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Abstract

In this paper, we explore a novel approach to end-to-end round-trip time (RTT) estimation using a machine-learning
technique known as the experts framework. In our proposal, each of several ‘experts’ guesses a fixed value. The
weighted average of these guesses estimates the RTT, with the weights updated after every RTT measurement based
on the difference between the estimated and actual RTT.
Through extensive simulations, we show that the proposed machine-learning algorithm adapts very quickly to
changes in the RTT. Our results show a considerable reduction in the number of retransmitted packets and an
increase in goodput, especially in more heavily congested scenarios. We corroborate our results through ‘live’
experiments using an implementation of the proposed algorithm in the Linux kernel. These experiments confirm the
higher RTT estimation accuracy of the machine learning approach which yields over 40% improvement when
compared against both standard transmission control protocol (TCP) as well as the well known Eifel RTT estimator. To
the best of our knowledge, our work is the first attempt to use on-line learning algorithms to predict network
performance and, given the promising results reported here, creates the opportunity of applying on-line learning to
estimate other important network variables.

1 Introduction
Latency is an important parameter when designing, man-
aging, and evaluating computer networks, their protocols,
and applications. One metric that is commonly used to
capture network latency is the end-to-end round-trip
time (RTT) which measures the time between data trans-
mission and the receipt of a positive acknowledgment.
Depending on how the RTT is measured (e.g., at which
layer of the protocol stack), besides the time it takes for the
data to be serviced by the network, the RTT also accounts
for the ‘service time’ at the communication end points.
In some cases, RTT measurement can be done implicitly
by using existing messages; however, in several instances,
explicit ‘probe’ messages have to be used. Such explicit
measurement techniques can render the RTT estimation
process quite expensive in terms of their communication
and computational burden.
Several network applications and protocols use the RTT

to estimate network load or congestion and therefore need

*Correspondence: bastuto@gmail.com
1Department of Computer Engineering, Baskin School of Engineering,
University of California, Santa Cruz, CA 95064, USA
Full list of author information is available at the end of the article

to measure it frequently. The transmission control proto-
col, TCP, is one of the best known examples. TCP bases
its error, flow, and congestion control functions on the
estimated RTT instead of relying on feedback from the
network. This pure end-to-end approach to network con-
trol is consistent with the original design philosophy of
the Internet which keeps only the bare minimum func-
tionality in the network core, pushing everything else to
the edges. Overlays such as content distribution networks
(CDNs) (e.g., Akamai [1]) and peer-to-peer networks also
make use of RTT as a ‘network proximity’ metric, e.g., to
help decide where to re-direct client requests. There has
also been increasing interest in network proximity infor-
mation from applications that run on mobile devices (e.g.,
smart phones) in order to improve the user’s experience.
In this paper, we propose a novel RTT estimation

technique that uses a machine-learning based approach
called the experts framework [2]. As described in detail
in Section 3, the experts frameworka uses ‘on-line’ learn-
ing, where the learning process happens in trials. At every
trial, a number of experts contribute to an overall predic-
tion, which is compared to the actual value of the RTT
(e.g., obtained by measurement). The algorithm uses the
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prediction error to refine the weights of each expert’s con-
tribution to the prediction; the updated weights are used
in the next iteration of the algorithm. We contend that
by employing the proposed prediction technique, network
applications, and protocols that make use of the RTT do
not have to measure it as frequently.
As an example application for the proposed RTT esti-

mation approach, we use it to predict TCP’s RTT. Through
extensive simulations and live experiments, we show that
our machine learning technique can adapt to changes in
the RTT faster and thus predict its value more accurately
than the current exponential weighted moving average
(EWMA) technique employed by most versions of TCP.
As described in Section 2, TCP uses the RTT estimates
to compute its retransmission time-out (RTO) timer [3],
which is one of the main timers involved in TCP’s error
and congestion control. When the RTO expires, the TCP
sender considers the corresponding packet to be lost and
therefore retransmits it. TCP relies on RTT predictions
and measurements in order to set the RTO value properly.
In TCP, the RTT is defined as the time interval between
when a packet leaves the sender and until the reception, at
the sender, of a positive acknowledgment for that packet.
If the RTO is too long, it can lead to long idle waits

before the sender reacts to the presumably lost packet. On
the other hand, if the RTO is set to be too aggressive (too
short), it might expire too often leading to unnecessary
retransmissions. Needless to say that setting the RTO is
critical for TCP’s performance.
We can split the problem of setting TCP’s RTO into

