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1 Introduction andmain results
In this paper, we consider the following elliptic system:

⎧⎪⎪⎨
⎪⎪⎩
Lu = ηα

* |u|α–|v|βu + ηα
* |u|α–|v|βu + σ|u|q–u,

Lv = ηβ
* |u|α |v|β–v + ηβ

* |u|α |v|β–v + σ|v|q–v,
u, v ∈H

(�),

(.)

where � ⊂R
N is a smooth bounded domain such that  ∈ �, L := (–� · –μ ·

|x| ), 
* := N

N–
is the critical Sobolev exponent, μ̄ := (N–

 ) is the best Hardy constant and H := H
(�)

denotes the completion of C∞
 (�) with respect to the norm ‖u‖ = (

∫
�

|∇u| dx)  and
Hμ =Hμ(�) is defined as the completion of the C∞

 (�) with respect to the norm defined
by ‖u‖μ = (

∫
�
(|∇u| –μ u

|x| )dx)

 for μ < μ̄.

Definitions of strongly and weakly coupled terms are as follows.
The terms |u|α and |v|β (α,β > ) are weakly coupled, |Lu|α|Kv|β (α,β > ) is strongly

coupled when L or K is a derivative operator. Thus, η|u|α |v|β + η|u|α |v|β is strongly
coupled when η and η are positive.
The parameters in (.) satisfy the following assumption.

(H) N ≥ ,  ≤ μ < μ̄,  < q < , η + η > ,  ≤ ηi < +∞, σi > , αi,βi > , αi + βi = *,
i = , .
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The corresponding energy functional of (.) is defined in H ×H by

J(u, v) :=



∫
�

(
|∇u| + |∇v| –μ

|u| + |v|
|x|

)
dx –


*
Q(u, v) –


q
K(u, v),

whereQ(u, v) :=
∫
�
(η|u|α |v|β +η|u|α |v|β )dx andK(u, v) :=

∫
�
(σ|u|q +σ|v|q)dx. Then

J ∈ C(H ×H ,R) and the duality product between H ×H and its dual space (H ×H)– is
defined as

〈
J ′(u, v), (φ,φ)

〉
:=

∫
�

(
∇u∇φ +∇v∇φ –μ

uφ + vφ

|x|
)
dx

–
∫

�

(
ηα

*
|u|α–|v|βuφ +

ηα

*
|u|α–|v|βuφ

)
dx

–
∫

�

(
ηβ

*
|u|α |v|β–vφ +

ηβ

*
|u|α |v|β–vφ

)
dx

–
∫

�

(
σ|u|q–uφ + σ|v|q–vφ

)
dx,

where u, v,φ,φ ∈ H and J ′(u, v) denotes the Fréchet derivative of J at (u, v). A pair of
functions (u, v) ∈H ×H is said to be a weak solution of (.) if

(u, v) 
= (, ),
〈
J ′(u, v), (φ,φ)

〉
= , ∀(φ,φ) ∈ H ×H .

Therefore, a weak solution of (.) is equivalent to a nonzero critical point of J(u, v) [].
Problem (.) is related to the well-known Hardy inequality []

∫
RN

|u|
|x| dx ≤ 

μ̄

∫
RN

|∇u| dx, ∀u ∈ C∞


(
R

N)
. (.)

Ifμ < μ̄, by (.),
∫
�
(|∇u| –μ u

|x| )dx is an equivalent norm ofH , the operator L is positive
and the first eigenvalue 	(μ) of L and the following best constant are well defined:

S(μ) := inf
u∈D,(RN )\{}

∫
RN (|∇u| –μ u

|x| )dx

(
∫
RN |u|* dx) 

*
, ∀μ ∈ (–∞, μ̄), (.)

where D,(RN ) is the completion of C∞
 (RN ) with respect to (

∫
RN |∇u| dx)  . Note that

S() is the well-known best Sobolev constant. For  ≤ μ < μ̄, the constant S(μ) is achieved
by the following extremal functions []:

Vμ,ε(x) := ε
–N
 Uμ

(
ε–x

)
, ∀ε > , (.)

where Uμ(x) =Uμ(|x|) is a radially symmetric function

Uμ(x) =
(
N(μ̄ –μ)√

μ̄

)√
μ̄
 (|x|

√
μ̄–

√
μ̄–μ√

μ̄ + |x|
√

μ̄+
√

μ̄–μ√
μ̄

)–√
μ̄.

