)

(v) Consider η(t) for t ∈ {1, 2, . . . ,T} as a matrix whose
elements are η

(t)
k,m. Then, update the matrix η(t) as

follows:

η(t) = Q′Q(t) + η(0), (16)

where Q′ is the transpose of the matrix Q and η(0) is
the matrix of prior hyper-parameters of transition
probability matrices.

(vi) Update the hyper-parameters of beta distributions
over edge weights:

α̃c = 1
2

T∑
t=1

Tr
(
Q(t)′A(t)Q(t)

)
+ αc,0; (17)

β̃c = 1
2

T∑
t=1

Tr
(
Q(t)′

(
�u�v(t)′ − Q(t)

))

−1
2

T∑
t=1

Tr
(
Q(t)′A(t)Q(t)

)
+ βc,0; (18)
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α̃d =
T∑
t=1

∑
i>j

A(t)
ij − 1

2

T∑
t=1

Tr
(
Q(t)′A(t)Q(t)

)
+ αd,0; (19)

β̃d =
T∑
t=1

∑
i>j

(
1 − A(t)

ij

)
− 1

2

T∑
t=1

Tr
(
Q(t)′

(
�u�v(t)′ − Q(t)

))

+ 1
2

T∑
t=1

Tr
(
Q(t)′A(t)Q(t)

)
+ βd,0,

(20)

where �u is a N × 1 vector of ones and �v(t) is a vector
with elements v(t)

k =∑N
i=1Q

(t)
ik .

(vii) Calculate the updated free energy:

F
{
q∗,A(1:T)

}
=

T∑
t=1

N∑
i=1

K∑
k=1

Q(t)
ik lnQ(t)

ik +
N∑
i=1

K∑
k=1

Qik lnQik

−
T∑
t=1

K∑
k=1

ln
B
(
�̃η(t)
k

)
B
(
�η(0)
k

) − ln
B
(
α̃c, β̃c

)
B
(
α̃d , β̃d

)
B
(
�̃n
)

B
(
αc,0,βc,0

)
B
(
αd,0,βd,0

)
B(�n0) ,

(21)

where B(·) is a beta function with the vector
argument.

The optimized free energy in (21) decreases in consecu-
tive iterations, and thereby, this algorithm is guaranteed to
converge to a local optimum. In the case where the poste-
rior is multi-modal, several initializations should be tested
to ensure the quality of the returned solutions.

4 Experimental results
In this section, we evaluate our Bayesian module identi-
fication across multiple networks by testing the derived
variational Bayes algorithm on both synthetic and real-
world PPI data sets. The obtained results also are com-
pared with Bayesian module identification with individual
networks and another state-of-the-art network clustering
algorithm—ClusterOne [19]. For synthetic data, we have
the ground-truth module memberships and therefore we
use normalized mutual information to assess the per-
formance of our model. Normalized mutual information
(NMI) is defined as follows [3, 13]:

NMI(C, C′) = M̂I
(
C, C′)

max(H(C),H(C′))
, (22)

where C = {C1,C2, . . . ,CK } denotes the true assign-
ments of vertices to corresponding modules and C′ ={
C′
1,C′

2, . . . ,C′
K
}
denotes the inferred module member-

ships of vertices by the implemented algorithms.H(C) and
H(C′) are the entropies of the ground truth and inferred

modules. M̂I(C, C′) is the mutual information calculated

by M̂I(C, C′) =∑Ci,C′
j
p
(
Ci,C′

j

)
ln

p
(
Ci,C′

j

)
p
(
Ci
)
p
(
C′
j

) .
For real-world data sets, we analyze two budding

yeast (Saccharomyces cerevisiae) PPI networks obtained
from the Database of Interaction Proteins (DIP) [14]
and the Biological General Repository for Interaction
Datasets (BioGRID) [15] to predict protein complexes.
The predicted protein complexes as inferred modules by
the selected algorithms are then verified against the Sac-
charomyces Genome Database (SGD) [20] and Munich
Information Center for Protein Sequences (MIPS) [21]
golden standards as the reference complexes. To validate
the predicted protein complexes by the selected algo-
rithms, we adopt the same performance metrics intro-
duced in [3, 19]. The first metric is the fraction of pairs
between the predicted and reference complexes with an
overlap score of larger than 0.25. We represent this metric
in the results with Frac. The overlap score ω between two
sets of vertices, proteins in this case, V1 and V2, is defined
as:

ω(V1,V2) = |V1 ∩ V2|2
|V1||V2| , (23)

where | · | denotes the cardinality of a set. The threshold
0.25 used for ω is achieved when two equally sized protein
complexes have an intersection set with half of their size.
The second performance metric is the geometric accu-

racy (Acc), which is the geometric mean of two measures:
the module-wise sensitivity (Sn) and module-wise posi-
tive predictive value (PPV): Acc = √

PPV × Sn. Given n
reference and m predicted protein complexes, tij denotes
the number of proteins that are the members of both the
reference complex i: 1 ≤ i ≤ n and predicted complex j:
1 ≤ j ≤ m. Furthermore, let ni represent the total number
of proteins in the reference complex i. The two measures
Sn and PPV for computing the geometric accuracy are
defined as:

Sn =
∑n

i=1 maxj∈{1,...,m} tij∑n
i=1 ni

;

PPV =
∑m

j=1 maxi∈{1,...,n} tij∑m
j=1
∑n

i=1 tij
.

Since Sn can be maximized by putting every protein in
the same module and PPV can be maximized by assigning
each protein in a distinct module, the Acc is considered a
better performance metric that we adopt.
When some proteins appear in either none of the pre-

dicted complexes or in more than one complexes, the
value of PPV can be misleading [3, 19]. To mitigate such
deficiencies, the authors in [22] have introduced an addi-
tional metric called module-wise separation (Sep) for fair
comparison. To define it, we first introduce the marginal
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row-wise and column-wise relative frequencies that can
be computed as:

Fr
ij = tij∑m

j=1 tij
;

Fc
ij = tij∑n

i=1 tij
.

The separation of the predicted complex i and reference
complex j then equals to Sepij = Fr

ijF
c
ij. The reference-

wise and inferred-module-wise scores are calculated for
the whole set of the reference and predicted complexes as:

Sepref =
∑n

i=1
∑m

j=1 Sepij
m

;

Sepinf =
∑n

i=1
∑m

j=1 Sepij
n

.

The final separation score is computed from these two
quantities as Sep = √SeprefSepinf. Sepij = 1 indicates that
the reference complex j is a perfect match for predicted
complex i and both of them contain identical proteins.

4.1 Synthetic networks
Using the same procedure as in [1], we generate a syn-
thetic network with N = 128 vertices and K = 4
modules, each module containing 32 vertices. The aver-
age degree of vertices is set to 16, and the average number
of between-module edges of each vertex is set to 6. To
generate the network, we first assign vertices to different
modules by following a multinomial distribution with the
equal weights for all modules. Then, each pair of vertices

are connected with the probabilities equal to θc or θd if
they belong to the same or different modules, respectively.
To simulate multiple observed noisy networks, we

implement the Sneppen and Maslov re-wiring method
[23] to construct new networks and adjacency matrices
with instilled noise based on the original network gener-
ated as described above. In this method, a pair of edges
vi ↔ vj and vk ↔ v
 are randomly selected and then re-
wired such that vi becomes connected to v
, while vj to
vk , provided that none of these edges existed previously.
This method preserves the degree of each vertex and thus
global topological properties, including edge densities in
perturbed networks, do not change significantly.
Following this procedure, we generate two different sets

of simulated networks. In the first experiment, we gen-
erate T = 10 adjacency matrices where the number of
randomly selected re-wirings increases linearly from 5 to
50 % of the total number of edges in nine steps gradually.
The adjacency matrices for two extreme cases at t = 1
and t = 10 are shown in Fig. 2a respectively on top and
bottom rows, which reflect different levels of introduced
noise. In the second experiment, T = 10 adjacency matri-
ces are generated from an original adjacency matrix by
randomly re-wiring 25 % of the total number of edges.
Thereby, here, the noise levels are consistent across all the
networks. Note that the re-wirings are independent from
each other. Intuitively, in the first set of networks, mod-
ule identification becomes more difficult with increasing
noise levels while in the second experiment, it is similarly
difficult when identifyingmodules in respective networks.