two parts. The first part is how to predict the RTT of the
next packet to be transmitted, and the second is how the
predicted RTT can be used to compute the RTO. In this
paper, we focus on the first part of the problem, i.e., the
prediction of the RTT; the second part of the problem, i.e.,
setting the RTO, is the focus of future work.
To estimate the RTT, we propose a new approach based

on machine learning which will be described in detail in
Section 3. Our experimental results show that RTT pre-
dictions using the proposed technique are considerably
more accurate when compared to TCP’s original RTT esti-
mation algorithm and the well-known Eifel [4] timer. We
then evaluate how this increased accuracy affects network
performance. We do so by running network simulations
as well as live experiments. For the latter, we have imple-
mented both our machine learning as well as the Eifel
mechanism in the Linux kernel.
The remainder of this paper is organized as follows.

Section 2 presents related work, including a brief
overview of TCP’s original RTT estimation technique. In
Section 3, we describe our RTT prediction algorithm.
Section 4 presents our experimental methodology, where
we describe the scenarios conceived for our simulation
studies, discuss simulation parameters, and definemetrics

for performing evaluations. Sections 5 and 6, respec-
tively, present our results from both simulation and live
experiments. Finally, Section 7 concludes the paper and
highlights directions for future work.

2 Related work
In this section, we present a brief overview of previous
work on RTT estimation and later discuss some relevant
machine learning applications.

2.1 TCP RTT estimation
TCP uses a time-out/retransmission mechanism to
recover from lost segments. This time-out value needs
to be greater than the current RTT to avoid unneces-
sary retransmissions; on the other hand, if it is too high,
it will cause TCP to wait too long to react to losses and
congestion. In Jacobson’s well-known work [3], two state
variables EstimatedRTT and RTTVAR keep the estimate of the
next RTT measurement (SampleRTT) and the RTT variation,
respectively. RTTVAR is defined as an estimate of how much
EstimatedRTT typically deviates from SampleRTT. EstimatedRTT is
updated according to an EWMA given by Equation 1,
where α = 1

8 . RTTVAR is calculated using Equation 2 which
is also an EWMA; this time of the difference between
SampleRTT and EstimatedRTT with gain β typically set to 1

4 .
Equation 3 sets the new value for the RTO as a function of
EstimatedRTT and RTTVAR, where K is usually 4.

EstimatedRTT=(1−α)·EstimatedRTT+α·SampleRTT (1)

RTTVAR=(1−β)·RTTVAR+β·|SampleRTT−EstimatedRTT| (2)

RTO=max(EstimatedRTT+K ·RTTVAR, 2·ticks) (3)

Most current variants of TCP also implement Karn’s
Algorithm [5], which ignores the SampleRTT corresponding
to retransmissions. Another consideration is TCP’s clock
granularity. In several TCP implementations, and also in
the simulation tool used in this work, the clock advances
in increments of ticks commonly set to 500 ms, and the
RTO is bounded by RTOmin = 2 · ticks and RTOmax = 64 · ticksb.
In prior work, a number of approaches have been pro-

posed to estimate TCP’s RTT. Trace-driven simulations
reported in [6] to evaluate different RTT estimation algo-
rithms show that the performance of the estimators is
dominated by their minimum values and is not influenced
by the RTT sample rate [6]. This last conclusion was chal-
lenged by the Eifel estimation mechanism [4], one of the
most cited alternatives to TCP’s original RTT estimator;
Eifel can be used to estimate the RTT and set the RTO.
Eifel’s proponents identify several problems with TCP’s
original RTT estimation algorithm, including the obser-
vation that a sudden decrease in RTT causes RTTVAR and
consequently the RTO to increase unexpectedlyc. As it
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will become clear from the experimental results presented
in Subsection 6.3, our approach is able to follow quite
closely any abrupt changes in the RTT and outperforms
both TCP’s original RTT estimator as well as that of Eifel’s.
Another notable adaptive TCP RTT estimator was pro-

posed in [7]. It uses the ratio of previous and current
bandwidth to adjust the RTT. In [8], a TCP retrans-
mission time-out algorithm based on recursive weighted
median filtering is proposed. Their simulation results
show that for Internet traffic with heavy tailed statistics,
their method yields tighter RTT bounds than TCP’s origi-
nal RTT computation algorithm. Leung et al. present work
that focuses on changing RTO computation and retrans-
mission polices, rather than improving RTT predictions
[9].