On the other hand, for anyμ < μ̄, η +η > ,  ≤ ηi <∞, αi,βi >  and αi+βi = *, i = , ,
by the Young and Sobolev inequalities, the following best constants are well defined on the
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spaceD = (D,(RN ) \ {}):

Sη,β (μ) := inf
(u,v)∈D

∫
RN (|∇u| + |∇v| –μ

|u|+|v|
|x| )dx

(
∫
RN (η|u|α |v|β + η|u|α |v|β )dx) 

*
. (.)

We define

f (τ ) :=
 + τ 

(ητβ + ητβ )

*
, τ > . (.)

Since f is a continuous function on (,∞) such that limτ→+ f (τ ) = limτ→+∞ f (τ ) = +∞.
Then there exists τ >  such that

f (τ) :=min
τ>

f (τ ) > . (.)

Set α = β, α = β, σ = σ and u = v. Then (.) reduces to the semilinear scalar prob-
lems that have been extensively investigated bymany authors. See [–] and the references
therein.
Regular semilinear elliptic systems have been studied extensively and many conclusions

have been established. For example, Alves et al. studied in [] an elliptic system and some
important conclusions had been obtained. However, the elliptic systems involving the
Hardy inequality have seldombeen studied andwe only find some results in [–]. Thus it
is necessary for us to investigate the related singular systems deeply. Among the references
above, the elliptic systems involving the Hardy inequality and concave-convex nonlinear-
ities had been studied only in []. In this paper, only the case  < q <  of (.) involving
multiple strongly-coupled critical terms is considered.
Let |�| be the Lebesgue measure of �. We define the following constant:

ϒ :=
(
* – q
* – 

	
– q


 |�|– q


)–(* – q
 – q

(
Sη,β(μ)

)– *


)– –q
*–

. (.)

Then the main results of this paper can be concluded in the following theorems and the
conclusions are new to the best of our knowledge. It can be verified that the intervals in
Theorems . and . for the parameters σ, σ, μ and q are allowable.

Theorem . Suppose that (H) holds and σ +σ < ϒ. Then problem (.) has at least one
positive solution.

Theorem . Suppose that (H) holds, N > , μ < μ̄ – (Nq –
√

μ̄) and N
N– < q < . Then

there exists ϒ >  such that problem (.) has at least two positive solutions for all σ and
σ satisfying σ + σ <ϒ.

This paper is organized as follows. Some preliminary results and properties of the Ne-
hari manifold are established in Sections  and , and Theorems . and . are proved in
Section .

http://www.boundaryvalueproblems.com/content/2012/1/116
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2 The local Palais-Smale condition
Throughout this paper, we always assume that the assumption (H) holds, ‖u‖H := ‖u‖μ =
(
∫
�
(|∇u| – μ

|u|
|x| )dx)

/ denotes the norm of the space H , by the Hardy inequality ‖ · ‖μ

is equivalent to ‖ · ‖, i.e.,
(
 –


μ̄
max(μ, )

)/

‖u‖ ≤ ‖u‖μ ≤
(
 –


μ̄
min(μ, )

)/

‖u‖, ∀u ∈ H .

	 denotes the first eigenvalue of the operator L, ‖z‖ = ‖z‖H×H = ‖(u, v)‖H×H = (‖u‖H +
‖v‖H )/ means the norm of the space E := H

(�) × H
(�), E– is the dual space of E.

tz = t(u, v) = (tu, tv) for all z ∈ E and t ∈R. z = (u, v) is said to be nonnegative in � if u≥ 
and v ≥  in �. z = (u, v) is said to be positive in � if u >  and v >  in �. Br() = {x ∈
R

N | |x| < r} is a ball in R
N . O(εt) denotes a quantity satisfying |O(εt)|/εt ≤ C, o(εt) means

|o(εt)|/εt →  as ε →  and o() is a generic infinitesimal value. In particular, the quantity
O(εt) means that there exist the constantsC,C >  such thatCε

t ≤ O(εt) ≤ Cε
t as ε is

small. We always denote positive constants as C and omit dx in integrals for convenience.

