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ABSTRACT
As coral reef habitats decline worldwide, some reefs are transitioning from coral- to
algal-dominated benthos with the exact cause for this shift remaining elusive. Increases
in the abundance of microbes in the water column has been correlated with an increase
in coral disease and reduction in coral cover. Here we investigated how multiple reef
organisms influence microbial communities in the surrounding water column. Our
study consisted of a field assessment of microbial communities above replicate patches
dominated by a single macro-organism. Metagenomes were constructed from 20 L of
water above distinct macro-organisms, including (1) the coralMussismilia braziliensis,
(2) fleshy macroalgae (Stypopodium,Dictota andCanistrocarpus), (3) turf algae, and (4)
the zoanthid Palythoa caribaeorum and were compared to the water microbes collected
3 m above the reef. Microbial genera and functional potential were annotated using
MG-RAST and showed that the dominant benthic macro-organisms influence the
taxa and functions of microbes in the water column surrounding them, developing
a specific ‘‘aura-biome’’. The coral aura-biome reflected the open water column, and
was associated with Synechococcus and functions suggesting oligotrophic growth, while
the fleshy macroalgae aura-biome was associated with Ruegeria, Pseudomonas, and
microbial functions suggesting low oxygen conditions. The turf algae aura-biome was
associated with Vibrio, Flavobacterium, and functions suggesting pathogenic activity,
while zoanthids were associated with Alteromonas and functions suggesting a stressful
environment. Because each benthic organism has a distinct aura-biome, a change in
benthic cover will change the microbial community of the water, which may lead to
either the stimulation or suppression of the recruitment of benthic organisms.

Subjects Biodiversity, Ecology, Genomics, Marine Biology, Microbiology
Keywords Corals, Coral reefs, Metagenomics, Aura-biome, Microbial ecology

INTRODUCTION
Coral reef ecosystems are diverse but declining habitats (Jackson & Buss, 1975; Hixon &
Beets, 1993; Cantera et al., 2003; Hughes et al., 2010). Causes of coral cover decline are
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associated with overfishing, disease, increased nutrients, water runoff, and increased
water temperatures (Roberts & Nicholas, 1993; Hughes, 1994; Weil, Smith & Gil-Agudelo,
2006; Hoegh-Guldberg et al., 2007; Hughes et al., 2007; De’ath, Lough & Fabricius, 2009).
Microbial communities are also integral in coral reef health and stability. Microbes
associated with the water of pristine coral reefs show a mix of autotrophs and heterotrophs,
while the water of degraded reefs is dominated by microbial heterotrophs including many
pathogenic strains (Dinsdale et al., 2008a; Morrow et al., 2012). The increase of pathogenic
microbes in the reef water column is correlated with an increase in the amount of coral
disease (Dinsdale et al., 2008a). There are several hypotheses explaining the increase of
pathogens on coral reefs; the first is that microbes are transported from agricultural and
human sewage runoff into the ocean, and the second is that the microbial changes are
being generated on the reef (Dinsdale & Rohwer, 2011).

Early investigations of microbial associations with corals showed a strong relationship
between the host macro-organism and their bacterial symbionts. Rohwer et al. (2002)
showed that microbial communities of coral are host-specific, with the same species of
coral sharing microbial communities over space and time compared with a different
species that occupies an adjacent location on the same reef. The combination of the coral
macro-organism, its symbiotic zooxanthellae and the associated microbial communities
was termed the holobiont. This concept has been expanded to various reefmacro-organisms
including multiple species of macroalgae (Harder et al., 2012; Egan et al., 2013) and
zoanthids (Sun et al., 2014), in addition to terrestrial organisms including plants, insects
and humans (Mandrioli & Manicardi, 2013; Minard, Mavingui & Moro, 2013; Meadow et
al., 2015; Vandenkoornhuyse et al., 2015). Besides retaining a distinct microbial community
on their surface, reef benthic organisms may influence microbes in the surrounding water
environment. This can happen in two ways, (1) by the host-specific microbes being released
or shed from the host into the surrounding water, and (2) the production of dissolved
organic matter by the host, which stimulates the activity of a specific set of microbes within
the boundary water layer.