2.2 Selected machine learning applications
Machine learning has been used in a number of other
applications. Helmbold et al. use an experts framework
algorithm to predict hard-disk drive’s idle time and decide
when to attempt to save energy by spinning down the disk
[10]. For this problem, the cost of making a bad decision
(i.e., when spinning the disk down and back up costs more
than simply leaving it on) is very well defined since the
decision of spinning down the disk does not affect the
length of the next idle time.
Unlike the spin-down example, when predicting the

RTT, every prediction causes the next RTT to be set to a
different value and that influences every event that hap-
pens thereafter. Thus, the problem of defining the cost
of a bad RTT prediction is not as straightforward. Our
solution to this problem is discussed in Section 3.
Moreover, in the spin-down cost problem, the traces

used in the evaluation were ‘off-line’ traces, i.e., traces cap-
tured from live runs and later on used as input to the
algorithms being evaluated. In the case of the spin-down
problem, there is no problem in using off-line traces since
the algorithm’s estimations do not influence the outcome
of the next measurement. In the case of TCP RTT esti-
mation, however, as previously discussed, since the RTT
estimations influence TCP timers and these timers affect
the outcome of the next RTTmeasurement, off-line traces
can be used to set and tune parameters of the algorithm,
but they are not suitable for evaluating the performance
of the system. The work presented in [8,9,11,12] on RTT
estimation compares their solution against TCP’s original
RTT estimation algorithm, but they base their evaluation
on off-line traces.
Machine learning techniques have not been commonly

employed to address network performance issues. The
work described in [13] is a notable exception and proposes
the use of the stochastic estimator learning algorithm
(SELA) to address the call admission control (CAC) prob-
lem in the context of asynchronous transfer mode (ATM)

networks. Their goal was to predict in ‘real time’ if a call
request should be accepted or not for various types of
traffic sources. Simulation results show the statistical gain
exhibited by the proposed approach compared to other
CAC schemes. Another SELA-based approach, this time,
applied to QoS routing in hierarchical ATM networks was
proposed in [14]. In this approach, learning algorithms
operating at various network switches determine how the
traffic should be routed based on current network con-
ditions. In the context of WiMax networks, a cross-layer
design approach between the transport and physical lay-
ers for TCP throughput adaptation was introduced in
[15]. The proposed approach uses adaptive coding and
modulation (ACM) schemes.
Mirza et al. propose a throughput estimation tool based

on support vector regression modeling [16]. It predicts
throughput based on multiple real-value input features.
However, to the best of our knowledge, to date, no attempt
to use on-line learning algorithms to predict network
conditions has been reported.

3 Proposed approach
In this section, we present the fixed-share experts algo-
rithm as a generic solution for on-line prediction. Later,
we describe its application to the problem of predicting
the RTT of a TCP connection.

3.1 The fixed-share experts algorithm
Our RTT prediction algorithm is based on the fixed-
share experts algorithm [2] which uses ‘on-line learning’
based on the predictions of a set of fixed experts denoted
by {x1, . . . , xN }. In on-line learning, the learning process
happens in trials. Figure 1 illustrates these trials and the
algorithm itself. Under the fixed-share experts algorithm,
at every trial t, the algorithm receives the predictions
xi∀i ∈ {1, . . . ,N} from a total of N experts and uses them
to output a master prediction ŷt . After trial t is completed,
the ‘ground truth’ value yt becomes known and is used to
compute the estimation error based on a loss function, L.
The estimation error computed at trial t for every expert
i is thus given by Li,t(xi, yt) which is used to update a set
of weights. The next prediction for trial t + 1 is calcu-
lated using this new set of weights denoted by Wt+1,i =
{wt+1,1, . . . ,wt+1,i, . . . ,wt+1,N }.
The weight wt,i should be interpreted as a measure-

ment of the confidence in the quality of the ith expert’s
prediction at the start of trial t. In the initialization of
the algorithm, we make w1,i = 1

N ,∀i ∈ {1, . . . ,N}. The
algorithm updates the experts’ weights at every trial after
computing the loss at trial t by multiplying the weight of
the ith expert by e−ηLi,t(xi,yt). The learning rate η is used
to determine how fast the updates will take effect, dictat-
ing how rapidly the weights of misleading experts will be
reduced.