Lemma . If {zn} ⊂ E is a (PS)c-sequence of J with zn ⇀ z in E, then J ′(z) =  and J(z) ≥
F(τ ()

 , τ ()
 ), where

F
(
τ
()
 , τ ()


)
= inf

τ,τ>
F(τ, τ) < ,

τ
(i)
 =

(
N(* – q)	– q


 |�|– q



*

) 
–q

σ


–q
i , i = , ,

F(τ, τ) =

N

(
τ 
 + τ 


)
–
* – q
*q

	
– q


 |�|– q

(
στ

q
 + στ

q

)
.

Proof Let zn = (un, vn) and z = (u, v). Since {zn} is a (PS)c-sequence of J with zn ⇀ z in E,
we can deduce that J ′(z) = , and therefore 〈J ′(z), z〉 = , that is,

Q(z) = ‖z‖ –K(z).

Consequently,

J(z) =
(


–


*

)
‖z‖ –

(

q
–


*

)
K(z).

From the Hölder inequality it follows that

J(z) ≥
(


–


*

)
‖z‖ –

(

q
–


*

)
|�|– q



(
σ

(∫
�

|u|
) q


+ σ

(∫
�

|u|
) q


)

≥ 
N

‖z‖ – * – q
*q

	
– q


 |�|– q

(
σ‖u‖qH + σ‖v‖qH

)

≥ F
(
τ
()
 , τ ()


)
.

Thus, the proof is complete. �
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Lemma . If {zn} ⊂ E is a (PS)c-sequence of the functional J , then {zn} is bounded in E.

Proof See Hsu [, Lemma .]. �

Lemma. Suppose that (H) holds.Then J satisfies the (PS)c condition for all c < c*,where

c* =

N

(
Sη,β(μ)

)N
 + F

(
τ
()
 , τ ()


)
. (.)

Proof We follow the argument in []. Let {zn} ⊂ E be a (PS)c-sequence of J with c < c*.
Write zn = (un, vn). We know from Lemma . that {zn} is bounded in E, and then zn ⇀

z = (u, v) up to a subsequence, z is a critical point of J . Furthermore, we may assume that
un ⇀ u, vn ⇀ v weakly in H and un → u, vn → v strongly in Ls(�) for all  ≤ s < * and
un → u, vn → v a.e. in �. Hence, we have that

J ′(z) =  and K(zn) = K(z) + o(). (.)

Set ũn = un – u, ṽn = vn – v and z̃n = (ũn, ṽn). From the Brézis-Lieb lemma [] it follows
that

‖z̃n‖ = ‖zn‖ – ‖z‖ + o(), (.)

and by Lemma . in [] we have

∫
�

|ũn|αi |ṽn|βi =
∫

�

|un|αi |vn|βi –
∫

�

|u|αi |v|βi + o(), i = , . (.)

Since J(zn) = c + o(), J ′(zn) = o() and by (.) to (.), we can deduce that



‖z̃n‖ – 

*
Q(z̃n) = c – J(z) + o() (.)

and

‖z̃n‖ –Q(z̃n) = o().

Hence, we may assume that

lim
n→∞‖z̃n‖ = lim

n→∞Q(z̃n) = l. (.)

If l = , the proof is complete. Assume l > ; then from (.) and the definition of Sη,β (μ)
it follows that

Sη,β (μ)l

* = lim

n→∞Sη,β(μ)
(
Q(z̃n)

) 
*

≤ lim
n→∞‖z̃n‖ = l,

which implies that

l ≥ (
Sη,β (μ)

)N
 . (.)

http://www.boundaryvalueproblems.com/content/2012/1/116


Hsu Boundary Value Problems 2012, 2012:116 Page 6 of 14
http://www.boundaryvalueproblems.com/content/2012/1/116

In addition, from (.) to (.) and Lemma ., we get

c =
(


–


*

)
l + J(z)

≥ 
N

(
Sη,β(μ)

)N
 + F

(
τ
()
 , τ ()


)
= c*,

which is a contradiction. Therefore, the proof of Lemma . is complete. �

3 Nehari manifold
Since J is unbounded below on E, we need to consider J on the Nehari manifold

Mσ =
{
z ∈ E \ {} : 〈J ′(z), z〉 = 

}
.

Thus, z ∈Mσ if and only if

〈
J ′(z), z

〉
= ‖z‖ –Q(z) –K(z) = . (.)

By the Hölder inequality and the definition of 	 it follows that

K(z) ≤
(

σ

(∫
�

|u|
) q


+ σ

(∫
�

|v|
) q


)

|�|– q


≤ (
σ

(‖u‖H
)q + σ

(‖v‖H)q)
	

– q


 |�|– q


≤ (σ + σ)	
– q


 |�|– q
 ‖z‖q. (.)