Benthic organisms, like any submerged object, cause a variation in water flow across their
surface, creating sheer forces and boundary layers (Shashar et al., 1996). Three boundary
layers, the benthic (BBL), momentum (MBL), and diffusive (DBL; the closest to the benthic
organism surface) (Barott & Rohwer, 2013), act at different scales and will be influenced by
the underlying benthos and the surrounding water to varying degrees. The flow speed of
water across benthic surfaces will alter the thickness of the layers and affect the chemical and
biological makeup of each parcel of water. High flow rates across a reef may homogenize
the compounds in the benthic boundary layer; however, the water in the diffusive boundary
layermay be stagnant and concentrate chemicals and the respondingmicrobes. Reefmacro-
organisms exude a range of chemicals into the boundary layers, altering the biogeochemical
nature of the water and the microbial metabolisms that occur in the layers (Smith et al.,
2006;Haas et al., 2011). Benthic organisms on a coral reef, such as coral, algae, and crustose
coralline algae, influence the amount of dissolved organic carbon (DOC), dissolved oxygen,
and bacterial abundance in the surrounding water (Haas et al., 2010; Haas et al., 2011).
Fleshy macroalgae and algal turfs release more DOC than coral and have higher microbial
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growth in the surrounding water column (Wild et al., 2010; Haas et al., 2011; Haas et al.,
2013b). Turf algae, dominated by filamentous cyanobacteria, producemoreDOC thanother
reefmacro-organisms and can generate nearly 80%of all DOCon a reef (Brocke et al., 2015).

The increase of DOC in the water column can lead to a reduction of certain microbial
taxa and stimulation of other microbial groups (Nelson et al., 2013). An in vitro experiment
showed that the water column, that was dominated by oligotrophic microbial genera
Synechococcus and Pelagibacter, became dominated by the family Vibrionaceae and genera
Pseudoalteromonas, Aeromonas, and Flavobacterium when exposed to exudates from algae
(Nelson et al., 2013). In contrast, the phylumPlanctomycetes and families Bacteriovoraceae,
Erythrobacteraceae, Kordiimonadaceae, and Hyphomonadaceae were the dominant
microbial taxa when exposed to exudates from coral (Nelson et al., 2013). In situ studies also
demonstrate a correlation between reef macro-organism cover and microbial community
taxa in the water column (Dinsdale et al., 2008a; Kelly et al., 2014; Tout et al., 2014).
Microbial communities on coral-dominated reefs show a higher proportion of sequences
similar to phyla Cyanobacteria and Firmicutes, and class Alphaproteobacteria. In contrast,
reefs with high algae cover (up to 68%) and low coral cover have ten times the microbial
abundance compared to a coral-dominated reef, with a higher proportion of sequences
similar to phylum Bacteroidetes, classes Gammaproteobacteria and Betaproteobacteria,
and opportunistic pathogens from the Vibrio genera (Dinsdale et al., 2008a; Bruce et al.,
2012; Kelly et al., 2014). On a broader scale, the microbial communities above a healthy
reef can be described as copiotrophic in general, whereas microbial communities adjacent
to the reef above a sandy substrate, or in open water off the reef are described as more
oligotrophic (Tout et al., 2014).

Microbial community characteristics vary across coral reefs and among sites within reefs,
and these changes correlate with coral cover (Kelly et al., 2014; Tout et al., 2014). Because
of the interactions between a benthic organism and the surrounding water layers, we
hypothesized that within a single reef (≤50 m2) there will be a mosaic pattern of microbial
communities in the boundary layers surrounding each benthic organism. We propose that
each benthic organism influences the microbiome in the water column boundary layers,
promoting a benthic organism-specific microbial community that we call the ‘aura-biome’.
To test our aura-biome hypothesis, we take a shotgun metagenomics approach (Dinsdale
et al., 2008b) and describe the microbial communities in the water column directly above
and around (momentum and diffusive boundary layers) different benthic reef organisms.
We tested multiple benthic organisms, including coral, fleshy macroalgae, turf algae, and
zoanthids on a single reef of the Abrolhos Bank in the South Atlantic.

METHODS
Field site
We conducted the study on the Abrolhos Bank coral reefs, which are situated on a
45,000 km2 expansion of the continental shelf in the southern Bahia state of Brazil. The
Abrolhos Bank supports the largest coral reefs in the South Atlantic, but coral cover has
declined over the last decade (Francini-Filho et al., 2008; Francini-Filho et al., 2013). We
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focused our study on the reefs surrounding Ilha Santa Bárbara (−18.033333,−38.6668038),
which is in a marine protected area. The island is about 60 km from the coast with no
agricultural runoff, and housing for about 10 people. The reef site was approximately
50 m2, within which we sampled the water column above replicate patches of each
dominant organism. The sampling was conducted over two days (23 and 24 June 2014).
The first dive was in the afternoon of 23rd June, and the second and third dives were in the
morning and afternoon of 24th June. Three separate sampling dives were taken to allow
time to filter the water for microbial collection. The research was conducted under a federal
government license (SISBIO no. 10112 - 2). We received this license to access protected
areas from Parque Nacional Marinho de Abrolhos/IBAMA (Instituto Brasileiro do Meio
Ambiente e dos Recursos Naturais Renova’veis).