Nunes et al. EURASIP Journal onWireless Communications and Networking 2014, 2014:47 Page 4 of 22
http://jwcn.eurasipjournals.com/content/2014/1/47

Figure 1 Graphical representation of the general fixed-share experts algorithm for RTT estimation.

After updating the weights, the algorithm also ‘shares’
some of the weight of each expert among other experts.
Thus, an expert who is performing poorly and had its
weight severely compromised can quickly regain influ-
ence in the master prediction once it starts predicting
well again. The amount of sharing can be changed by
using the α parameter, called the sharing rate. This allows
the algorithm to adapt to ‘bursty’ behavior. Indeed, in
Section 5, we use, among others, bursty traffic scenarios
to evaluate the performance of our algorithm.
Algorithm 1 summarizes the steps involved in our fixed-

share experts algorithm. The first line in the algorithm
summarizes the algorithm’s parameters, namely: (1) the
learning rate η, which we define as a positive real num-
ber, and (2) the sharing rate α, a real number between
zero and one that dictates the percentage of the weights
shared at every trial. In our approach, expert weights are
initialized uniformly, which is what is described in the
‘Initialization’ step of Algorithm 1. The basic four steps
of our fixed-share experts algorithm are also summarized
in Algorithm 1 (and in Figure 1). In step 1, the predic-
tion defined as a the weighted average over the individual
predictions xi of every ith expert is computed. The loss
function is computed in step 2 and is used in step 3 to
penalize and decrease the weights of the experts that are
not performing well, and in step 4, experts share their
weight based on the sharing rate α.
In [2], the basic version of the experts framework is

presented along with bounds for different loss functions.
The algorithm is also analyzed for different prediction

functions, including the weighted averaging we use. The
implementation described in this paper, with the interme-
diate pool variable, costs O(1) time per expert per trial.

3.2 Applying experts to TCP’s RTT prediction
To apply the proposed algorithm to TCP’s RTT-prediction
problem, the experts predictions xi shown in Algorithm 1
serve as predictions for the next RTT measured. yt is
the RTT value at the present trial, equivalent to the Sam-

pleRTT in the original TCP RTT estimator. ŷt is the output
of the algorithm, or in other words, the RTT prediction
itself, equivalent to the EstimatedRTT in the original TCP RTT
predictor, mentioned in Section 2.

Algorithm 1 Fixed-share experts algorithm
Parameters: η > 0 and 0 ≤ α ≤ 1
Initialization: w1,1 = . . . = w1,N = 1

N
1) Prediction:
ŷt =

∑N
i=1 wt,i·xi∑N
i=1 wt,i

2) Computing the loss: ∀i : 1, . . . ,N
Li,t(xi, yt) =

{
(xi − yt)2 , xi ≥ yt
2 · yt , xi < yt

3) Exponential updates: ∀i : 1, . . . ,N
w′
t,i = wt,i · e−ηLi,t(yt ,xi)

4) Sharing weights: ∀i : 1, . . . ,N
pool = ∑N

i=1 α · w′
t,i

wt+1,i = (1 − α) · w′
t,i + 1

N · pool
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We want the loss function Li,t(xi, yt) to reflect the real
cost of making wrong predictions. In our implementation
(see Algorithm 1), the loss function has different penalties
for overshooting and undershooting the RTT estimate as
they have different impact on the system’s behavior and
performance. An underestimate of the RTT will result in
an RTO computation that is less than the next measured
RTT, causing unnecessary timeouts and retransmissions.
We thus employ the following policies: if the measured
RTT yt is higher than the expert’s prediction xi, then it
means that this expert is contributing to a spurious time-
out and should be penalized more than other experts that
overshoot within a given threshold. Big over-shooters are
more severely penalized. The challenge here is identify-
ing the appropriate cost for miss-predicting the RTT. The
cost could be simply the difference between prediction
and measurement, or a factor thereof. Exploring other
loss functions for the TCP RTT estimation problem is the
subject of future work.
Setting the value xi of the experts is referred to as setting

the experts spacing. To space the experts is to deter-
mine the experts’ values and their distribution within the
prediction domain. When predicting RTTs, the experts
should be spaced between RTTmin and RTTmax, defined in
some TCP implementations (including the one in the net-
work simulator we used in our experimental evaluation)
to be 1 and 128 ticks, respectively. Based on observations
of several RTT datasets, we concluded that the majority of
the RTTmeasurements are concentrated in the lower part
of this interval. For that reason, we found that spacing the
experts exponentially in that interval, instead of uniformly
(or linearly), leads to better predictions. The exponential
function used in our implementation of the Fixed-Share
Experts approach is xi = RTTmin + RTTmax · 2 (i−N)