Lemma . The functional J is coercive and bounded below onMσ .

Proof Suppose that z = (u, v) ∈Mσ . From (.) and (.) we get

J(z) =
(


–


*

)
‖z‖ –

(

q
–


*

)
K(z) (.)

≥ 
N

‖z‖ –
(
* – q
*q

)
(σ + σ)	

– q


 |�|– q
 ‖z‖q. (.)

Thus, J is coercive and bounded below onMσ . �

Define �(z) = 〈J ′(z), z〉. Then for all z = (u, v) ∈Mσ we have

〈
�′(z), z

〉
= ‖z‖ – *Q(z) – qK(z)

= ( – q)‖z‖ – (
* – q

)
Q(z) (.)

= –
(
* – 

)‖z‖ + (
* – q

)
K(z). (.)

We splitMσ into three parts:

M+
σ =

{
z ∈Mσ :

〈
�′(z), z

〉
> 

}
,

M
σ =

{
z ∈Mσ :

〈
�′(z), z

〉
= 

}
,

M–
σ =

{
z ∈Mσ :

〈
�′(z), z

〉
< 

}
.

http://www.boundaryvalueproblems.com/content/2012/1/116


Hsu Boundary Value Problems 2012, 2012:116 Page 7 of 14
http://www.boundaryvalueproblems.com/content/2012/1/116

Lemma. Suppose that z ∈ E is a localminimizer of J onMσ and z /∈M
σ .Then J ′(z) = 

in E–.

Proof The proof is similar to that of [] and the details are omitted. �

Lemma . M
σ = ∅ for all σ + σ ∈ (,ϒ).

Proof We argue by contradiction. Suppose that there exist σ,σ >  such that  < σ +σ <
ϒ andM

σ 
= ∅. Then the fact z = (u, v) ∈M
σ together with (.) and (.) imply that

‖z‖ = * – q
 – q

Q(z), (.)

and

‖z‖ = * – q
* – 

K(z). (.)

By (.) and (.) we have

‖z‖ ≤ * – q
 – q

(
Sη,β(μ)

)– *
 ‖z‖* ,

which implies that

‖z‖ ≥
(
* – q
 – q

(
Sη,β (μ)

)– *


)– 
*–

. (.)

By (.) and (.) we have

‖z‖ ≤
(
* – q
* – 

	
– q


 |�|– q


) 
–q

(σ + σ)


–q . (.)

From (.) and (.) it follows that

σ + σ ≥
(
* – q
* – 

	
– q


 |�|– q


)–(* – q
 – q

(
Sη,β (μ)

)– *


)– –q
*–

= ϒ,

which is a contradiction. �

By Lemma ., we writeMσ =M+
σ ∪M–

σ and define

ασ = inf
z∈Mσ

J(z); α±
σ = inf

z∈M±
σ

J(z).

Lemma .
(i) ασ ≤ α+

σ <  for all σ + σ ∈ (,ϒ).
(ii) There exists a positive constant d depending on σ, σ, q, N , Sη,β (μ), 	 and |�|

such that α–
σ > d for all σ + σ ∈ (, qϒ).

http://www.boundaryvalueproblems.com/content/2012/1/116
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Proof
(i) Let z = (u, v) ∈M+

σ . By (.) and (.) it follows that

 – q
* – q

‖z‖ >Q(z). (.)

According to (.) and (.), we have that

J(z) =
(


–

q

)
‖z‖ +

(

q
–


*

)
Q(z)

<
[(



–

q

)
+

(

q
–


*

)
 – q
* – q

]
‖z‖

= –
 – q
qN

‖z‖ < ,

which implies that ασ ≤ α+
σ < .

(ii) Suppose that σ + σ ∈ (, qϒ) and z = (u, v) ∈ M–
σ . By (.), (.) and (.) we have

that

 – q
* – q

‖z‖ <Q(z) ≤ (
Sη,β (μ)

)– *
 ‖z‖* ,

which implies that

‖z‖ >
(
 – q
* – q

) 
*– (

Sη,β (μ)
) *
(*–) . (.)