Collection of water was conducted on small patches of the reef where a single macro-
organism dominated the benthos. A 1 m2 quadrat was placed haphazardly on selected
patches and multiple photographs were taken of each sampling plot. Care was taken when
placing the quadrat to not cause excessive water movement and disturbance the boundary
layers. Photographs were taken of each quadrat and 30 points within the plot weremeasured
to determine the percent cover of the benthic organism in each plot (Fig. 1). A Manta2
Series MultiprobeTM handheld data logging instrument was placed on the surface of the
benthic organism to log water physio-chemistry on each dive (Fig. S1).

Microbial sampling technique
Microbial samples were collected using a bilge pump and bag unit. Approximately 20 L
of water was pumped directly off the benthic surface (the pump was held about 1 cm
above the surface of the organism, but no further than 5 cm above the surface). The end
of the bilge was placed 1–5 cm directly above the substrate, making sure the pump did not
touch the reef macro-organism. The water collected was a combination of the diffusive
and momentum boundary layers, as described in Barott & Rohwer (2013), and makes up
the aura-biome. In addition, 4 cm above a coral was identified as the location with the
highest abundance of heterotrophic bacteria (Seymour et al., 2005), and this local maxima
was targeted by the sampling. The water surrounding four distinct macro-organisms was
collected for metagenome construction. The four reef macro-organisms included; (1)
coral (Mussismilia braziliensis) (n= 4), (2) fleshy macroalgae, characterized by numerous
genera, including Stypopodium, Dictyota and Canistrocarpus (n= 3), (3) benthic turf algae,
characterized by closely cropped long red filaments of both red algae and cyanobacterial
mats (n= 3), (4) zoanthid (Palythoa caribaeorum) (n= 2), and we also collected water
column samples (facing the open ocean ∼3 m above the reef) (n= 4). The four reef
organisms and water column samples are our treatments for the statistical analysis and the
number of replicate organisms is given in parenthesis and the total number ofmetagenomes
constructed was 16.

Water collected above each macro-organism was transferred to niskin bottles using a 20
µm filter to remove larger organisms, such as diatoms and phytoplankton. The microbes
collected from all 20 liters were pressure driven by compressed air through a 0.22 µm
sterivex filter. Water from all samples was collected in duplicate sterivexes, except the turf
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Figure 1 Percent cover of benthic organisms.Multiple photographs were taken to accurately describe
percent cover of macro-organism within each quadrat. (A) Points were selected on a 1 m× 1 m quadrat.
A representative photograph of each macro-organism tested including, (B)M. braziliensis, (C) Fleshy
macro-algae, (D) Turf algae, (E) P. caribaeorum, and (F) Water Column sampling.

algae water samples, which were each collected on a single sterivex. Sterivexes were wrapped
with parafilm, placed in a ziploc bag, and stored in liquid nitrogen until extraction of DNA.

DNA extraction and sequencing
Microbial DNA was extracted from sterivex filters with lysis buffer and proteinase K
(Bruce et al., 2012) and purified using the Nucleospin Tissue column purification protocol
(Macherey Nagel, Düren, Germany). Extracted and purified DNA was quantified using
a Qubit (Life Technologies, Carlsbad, CA, USA) to ensure that each sample contains the
minimum amount of DNA required for sequencing. Shotgun metagenomics, a proven
technique used to describe microbial communities (Dinsdale et al., 2008a; Dinsdale et al.,
2008b; Hugenholtz & Tyson, 2008; Kelly et al., 2014; Haggerty & Dinsdale, 2017), was used
to explain the taxonomy and functional pathways present in the microbes from each parcel
of water. Shotgun metagenomes are sequenced without amplification or primers, such
that a random selection of the microbial DNA including all gene areas are sequenced,
and identified using bioinformatics techniques (described below). Following Illumina
protocols, metagenomic libraries were created from each sample using 100 ng of starting
input DNA using the TruSeq DNA PCR-Free Library Preparation Kit. Libraries were
paired-end sequenced on an Illumina MiSeq with a v3 600-cycle reagent kit.
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Metagenomic analysis
Metagenomic sequences were run through the bioinformatics tool PRINSEQ to remove
and trim any low quality sequences, including exact duplicates, those that contained N’s,
and sequences that had a Q-score of less than 20 (Schmieder & Edwards, 2011). Sequences
were uploaded to the Metagenomics Rapid Annotation Server (MG-RAST) for taxonomic
and functional annotation (Meyer et al., 2008), using the minimum cutoff parameters
of 1×10−5 e-value (Bruce et al., 2012; Garcia et al., 2013), 70% identity, and alignment
length of 30 nucleotides. These parameters are identified as providing a conservative
estimate of both the taxa and function. MG-RAST compares the sequences from the
metagenome to the database to identify the best hit classification within the database
(Meyer et al., 2008). Taxonomic classifications used the SEED database as a reference,
while functional classifications used SEED’s Subsystem Annotation. The SEED annotation
describes metabolic processes in a hierarchical scheme (Overbeek et al., 2005).