Fig. 2 Performance evaluation with synthetic networks. a Examples of noisy networks: The top network is with the lowest noise level (5 %) and the
bottom network is with the highest noise level (50 %). b Performance results of the first set of experiments, where the instilled noise level increases
gradually. c Performance results of the second set of experiments, where the noise level remains constant
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To demonstrate that our Bayesian module identifica-
tion across multiple networks can better identify modules
by borrowing strength across networks, we compare the
results by our algorithm on the set of ten randomly per-
turbed networks with those of Hofman’s algorithm [9]
applied to individual networks. Since we assume no prior
knowledge on module memberships of the vertices, the
initial hyper-parameters for the Dirichlet distributions for
module assignments are set to equal values for all K = 4
modules. Empirically, neither of the algorithms is sensi-
tive to hyper-parameters for beta distributions over edge
weights, provided that within-module edge weights are
larger than the between-module counterpart. Based on
our experiments, Hofman’s implementation on individual
networks may not converge to the global optimum, espe-
cially when we have high levels of introduced noise, for
example, when we have 20 % random re-wirings (t > 4)
in our experiments. On the contrast, we find that multi-
ple random initializations may not be necessary for our
multiple-network clustering algorithm. In order to have a
fair comparison with the satisfactory solution quality, we
take 100 random initializations for both algorithms.
Figure 2b and c depict the average normalized mutual

information in two experiments between module detec-
tion results of both algorithms and the true module
membership, by which data has been generated, based
on averaged 100 independent repeats with the aforemen-
tioned settings. As it can be seen in these figures, as the
noise level increases, the difference between the perfor-
mances of two algorithms gets more significant. For highly
noisy adjacency matrices, Hofman’s algorithm indeed fails
to recover the module memberships accurately. Nonethe-
less, our algorithm by borrowing information from other
observations returns satisfying results. In the second
experiment, we can clearly observe the superiority of our
model as there is an approximate 0.2 difference in the
normalized mutual information measure in favor of our
algorithm across all networks. Thus, aggregating infor-
mation across networks has led to higher accuracy in
predicting the module membership of vertices achieved
by our method.

4.2 Edge prediction
To further validate our model, we simulate two networks
from a single “ground truth” network with the specifi-
cations identical to the networks generated in the previ-
ous section, by instilling 25 % noisy edges based on the
Sneppen and Maslov re-wiring method. To test the capa-
bility of our model to predict missing edges of the ground
truth network, we randomly hold out different percent-
ages of edges of the first network and use the remaining
edges (and the other network in the case of our multiple-
network model) to predict the probability of each missing
edge to exist. Compared to previous experiments, we only

need to slightly modify the inference by discarding the
held-out edges from the likelihood. The probability of an
edge existing between nodes i and j in the model can be
calculated by

p(Aij=1)=
(

α̃c

α̃c + β̃c
− α̃d

α̃d + β̃d

) K∑
k=1

Q(t)
ik Q

(t)
jk + α̃d

α̃d + β̃d
.

We consider different training ratios (the percentage
of remaining edges in one network) ranging from 20
to 80 % with 10 % increments. Figures 3 and 4 show
the error bar plots of Area Under the Curves (AUC) of
both the Receiver Operating Characteristic (ROC) and
Precision-recall (PR) for different training ratios, respec-
tively. As expected, our multiple-network method outper-
forms Hofman’s model in terms of both ROC and PR as it
takes advantage of the shared information across observa-
tions. As shown in Figs. 3 and 4, decreasing the number of
held-out edges leads to the growing margin between the
performances of the two approaches.

4.3 Protein complex prediction
We further have applied our Bayesian module identifica-
tion to unweighted yeast PPI networks, extracted from
DIP and BioGrid, to predict protein complexes. Each of
these networks have 4540 proteins and the number of
edges in DIP and BioGrid networks are 21,326 and 49,128,
respectively. Besides our algorithm, ClusterOne [19] and
Hofman’s method [9] also have been applied to the net-
works for comparison. ClusterOne is a greedy algorithm
that can be considered as an overlapping extension of nor-
malized cut spectral clustering. For both Hofman’s and
our algorithm, we need to decide the value of K for the
number of potential modules. However, we note that both
algorithms are in the Bayesian framework and thereby

Fig. 3 Error bar plots of Area Under the Curve (AUC) of ROC for
training ratios ranging from 20 to 80 %
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Fig. 4 Error bar plots of Area Under the Curve (AUC) of Precision-recall
(PR) for training ratios ranging from 20 to 80 %

the full probability of memberships of different modules
can be determined. With the large enough K, model like-
lihoods for different Ks can be evaluated to determine
the optimal K. In the current experiments, we also focus
on non-overlapping module identification as done in [9]
for fair comparison by assigning each vertex vi to the kth
module that maximizes Q(t)

ik in the tth network. Based
on the average size of protein complexes given in yeast
golden standards, which is approximately 5 in both SGD
andMIPS, we set K =1000 considering the size of our PPI
networks.
The results of these three methods are compared based

on the parameters introduced earlier. Table 1 contains the
performance comparison between these algorithms based
on the SGD golden standard while Table 2 provides the
performance comparison based on the MIPS standard.
One advantage of Bayesian methods is that the identi-
fied complexes cover the whole set of proteins present in
the data sets, while ClusterOne only discovers overlapping
complexes that include 1372 and 2340 proteins for DIP