From (.) and (.) it follows that

J(z) ≥ ‖z‖q
(

N

‖z‖–q –
(
* – q
*q

)
	

– q


 |�|– q
 (σ + σ)

)
≥ d,

where d = d(σ,σ,q,N ,	,Sη,β(μ), |�|) is a positive constant. �

Lemma . Suppose that σ +σ ∈ (,ϒ) and z ∈ E with Q(z) > .Then there exist unique
t+, t– >  such that t+z ∈M+

σ and t–z ∈M–
σ . In particular, we have

t– > tmax :=
(
( – q)‖z‖
(* – q)Q(z)

) 
*–

> t+,

J(t+z) =min≤t≤tmax J(tz) and J(t–z) =maxt≥tmax J(tz).

Proof The proof is similar to that of [] and is omitted. �

For each z ∈ E with K(z) > , we write

tmax =
(
(* – q)K(z)
(* – )‖z‖

) 
–q

> .

Then we have the following lemma.

http://www.boundaryvalueproblems.com/content/2012/1/116
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Lemma . Suppose that σ + σ ∈ (,ϒ) and z ∈ E \ {(, )} with K(z) > . Then there
exist unique  < t+ < tmax < t– such that t+z ∈M+

σ , t–z ∈M–
σ and

J
(
t+z

)
= inf

≤t≤tmax
J(tz); J

(
t–z

)
= sup

t≥
J(tz).

Proof The proof is almost the same as that in [, Lemma .] and is omitted here. �

4 Proof of Theorems 1.1 and 1.2
Lemma .

(i) If σ + σ ∈ (,ϒ), then the functional J has a (PS)ασ -sequence {zn} ⊂Mσ .
(ii) If σ + σ ∈ (, qϒ), then the functional J has a (PS)α–σ -sequence {zn} ⊂M–

σ .

Proof The proof is similar to that of [] and is omitted. �

Lemma . Suppose that σ + σ ∈ (,ϒ). Then J has a minimizer z() ∈ M+
σ such that

z() is a positive solution of (.) and J(z()) = ασ = α+
σ < .

Proof By Lemma .(i), there exists a (PS)ασ -sequence {zn} ⊂Mσ of J such that

J(zn) = ασ + o() and J ′(zn) = o() in E–. (.)

Since J is coercive on Mσ (see Lemma .), we get that {zn} is bounded in E. Passing to
a subsequence (still denoted by {zn}), we can assume that there exists z() = (u(), v()) ∈ E
such that

⎧⎪⎪⎨
⎪⎪⎩
un ⇀ u(), vn ⇀ v() weakly in H ,

un → u(), vn → v() a.e. in �,

un → u(), vn → v() strongly in Ls(�) for all  ≤ s < *,

(.)

which implies that

K(zn) = K
(
z()

)
+ o() as n → ∞. (.)

First, we claim that z() is a solution of (.). By (.) and (.), it is easy to see that z() is
a solution of (.). Furthermore, from {zn} ⊂Mσ and (.), we deduce that

K(zn) =
q(* – )
(* – q)

‖zn‖ – *q
* – q

J(zn). (.)

Taking n→ ∞ in (.), by (.), (.) and the fact ασ < , we get

K
(
z()

) ≥ –
*q
* – q

ασ > .

Therefore, z() ∈Mσ is a nontrivial solution of (.).

http://www.boundaryvalueproblems.com/content/2012/1/116
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Next, we prove that zn → z() strongly in E and J(z()) = ασ . Noting z() ∈Mσ and apply-
ing the Fatou lemma, we have

ασ ≤ J
(
z()

)
=


N

∥∥z()∥∥ –
* – q
*q

K
(
z()

)

≤ lim inf
n→∞

(

N

‖zn‖ – * – q
*q

K(zn)
)

= lim inf
n→∞ J(zn) = ασ .

Therefore, J(z()) = ασ and limn→∞ ‖zn‖ = ‖z()‖. Set z̃n = zn – z(). By the Brézis-Lieb
lemma [], we get

‖z̃n‖ = ‖zn‖ –
∥∥z()∥∥ + o().

Then standard argument shows that zn → z() strongly in E. Moreover, we have z() ∈M+
σ .