Statistical analysis of the metagenomes
The microbial communities were described by comparing the proportion of sequences
that matched each microbial organism in each metagenome. First, we described the
proportion of sequences at the domain level. Second, we described the genera present
in each metagenome. Third, we described the proportion of sequences in the most
abundant 20 genera that vary across the treatments, or aura-biomes. The functions in the
microbial community were compared by investigating the proportion of sequences similar
to each metabolic group. The SEED follows a hierarchical scheme, which includes broad
metabolic groups, such as carbohydrate metabolism, and these groups are broken down
into specific subsystems, for example carbon monoxide dehydrogenase. We tested whether
the proportion of sequences in each genera or metabolism varied between aura-biomes
using an analysis of variance (ANOVA) with a post-hoc Tukey test. Statistical analysis was
conducted on the Statistical Analysis of Metagenomic Profiles (STAMP) package (Parks &
Beiko, 2010).

To visualize whether the microbial community above each macro-organism had a
distinguishing taxonomic or functional profile, two canonical discriminant analyses (CDA)
were conducted using SPSS, similar to techniques described inDinsdale et al. (2013). CDAs
use linear correlations of variables, in this case taxa or function, that drives the differences
within treatments (Dinsdale et al., 2013). The position of each metagenome reflects the
frequency combination of sequences associated with each variable; the vectors indicate
which variable determines the distribution of metagenomes. Metabolisms that showed a
statistical difference between treatments were explored further by comparing differences
in the proportion of sequences in each gene pathway using an ANOVA with a post-hoc
Tukey test within STAMP.

RESULTS
Four groups of benthic macro-organisms, coral (n= 4), fleshy macroalgae (n= 3), turf
algae (n= 3), and zoanthid (n= 2) were surveyed at the Ilha Santa Barbára reef site (≤50
m2) for percent benthic cover, surrounding water physiochemical properties, and boundary
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layer microbial community structure (Fig. 1, Table S1). We also included a fifth treatment
group with samples collected from the open water column off the reef (∼3 m above the
reef ntotal= 16). Mean benthic percent cover was calculated from quadrat images taken for
each replicated macro-organism group. For the four groups, coral had a mean cover of 78.3
± 2.9%, fleshy macroalgae had a mean cover of 93.8 ± 2.3%, turf algae had a mean cover
of 83.3 ± 3.3%, and zoanthid had a mean cover of 88.3 ± 5.0% on the benthos. During
the three dives, the water was characterized by a mean temperature of 25.36 ± 0.09 ◦C,
pH of 8.18 ± 0.03, chlorophyll concentration of 2.96 ± 0.44 (µg/l), and dissolved oxygen
of 107.22 ± 3.56% saturation and 7.09 ± 0.23 mg/l (Fig. S1).

Constructed metagenomes averaged 1,294,121 sequences per metagenome with each
sequence having an average length of 277 ± 82 bp (Table S2). Bacteria was the most
abundant domain in the metagenomes, averaging 92.5 ± 0.5% of sequences across all
samples (Fig. S2), and was not significantly different in any treatment (p= 0.053). In the
metagenomes collected above zoanthid, domain Eukaryota was significantly higher than
in the metagenomes collected above turf algae (p< 0.05). Viruses were more abundant
in the metagenomes from the water column, coral, and turf algae treatments (p< 0.05)
compared with the other two treatments. Because the total abundance of Eukaryota and
viruses in the metagenomes accounted for only 3.16% of the annotated sequences, we did
not investigate further, but instead focused the analysis on the domain Bacteria. Within
Bacteria, sequences matched to the phylum Proteobacteria were six times higher (63.4 ±
6.7% of the metagenomes) than the second most abundant phylum, Cyanobacteria (10.7
± 3.1%), and third most abundant phylum, Bacteroidetes (10.0 ± 1.5%) (Fig. S3).