4 . The 1
4

multiplicative factor in the exponent of the spacing func-
tion was experimentally chosen to smooth out its growth.
This increases the difference between the experts and gen-
erates diversity among them, which increases predictions’
granularity and accuracy.
Another consideration is that the algorithm, as stated in

Algorithm 1, will continually reduce the experts’ weights
towards zero. Thus, in order to avoid underflow issues in
our implementation, we periodically rescale the weights.
Different versions of the multiplicative weight algorithmic
family, including a mixing past approach that also mixes
weights from past trials are discussed in [17]. However,
the mixing past approach incurs higher space and time
costs and thus was not considered in our work. Another
sharing scheme known as variable-sharing was also con-
sidered in preliminary experiments, where the amount of
shared weights to each expert was dependent of their indi-
vidual losses. However, the additional complexity and cost
of this scheme outweighed its benefits in terms of RTT
estimation accuracy.

4 Experimental methodology
We conduct simulations using the QualNet [18] network
simulation platform. In all experiments, unless stated oth-
erwise, the simulation area is 1,500 m × 1,000 m and the
simulated time is 25 min. The routing protocol used was
AODV [19], and the medium access and physical layers
defined at the IEEE 802.11.b [20] standard was used. The
transmission radius was set to 100 m for all the nodes,
which are initially placed in the simulation area uniformly
distributed. On mobile scenarios, nodes move according
to the random way point (RWP) mobility regime with 0 s
of pause time and speed ranging between [1, 50] m/s. All
nodes run file transmission protocol (FTP) applications
to generate the TCP flows; TCP buffer size is the default
TCP buffer size set to 16,384 bytes, and packet size is fixed
at 512 bytes. For the reader convenience, we summarize
the simulation parameters for all simulation scenarios in
Table 1. The value na is attributed to a given parameter in
this table when it is not applicable. These and other simu-
lation parameters, such as traffic patterns and number of
flows will be discussed further in the following sections in
a per-scenario basis.
In Section 5, we present results for a total of five simu-

lation scenarios, which are summarized, along with their
parameters, in Table 1. The goal of having a variety
of scenarios is to subject the proposed RTT estimation
approach to a wide range of network conditions. Scenar-
ios I and II represent ad hoc mobile networks composed
of 20 and 10 nodes, respectively. These two scenarios
differ from each other only in terms of node density. Sce-
nario III is a static wireless network composed of 20 nodes
uniformly distributed over the simulated network area.
Scenario IV is also a 20-nodemobile network, but the traf-
fic pattern is different from scenarios I and II. In scenario
IV, we also vary the mobility of the network by varying
the nodes’ average speed. Finally, scenario V is a wired
network composed of eight nodes, four on each side of a
bottleneck link.
It is important to highlight that the mobile scenarios

employed in our evaluation were used to evaluate the pro-
posed RTT estimation technique under conditions that
cause high variability and randomness in the network
and thus in the RTT values. Following the RWP mobil-
ity regime, nodes move randomly causing data paths to
break and new ones to be created which then results in
high variability of the RTT. Our goal was then to ensure
that our RTT estimator is able to adjust to high variability
conditions and yield accurate RTT estimates.
We present our results in Section 5 using a number of

performance metrics defined as follows:

• Mean error on RTT prediction: absolute difference
between the RTT prediction ŷt and the measured
RTT yt at trial t, averaged over all trials, defined as:
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Table 1 Simulation parameters for each simulation scenario

Parameter Scenario I Scenario II Scenario III Scenario IV Scenario V

Routing AODV AODV AODV AODV fixed

Mobility RWP RWP none RWP na

MAC/PHY 802.11.b 802.11.b 802.11.b 802.11.b 802.3

Speed [min,max](m/s) [1,50] [1,50] 0 [1,10], [20,30], [40,50] na

Pause (sec) 0 0 0 0 na

Area (meters × meters) 1,500 × 1,000 1,500 × 1,000 1,500 × 1,000 1,500 × 1,000 na

Duration (min) 25 25 25 90 90

Number of nodes 20 10 20 20 8

1
T

∑T
t=1 |ŷt − yt|. In the simulations, RTT is

measured in ‘ticks’ of 500 ms. This value is equal to 4
ms in the real live experiments described in Section 6.
The mean RTT prediction error metric is thus, also
given in ‘ticks’.