Otherwise, if z() ∈ M–
σ , then by Lemma . there exist unique t± such that t± z() ∈ M±

σ

and t+ < t– = . Since

d
dt

J
(
t+z

()) =  and
d

dt
J
(
t+z

()) > ,

there exists t̄ ∈ (t+ , t– ) such that J(t+z()) < J(t̄z()). By Lemma . we get that

J
(
t+z

()) < J
(
t̄z()

) ≤ J
(
t–z

()) = J
(
z()

)
,

which is a contradiction. Since J(z()) = J(|z()|) and |z()| ∈ M+
σ , by Lemma . we may

assume that z() is a nontrivial nonnegative solution of (.).
In particular u() 
≡ , v() 
≡ . Indeed, without loss of generality, we may assume that

v() ≡ . Then as u() is a nontrivial nonnegative solution of

⎧⎨
⎩
–�u –μ u

|x| = σ|u|q–u in �,

u =  on ∂�,

by the standard regularity theory, we have u() >  in � and

∥∥(
u(), 

)∥∥ = K
(
u(), 

)
> .

Moreover, we may choose w ∈H
(�) \ {} such that

∥∥(,w)∥∥ = K(,w) > .

Now,

K
(
u(),w

)
= K

(
u(), 

)
+K(,w) > 
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and so by Lemma . there is unique  < t+ < tmax such that (t+u(), t+w) ∈M+
σ . Moreover,

tmax =
(

(* – q)K(u(),w)
(* – )‖(u(),w)‖

)
=

(
* – q
* – 

)/(–q)

> 

and

J
(
t+u(), t+w

)
= inf

≤t≤tmax
J
(
tu(), tw

)
.

This implies

α+
σ ≤ J

(
t+u(), t+w

) ≤ J
(
u(),w

)
< J

(
u(), 

)
= α+

σ

which is a contradiction.
Finally, from the maximum principle [] we deduce that z() >  in � and z() is thus a

positive solution of (.). �

Let Vμ,ε(x) be defined as in (.) and set uε(x) = ψ(x)Vμ,ε(x), where ψ(x) is a cut-off
function:

ψ(x) ∈D*(�) :=
{
ψ ∈ C∞

 (�) :ψ(x)≡  in a neighborhood of x = 
}
.

The following results are already known.

Lemma . [] As ε →  we have the following estimates:

‖uε‖H = S(μ)
N
 +O

(
ε

√
μ̄–μ

)
, (.)∫

�

|uε|* = S(μ)
N
 +O

(
ε

*√μ̄–μ
)
, (.)

∫
�

|uε|q =

⎧⎪⎪⎨
⎪⎪⎩
O(εN–q

√
μ̄), μ < μ̄ – (Nq –

√
μ̄),

O(εN–q
√

μ̄| ln ε|), μ = μ̄ – (Nq –
√

μ̄),

O(εq
√

μ̄–μ), μ > μ̄ – (Nq –
√

μ̄).

(.)

Lemma . [] Suppose that (H) holds, f (τ ) is defined as in (.) and Vμ,ε(x) are the
minimizers of S(μ) defined as in (.). Then Sη,β(μ) = f (τ)S(μ) and has the minimizers
(Vμ,ε(x), τVμ,ε(x)), where f (τ) :=minτ≥ f (τ ) > .

Lemma . Under the assumptions of Theorem ., there exist z̃ ∈ E \ {} and 	* >  such
that for all σ + σ <	* there holds

sup
t≥

J(tz̃) < c* =

N

(
Sη,β (μ)

)N
 + F

(
τ
()
 , τ ()


)
. (.)

In particular, α–
σ < c* for all σ + σ < 	*.
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Proof For all t ≥ , define the functions g(t) := J(tuε , tτuε) and

g(t) :=
t


(
 + (τ)

)‖uε‖H –
t*

*
(
η(τ)β + η(τ)β

)∫
�

|uε|* .

Note that limt→+∞ g(t) = –∞ and g(t) >  as t is closed to . Thus, supt≥ g(t) is attained
at some finite tε >  with g ′

(tε) = . Furthermore, C′ < tε < C′′, where C′ and C′′ are the
positive constants independent of ε.
Choose δ >  small enough such that c* >  for all σ + σ < δ. Set zε = (uε , τuε). Then

J(tzε) ≤ t
 ‖zε‖ for all t ≥  and σ,σ > , which implies that there exists t ∈ (, ) satis-

fying sup≤t≤t J(tzε) < c*, for all σ + σ < δ. Note that

max
t≥

(
t


B –

t*

*
B

)
=


N

(
BB

– 
*


)N

 , B,B > . (.)