Of the 347 bacterial genera found across all treatments (Table S3), the twenty most
abundant genera represented 59.5% of all sequences and were investigated further (Fig. 2).
Candidatus Pelagibacter was the most abundant genus within all samples and was the
most abundant genus in the coral aura-biome (17.2 ± 5.8%) and the water column
(14.3 ± 4.2%) treatments. Alteromonas was the most abundant genus in the zoanthid
aura-biome (27.2 ± 8.9%). Synechococcus had high proportions of sequences in both the
coral aura-biome and water column microbiome (14.3 ± 5.9%). Vibrio was the most
abundant genus in the turf algae aura-biome (11.0 ± 8.8%). Of the top twenty genera,
only Alteromonas was significantly different between treatments (ANOVA Fdf=4= 4.761
p= 0.018). The proportion of sequences of Alteromonas was significantly higher in the
zoanthid aura-biome compared with the fleshy macroalgae aura-biome (Tukey p= 0.020),
turf algae aura-biome (Tukey p= 0.015), and water column (Tukey p= 0.046).

A CDA conducted on the twenty most abundant genera showed the metagenomes
group together based on the macro-organism they were collected above and axis 1 and 2
explained 81.2% of the variance between treatments (Fig. 3). The separation of the turf algae
aura-biome is driven by abundance of genera Vibrio and Flavobacterium, while zoanthid
was driven by the abundance of Alteromonas. The separation of the fleshy macroalgae
aura-biome was driven by the abundance of genera Ruegeria and Roseovarius, while coral
was influenced by the abundance of Synechococcus. The water column appeared to be the
most dissimilar treatment compared to the four macro-organism treatments, and was
driven by many genera including Synechococcus, Shewanella, and Leeuwenhoekiella.
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Figure 2 The 20 most abundant genera across the five samples. An asterisk above each genera shows
significance differences, while color delineates which samples varied.

Microbial metagenomes were compared for their metabolic annotation at broad
functional levels down to specific pathways. At the broadest level there were 27 functional
subsystems, with the most abundant metabolic pathways across all treatments being amino
acids and derivatives (12.5± 0.1%), carbohydrates (12.4± 0.1%), protein metabolism (7.3
± 0.1%), and cofactors, vitamins, prosthetic groups and pigments (6.4 ± 0.1%) (Fig. 4).
Of the 27 broad metabolisms, five were significantly different between aura-biomes.
Membrane transport (ANOVA Fdf=4 = 3.618, p= 0.041) was significantly higher in
zoanthid aura-biomes compared with the coral aura-biome (Tukey p= 0.045) and the
water column (Tukey p= 0.035). The zoanthid aura-biome had a significantly higher
abundance of genes within the phages, prophages, transposable elements, and plasmids
subsystem (ANOVA Fdf=4= 6.636, p= 0.006) compared with all other treatments (Tukey
macroalgae p= 0.046, coral p= 0.004, turf algae p= 0.014, water column p= 0.007).
The fleshy macroalgae aura-biomes had a significantly lower abundance of genes within
phosphorus metabolism (ANOVA Fdf=4 = 7.276, p= 0.004) compared with the water
column (Tukey p= 0.022), and aura-biomes of zoanthid (Tukey p= 0.006) and turf
algae (Tukey p= 0.006). The zoanthid aura-biomes were significantly lower in protein
metabolismgenes (ANOVAFdf=4= 4.234p= 0.026) compared to thewater column (Tukey
p= 0.021). The respiration pathway (ANOVA Fdf=4= 5.617, p= 0.010) varied between
treatments with zoanthid (Tukey p= 0.015) and fleshy macroalgae (Tukey p= 0.027)
aura-biomes have significantly higher genes compared with the turf algae aura-biomes.
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Figure 3 Canonical Discriminant Analysis based on taxa. A CDA was run using the genus level of the
aura-biomes or microbial communities to determine which genera drove differences between groups.

Similar to the taxonomic analysis, a CDA was constructed for the metabolic analysis
using the proportion of metagenomic sequences annotated to the 27 broad functional
subsystems. The CDA showed that metagenomes collected above each macro-organism
group together by treatment, and the two axes explained 93.7% of the variance between
treatments (Fig. 5). Metabolisms including cell division and cell cycle, dormancy and
sporulation, motility and chemotaxis, and cofactors, vitamins, prosthetic groups and
pigments were overrepresented in the coral aura-biome. Potassium metabolism was
overrepresented in the fleshy macroalgae aura-biome. The sulfur, phosphorus, secondary
metabolism, and virulence, disease and defense were overrepresented in the turf algae
aura-biome. Stress response, respiration, and membrane transport metabolisms were
overrepresented in the zoanthid aura-biome. Nucleosides and nucleotides, and regulation
and cell signaling were overrepresented in the water column metagenomes. Each of these
broad pathways contained more specific functions that varied by treatment, which was
analyzed further (Table 1).
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Figure 4 Metabolic pathways at the most broad level. Pathways were averaged between treatments and
those that differed significantly between treatments were visualized. Asterisks above each sample signify
significance, while color of asterisk delineates which treatment it is greater than.