• Average congestion window size (cwnd) : the size in
bytes of the congestion window at the TCP sender,
averaged over all prediction trials, defined as:
1
T

∑T
t=1 cwndt , where cwndt is the congestion

window size measured at trial t.
• Delivery ratio: ratio between total data packets

received by the destination and data packets sent at
the source, computed for every flow and averaged
over all flows.

• Percentage of retransmitted packets: ratio between
retransmitted data packets and total data packets sent
at every flow, averaged over all flows.

• Goodput: total number of useful (data) packets
received at the application layer divided by the total
duration of the flow and averaged for every flow,
giving a ratio of packets per second.

Following, we discuss the impact of the parameters in
the accuracy of the proposed RTT prediction algorithm
and justify the choice of values set to these parameters in
our simulation evaluations.

4.1 Impact of experts framework parameters (N , η,α)
We experimented with several combinations of the fixed-
share algorithm parameters. The number N of experts
affects the granularity over the range of values the RTT
can assume. In our experiments, N > 100 had no major
impact on the prediction accuracy.
The learning rate η is responsible for how fast the

experts are penalized for a given loss. We want to avoid
values of η that are too low since it increases the algo-
rithm’s convergence time; conversely, if η is too high, it
forces the expert’s weights toward zero too quickly. If this
is the case, then as weight rescaling kicks in, the algorithm
assigns similar weights to all experts, making the algo-
rithm’s master prediction fluctuate undesirably around

the mean value of the experts’ guesses. We chose a learn-
ing rate in the interval 1.7 < η < 2.5 as it provides good
prediction results for all the scenarios tested.
When sharing is not enabled, i.e., α = 0, the outcome

of the algorithm is given only by decreasing exponen-
tial updates, making it harder for the algorithm to follow
abrupt changes in the RTT measurements: experts that
experience prolonged poor performance lack influence
because their weights have become too depreciated. In
this case, it would take more trials so that these experts
start gaining greater importance in the master prediction.
Enabling full sharing (α = 1), similar weights are assigned
to every expert, and the master prediction fluctuates close
to a mean value among the experts guesses.
We present in more detail the simulation scenarios in

the next section, highlighting the goals for every evalua-
tion and discussing obtained results. Following our obser-
vations, in all results reported hereafter concerning our
proposed approach, we use N = 100, η = 2 and α = 0.08.

5 Simulation results
In this section, we discuss simulation results obtained by
applying the fixed-share experts framework to estimate
TCP’s RTT and help set TCP’s RTO timer. We com-
pare our results against TCP’s original RTT and RTO
computation algorithm by Jacobson [3]. We evaluate the
RTT prediction quality and how it impacts the previously
defined performance metrics. We consider different sce-
narios by varying network density, mobility, and traffic
load. Both wireless as well as wired networks are used in
our evaluation.
In all graphs presented below, each data point is com-

puted as the average over 24 simulation runs with a
confidence level of 90%.

5.1 Scenario I - mobile scenario (20 nodes)
First, we considered a mobile ad hoc network (MANET)
composed of 20 nodes. The goal of this scenario is to
evaluate the performance of the RTT prediction algo-
rithms when routes in the network change widely. In
other words, we want to show the algorithm’s response
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to RTT fluctuations. For that reason, we also varied the
number of TCP flows during the simulations to change
network load and congestion levels. We evaluated scenar-
ios with number of concurrent flows equal to 3, 7, 17, 34,
68, 100, and 130. Although flows were evenly distributed
among nodes, they started at random times during the
experiments and their sizes varied from 1,000 to 100,000
packets.
Figure 2 shows the mean differences between the pre-

dictions of the experts framework and Jacobson’s algo-
rithms when compared to the real RTT measurements.
We observe that the experts framework improves RTT
estimation accuracy considerably as the load in the net-
work increases. This leads to more accurate setting of the
RTO timer, which, in turn, reduces the relative number of
packets retransmitted significantly, especially under heavy
traffic conditions. As shown in Figure 3, retransmissions
are reduced substantially (by as much as over 30%) with-
out decreasing the number of packets sent. Note also the
improvement in the goodput, i.e., total number of packets
received (Figure 4).
Our use of the experts framework not only improved the