Table 1 Performance comparison of different algorithms based
on SGD golden standard

Data set Metric Multiple network ClusterOne Hofman

DIP Acc 0.5435 0.4731 0.4561

Frac 0.2129 0.3194 0.1000

PPV 0.4648 0.5528 0.3295

Sep 0.3511 0.3329 0.3146

BioGRID Acc 0.6110 0.5961 0.5549

Frac 0.2097 0.4839 0.1871

PPV 0.4738 0.5663 0.4612

Sep 0.3999 0.3325 0.3505

The best indices are highlighted with bold fonts

Table 2 Performance comparison of different algorithms based
on MIPS golden standard

Data set Metric Multiple network ClusterOne Hofman

DIP Acc 0.3933 0.3178 0.3403

Frac 0.2381 0.3598 0.1111

PPV 0.3567 0.4076 0.2651

Sep 0.2535 0.2216 0.2020

BioGRID Acc 0.4614 0.4336 0.4383

Frac 0.2975 0.4974 0.2275

PPV 0.3713 0.4207 0.3649

Sep 0.2536 0.2193 0.2189

The best indices are highlighted with bold fonts

and BioGRID datasets respectively out of the total 4540
proteins in the original networks. As a consequence, com-
plexes found by Bayesian methods have larger sizes and
therefore possess lower fraction of matched proteins com-
pared to the reference complexes, which are reflected as
low PPV values in both tables. Nonetheless, the results
with respect to the Acc have shown that our new Bayesian
module identification with multiple networks can better
predict potential protein complexes, in which proteins are
densely connected; and thereby, these methods are more
useful when the final objective is to predict new protein
complexes. Another observation in the results is that com-
bining information from different observed networks in
our model enhances both the Acc and Sep metrics com-
pared with ClusterOne and Hofman’s method, especially
for the DIP network, a relatively sparse network, for which
detecting inherent modules is a difficult task. Table 3
depicts the number of predicted complexes for different
data sets by different algorithms.
It is clear that, compared to its individual-network

counterpart—Hofman’s method—our algorithm is able
to find significantly more protein complexes and thus
obtaining a better understanding of both networks’ mod-
ular structures. One example is illustrated in Fig. 5. This
figure demonstrates the interactions among a group of
proteins in the DIP data set. All of these proteins are
assigned to the same complex by Hofman’s method. How-
ever, our multiple-network method identified a more
densely connected subset of proteins. This discovered
protein complex contains all of the proteins in the ref-
erence RNA polymerase II mediator protein complex in

Table 3 Number of identified protein complexes by different
algorithms for DIP and BioGRID data sets

Data set Multiple network ClusterOne Hofman

DIP 320 328 112

BioGRID 278 424 189
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Fig. 5 One example of the predicted protein complexes by Hofman’s and our multiple-network clustering algorithms. The whole set of proteins
were considered as a single complex by Hofman’s method, while the proteins colored in yellow and dark blue form the predicted complex returned
by our new multiple-network clustering method. The colored proteins in yellow are the member proteins in the RNA polymerase II mediator protein
complex in SGD golden standard. This figure is produced by [24]

SGD golden standard. These proteins are colored in yel-
low in the figure, and other proteins that do not belong
to this reference complex but are members of the pre-
dicted complex by our algorithm are colored in blue. Thus,
we can observe that our method is capable of increas-
ing the resolution in module identification. Note that the
number of modules found by our algorithm is compa-
rable to that of ClusterOne, though the modules in our

method are disjoint. Since we have the posterior distribu-
tion of module assignments of all vertices, one can easily
construct lots of overlapping complexes by allowing each
vertex to belong to more than one modules.

5 Conclusions
In this paper, we generalize the variational Bayes algo-
rithm for module identification in individual networks
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[9] to a new stochastic block model with the efficient
accompanying variational Bayes algorithm for module
identification across multiple noisy observed networks.
The effectiveness and efficiency of our algorithm with
improved accuracy and resolution have been demon-
strated on both synthetic and real-world PPI networks. In
our future work, we will focus on finding solution meth-
ods formodule identification frommultiple networks with
more general noise models.
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