The coral aura-biome had seven specific metabolisms that were overrepresented within
six broad level functions. Six specific pathways overrepresented in the coral aura-biomewere
also overrepresented in thewater column samples, and includedmethicillin resistance,DNA
repair base excision, Pterin metabolism 3, Riboflavin to FAD and YgfZ. De Novo purine
biosynthesis, and Mnm5U34 biosynthesis. Pathways that were exclusively overrepresented
in the water column included YgjD and YeaZ, and tRNA.

The fleshy macroalgae aura-biome had two pathways associated with respiration
that were overrepresented - carbon monoxide dehydrogenase maturation factors and
methanogenesis strays (Table 1). The turf algae aura-biome had another 10 pathways that
were overrepresented, eight of which were within the membrane transport pathway, one
within the respiration pathway, and one within the nucleoside and nucleotide pathway.
These included NhaA, NhaD and sodium-dependent phosphate transporters; fructose and
mannose inducible PTS; galactose-inducible PTS; sucrose-specific PTS; phosphoglycerate
transport system; type III secretion; pyrimidine conversions; and tetrathionate respiration.
Finally, Fap amyloid fiber secretion and general secretion were overrepresented in both the
turf algae and zoanthid aura-biomes.

The zoanthid aura-biome had 16 specific pathways that were overrepresented in nine
broad metabolisms (Table 1). The specific pathways overrepresented include Phd-Doc,
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Figure 5 Canonical Discriminant Analysis based onmetabolic functions. The metabolic pathways that
drove differences between each of the four macro-organisms and water samples.

YdcE-YdcD toxin/antitoxin, purine utilization, bacterial hemoglobins, universal stress
protein family, respiratory dehydrogenases I, terminal cytochrome C oxidases, adhesions,
arsenic resistance, phosphate uptake, phosphate-binding DING proteins, group II intron-
associated genes, polyadenylation specificity factors, RNA polymerase III initiation factor,
and 2-phosphoglycolate salvage.

DISCUSSION
Water column microbiomes are correlated with cover of benthic organisms between reefs
(Dinsdale et al., 2008a; Kelly et al., 2014; Haas et al., 2016; Tout et al., 2014). Here we show
that the relationship betweenmicrobes and benthicmacro-organisms occurs within a single
reef, where the boundary layer aura-biome, defined here as the water directly above and
around a macro-organism, follows a mosaic pattern of the dominant benthic organism.
Coral cover in the Abrolhos Island reefs varies from 3–39% (Oigman-pszczol & Creed,
2004; Leao et al., 2010; Francini-Filho et al., 2013). We exploited the variations in benthic
cover to show that the microbial community in the water above replicate patches varied
depending on the dominant benthic organism.
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Table 1 Summary of significantly different metabolic processes. These specific metabolisms were significantly over represented and found within
the pathways driving differences between treatments in the metabolism CDA.

Organism over represented Broadmetabolic processes Gene pathways ETA/P value

Zoanthid Regulation and cell signaling Phd-Doc, YdcE-YdcD toxin-antitoxin η2= 0.662 p= 0.012
Zoanthid Nucleoside and nucleotides Purine utilization η2= 0.650 p= 0.014
Zoanthid Stress response Bacterial hemoglobins η2= 0.621 p= 0.021
Zoanthid Stress response Universal stress protein family η2= 0.650 p= 0.014
Zoanthid Respiration Respiratory dehydrogenases η2= 0.682 p= 0.008
Zoanthid Respiration Terminal cytochrome C oxidases η2= 0.553 p= 0.048
Zoanthid Virulence disease and defense Adhesions in staphylococcus η2= 0.658 p= 0.013
Zoanthid Virulence disease and defense Arsenic resistance η2= 0.559 p= 0.045
Zoanthid Phosphorus metabolism P uptake η2= 0.750 p= 0.002
Zoanthid Phosphorus metabolism Phosphate-binding DING proteins η2= 0.713 p= 0.005
Zoanthid RNA metabolism Group II intron-associated genes η2= 0.598 p= 0.029
Zoanthid RNA metabolism Polyadenylation specificity factors η2= 0.697 p= 0.006
Zoanthid RNA metabolism RNA polymerase III initiation factor η2= 0.562 p= 0.044
Zoanthid DNA metabolism pathways 2-phosphoglycolate salvage η2= 0.670 p= 0.011