From (.) and Lemmas ., . it follows that

g(tε) ≤ 
N

(
( + (τ))‖uε‖H

((η(τ)β + η(τ)β )
∫
�

|uε|* )

*

)N


≤ 
N

(
f (τ)

S(μ)N +O(ε
√

μ̄–μ)

(S(μ)N +O(ε*
√

μ̄–μ))

*

)N


≤ 
N

(
f (τ)S(μ)

)N
 +O

(
ε

√
μ̄–μ

)

=

N

(
Sη,β (μ)

)N
 +O

(
ε

√
μ̄–μ

)
.

Consequently,

sup
t≥t

g(t) < sup
t≥t

(
g(t) –

tq

q
K(zε)

)

≤ 
N

(
Sη,β (μ)

)N
 +O

(
ε

√
μ̄–μ

)
–
tq
q

(
σ + (τ)qσ

)∫
�

|uε|q

≤ 
N

(
Sη,β (μ)

)N
 +O

(
ε

√
μ̄–μ

)
–C(σ + σ)

∫
�

|uε|q

≤ 
N

(
Sη,β (μ)

)N
 +O

(
ε

√
μ̄–μ

)
– (σ + σ)O

(
εN–q

√
μ̄
)

and

(N – q
√

μ̄)
 – q
q

< 
√

μ̄ –μ – (N – q
√

μ̄),

where we have used the assumption μ < μ̄ – (Nq –
√

μ̄).
Therefore we can choose σ =O(εr ), σ =O(εr ) such that

(N – q
√

μ̄)
 – q
q

< r, r < 
√

μ̄ –μ – (N – q
√

μ̄),

(σ + σ)O
(
εN–q

√
μ̄
)
=O

(
εmin(r,r)+N–q

√
μ̄
)
.
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The definition of F(τ ()
 , τ ()

 ) in Lemma . implies that

F
(
τ
()
 , τ ()


)
= –O

(
ε


–q min(r,r)).

Note that

min(r, r) +N – q
√

μ̄ <


 – q
min(r, r),

min(r, r) +N – q
√

μ̄ < 
√

μ̄ –μ.

Taking ε small enough, there exists δ >  such that for all  < σ + σ < δ,

O
(
ε

√
μ̄–μ

)
– (σ + σ)O

(
εN–q

√
μ̄
)
< F

(
τ
()
 , τ ()


)
. (.)

Choose 	* =min{δ, δ} > . Then for all σ + σ ∈ (,	*) there holds

sup
t≥

J(tzε) < c*. (.)

Finally, we prove that α–
σ < c* for all σ + σ < 	*. Recall that zε = (uε , τuε). By Lemma .,

the definition of α–
σ and (.), we can deduce that there exists t̃ >  such that t̃zε ∈M–

σ

and

α–
σ ≤ J(t̃zε) ≤ sup

t≥
J(t̃zε) < c*.

The proof is thus complete by taking z̃ = zε . �

Lemma . Set ϒ := min{	*, qϒ}. Then for all σ + σ ∈ (,ϒ), problem (.) has a
positive solution z() such that z() ∈M–

σ and J(z()) = α–
σ .

Proof By Lemma ., there exists a (PS)α–σ -sequence {zn} ⊂ M–
σ of J for all σ + σ < q

ϒ.
From Lemmas ., . and ., it follows that α–

σ >  and J satisfies the (PS)α–σ condition for
all σ +σ <ϒ. Since J is coercive onMσ , we get that {zn} is bounded in E. Therefore, there
exist a subsequence (still denoted by {zn}) and z() = (u(), v()) ∈ M–

σ such that zn → z()

strongly in E and J(z()) = α–
σ >  for all σ + σ < ϒ. Since J(z()) = J(|z()|) and |z()| ∈

M–
σ , by Lemma . we may assume that z() is a nontrivial nonnegative solution of (.).

Moreover, by (.) and z() = (u(), v()) ∈M–
σ , we get

Q
(
z()

)
=

 – q
* – q

∥∥z()∥∥ > .

This implies that u() 
≡  and v() 
≡ . From the strong maximum principle [] it follows
that z() is a positive solution of (.). �

Proof of Theorems . and .. By Lemma ., we obtain that (.) has a positive solution
z() ∈M+

σ for all σ + σ < ϒ. On the other hand, from Lemma ., we can get the second
positive solution z() ∈M–

σ for all σ +σ <ϒ <ϒ. SinceM+
σ ∩M–

σ = ∅, this implies that
z() and z() are distinct. �
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