Turf algae Zoanthid Membrane transport Fap amyloid fiber secretion η2= 0.606 p< 0.001
Turf algae Zoanthid Membrane transport General secretion η2= 0.667 p= 0.011

Turf algae Membrane transport NhaA, NhaD and Sodium-dependent
phosphate transporters

η2= 0.605 p= 0.026

Turf algae Membrane transport Fructose and mannose inducible PTS η2= 0.578 p= 0.036
Turf algae Membrane transport Galactose-inducible PTS η2= 0.623 p= 0.021
Turf algae Membrane transport Sucrose-specific PTS η2= 0.611 p= 0.024
Turf algae Membrane transport Phosphoglycerate transport η2= 0.835 p< 0.001
Turf algae Membrane transport Type III secretion η2= 0.628 p= 0.019
Turf algae Nucleoside and nucleotides Pyrimidine conversions η2= 0.559 p= 0.045
Turf algae Respiration Tetrathionate respiration η2= 0.635 p= 0.018

Turf algae Fleshy macroalgae Respiration Methanogenesis strays η2= 0.800 p= 0.026
Fleshy macroalgae Respiration Carbon monoxide dehydrogenase

maturation factors
η2= 0.557 p= 0.046

Water Column Cell division and cell cycle YgjD and YeaZ η2= 0.702 p= 0.006
Water Column RNA metabolism tRNA modification η2= 0.582 p= 0.035

Coral Water Column RNA metabolism Mnm5U34 biosynthesis η2= 0.566 p= 0.041
Coral Water Column Nucleoside and nucleotides De Novo purine biosynthesis η2= 0.648 p= 0.015

Coral Virulence disease and defense Methicillin resistance η2= 0.635 p= 0.017
Coral DNA metabolism pathways DNA repair base excision η2= 0.589 p= 0.032
Coral Cofactors, vitamins, prosthetic groups, and

pigments
Pterin metabolism 3 η2= 0.626 p= 0.020

Coral Vitamins, prosthetic groups, and pigments Riboflavin to FAD η2= 0.587 p= 0.033
Coral Vitamins, prosthetic groups, and pigments YgfZ η2= 0.638 p= 0.017

The microbial communities present in the boundary layer above the host organism
reflect a combination of environmental parameters, including the nutrients in the water
column, the chemicals andmicrobes released bymacro-organisms, as well as the abundance
of predators and the water dynamics (i.e., tides, currents, and waves) (Haas et al., 2011;
Garren & Azam, 2012). The genera and metabolic pathways present in the microbial
communities in each of the aura-biomes provides insight into the micro-environment that
is developing around each macro-organism (Fig. 6).

The functional repertoire in microbes above coral, including Riboflavin RNA processing
and folate and pterines, were functions that suggest oxygenating growth; while the fleshy
macroalgae aura-biome had enrichment in functions suggesting anoxic growth, such as
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Figure 6 Interactions betweenmacro-organisms andmicrobial communities on a reef space. The exudate from the macro-organism induces and
selects for communities whose taxa and metabolic functions create water conditions that may be detrimental to neighboring species (both macro
and microbial).

methanogenesis and carbon monoxide dehydrogenase pathways, which are often found
in anaerobic bacteria (Thauer, 1998). Previous studies have shown that microbial oxygen
consumption differs between exposure to exudates from algae versus exudates from
coral (Haas et al., 2013b). In an incubation study conducted on exudates derived from
fleshy algae, microbial communities were stimulated and able to drawdown the dissolved
organic carbon, whereas the coral exudate increased the dissolved organic carbon levels
during the day (Haas et al., 2013b). Our results suggest that small patches of benthic fleshy
macroalgae are creating anaerobic conditions within their aura-biome. While hypoxia was
not measured in this experiment, direct measurements conducted in Haas et al. (2013a)
documented lower oxygen rates above fleshy macroalgae. Together, these findings suggest
that the fleshy macroalgae aura-biome has different oxygen content versus the coral
aura-biome or open water column.

Turf algae, particularly those with high abundances of cyanobacteria, release high
amounts of dissolved organic carbon (Brocke et al., 2015). In our experiment, the
metagenomes constructed from the turf algae aura-biome, included two specific
heterotrophic bacterial genera, Vibrio and Flavobacterium, suggesting a high amount
of organic carbon is being released by the turf algae. The Flavobacterium genera includes
bacterial pathogens known to cause disease in trout (Crump et al., 2001), while many
species of Vibrio are well-known pathogens associated with declines in coral health, coral
bleaching, and diseases (Kushmaro et al., 2001; Cervino et al., 2004; Rosenberg & Falkovitz,
2004; Cervino et al., 2008). In our study, one of the metagenomes above the turf algae had
28.7% of sequences showing similarity to Vibrio. Other studies found that Vibriomade up
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30–60% of a cultured microbiome of diseased coral (Ritchie et al., 1994;McGrath & Smith,
1999) and up to 80% of taxa from metagenomes constructed from stressed corals (Thurber
et al., 2009).

In addition to the increase in proportions of heterotrophic taxa in the turf algae
metagenomes, a higher proportion of sequences were associated with carbohydrate
metabolisms The presence of the carbohydrate metabolism suggests that these microbes
were rapidly consuming the large amounts of dissolved organic carbon, which is being
secreted into the water by the turf algae (Brocke et al., 2015). The increase of type II, III and
IV secretion systems suggest that the microbes had functions that are often used in cell-
to-cell and host-microbe interactions (Christie, 2001; Alfano & Collmer, 2004; Cianciotto,
2005). Given the high proportion of heterotrophs and potential pathogens and the increase
of secretion systems, the aura-biome produced by the turf algae may be detrimental to the
health of adjacent organisms.

Zoanthids had the most distinctive aura-biome compared to the other treatments.
Previous researchers havemeasured lowerDOCproduction rates from zoanthids compared
to algae and coral (Silveira et al., 2015). Therefore, we suggest that unlike the pattern
observed with turf algae, where high DOC production drives a shift in the aura-biome
composition, other exudates from the macro-organism may be influencing the observed
changes in the microbial community above the zoanthid.

The zoanthid aura-biomes were enriched in Pseudoalteromonas and Alteromonas, which
have been negatively associated with coral cover (Kelly et al., 2014). The Pseudoalteromonas
genus includes potential coral pathogens (Ritchie, 2006), and some Alteromonas species
are associated with coral yellow band disease (Sweet, Bythell & Nugues, 2013). The
functions induced in the zoanthid aura-biome included type II and VIII secretion systems,
toxin/antitoxin system, resistance to antibiotics and toxic compounds, and DNA repair
(Fig. 6). Type II and VIII secretion systems are often found in pathogenic microbes (Olsén,
Jonsson & Normark, 1989; Collinson et al., 1991; Sandkvist, 2001). Toxin/antitoxin gene
pathways are a response to stress, with YdcE as the toxin and YdcD as the inhibitor to
the toxin (Pellegrini et al., 2005). Zoanthids contain a potent toxin, palytoxin (Moore &
Scheuer, 1971), and bacteria isolated from zoanthid display the presence of this hemolytic
toxin as well (Seemann et al., 2009). The release of these toxin-forming microbes from
the organism’s surface, as well as the toxin directly from zoanthid, may be causing
a more stressful environment and the enhancement of the toxin/antitoxin pathways
in the aura-biome. The increase of Pseudoalteromonas and Alteromonas in the water
column surrounding the zoanthid may be another factor enabling the already documented
aggressive zoanthid species to form large monophylogenetic stands (Suchanek & Green,
1981; Bastidas & Bone, 1996; Francini-Filho & Moura, 2010).

The separation between aura-biomes was not absolute. Twenty liters of water was
collected, with mixing occurring from the surrounding water during the sampling
procedure. Despite the potential mixing of the boundary layer and surrounding water, each
aura-biome showed a varying proportion of taxa and functions in themetagenomes (Fig. 6).
The coral and water column metagenomes shared many genera found on coral reefs from
around the world (Ritchie, 2006; Wegley et al., 2007; Bruce et al., 2012). The aura-biome
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induced by the turf algae was driven by an abundance of Vibrio, Flavobacterium and
Rhodopirellula, which is consistent with previous metagenomic descriptions of microbes
present on degraded coral reefs (Dinsdale et al., 2008a). Zoanthids are a dominant organism
on Brazilian coral reefs; these organisms are aggressive in their ability to monopolize reef
space and prohibit recruitment of other species (Mendonça-Neto & Da Gama, 2009).
The ability of zoanthid to influence the microbes in the surrounding water could be an
additional invasive mechanisms.

CONCLUSION
The exudates from the benthic reef organisms are influencing the microbial community
in the water column immediately surrounding the macro-organism, creating a unique
aura-biome. A combination of these aura-biomes make up the microbiome of a reef.
Each aura-biome possesses functions which may drive interactions with their neighboring
organisms, and some of these interactions may be negative. Therefore, as the benthic cover
on a coral reef changes, the microbial community is also changing andmay affect the ability
of benthic organisms to recruit and grow on the reef.
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