RTT predictions, thereby avoiding unnecessary retrans-
missions, but also avoided unnecessary triggering of
congestion-control mechanisms. Consequently, TCP’s
congestion window (cwnd) is higher on average; this
behavior is shown in Figure 5, which plots the average
cwnd for the experts framework and Jacobson’s algo-
rithms over the duration of the whole simulation for
different congestion scenarios, i.e., different number of
TCP flows. We can observe how the gap between the two

approaches increases with increasing congestion condi-
tions. This indicates that the experts framework is able
to better shield TCP’s congestion control from wide RTT
fluctuations.
Figure 6 plots the average cwnd over the whole simula-

tion time for 3, 34, and 130 flows. Each point in this plot
is the mean cwnd over 24 simulation runs considering all
nodes averaged over a 20-s time window. These plots cor-
roborate the results shown in Figure 5, i.e., that the experts
framework yields, on average, higher cwnd. We observe
from Figures 7 and 4 that the proposed experts framework
is also able to improve both the delivery ratio and goodput,
which we define here as the absolute number of packets
successfully delivered at the destination over the course of
the simulation.

5.2 Scenario II - mobile scenario (10 nodes)
In this scenario, we try to subject the network to vary-
ing network conditions in order to produce higher RTT
variations. We accomplish that by running the same sce-
nario, but now decreasing the density of the network,
which includes only ten mobile nodes. The objective is
to cause more frequent route changes which would result
in more frequent and wider RTT variations. For exam-
ple, in scenario I, the mean RTT variance for 34 and 100
flows are 0.4763 and 0.5501 ticks, respectively. For sce-
nario II, with only ten nodes, the mean RTT variance for
the same congestion scenarios are 0.7878 and 0.9315 ticks,
respectively. Except for the reduced number of nodes, all
the other parameters for this scenario are the same as
before.

Figure 2Mean absolute difference between predicted andmeasured RTT on a MANET with 20 nodes.
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Figure 3 Number of retransmitted packets in relation to the total number of packets transmitted on a 20-node MANET.

In Figure 8, we can compare the accuracy of the predic-
tions for both algorithms. Similar to the previous scenario,
as congestion increases with the number of flows, so does
the variability of the RTT measurements, also increasing
the mean error in the prediction. For the same num-
ber of flows, we observe how the mean error increases
from scenario I (Figure 2) to scenario II (Figure 8) due
to the increase in the variation of the RTT. Network

performance metrics, such as number of retransmitted
packets (Figure 9) and delivery ratio (Figure 10) exhibit
trends similar to scenario I. Similar behavior is also
observed for cwnd (Figure 11), delivery ratio (Figure 10),
ratio of packets retransmitted (Figure 9), and goodput in
(Figure 12). As in scenario I, we also observe that, as traf-
fic load increases, the difference between the algorithms
also increases for all the metrics.

Figure 4 Total number of packets delivered over the duration of the simulation for a 20-node MANET.
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Figure 5 TCP’s cwnd for a 20-node MANET for different traffic loads.

5.3 Scenario III - stationary network
Our goal in this experiment is to isolate the effect of traffic
load on the performance of the proposed RTT estima-
tor. Therefore, we factor out node mobility and consider
a wireless ad hoc network where all nodes are stationary.
We varied traffic load the same way we did for scenario I.
Figure 13 shows the accuracy of the prediction algo-

rithms. Like in previous scenarios, increasing traffic load
degrades the performance of the algorithms, although this

degradation ismuchmore pronounced for Jacobson’s RTT
predictor. This figure shows that the error of the original
TCP RTT predictor can get up to around 130% larger than
when using our proposed machine learning approach. For
example, in Figure 13, we report an average error of 0.63
ticks for the experts framework, against 1.54 ticks for the
original TCP estimator.
Moreover, when comparing the accuracy results for

the stationary scenario with the mobile scenario with 20
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Figure 7 Packet delivery ratio in a 20-node MANET.

nodes (Figure 2), it is possible to notice that the stationary
scenario exhibits higher average estimation error for both
algorithms. Figure 14 shows the average queue length in
bytes for both mobile and stationary scenarios, for differ-
ent number of flows. We observe that the average queue
length for the mobile scenario is much lower. This can
be explained by the fact that, in the static scenario, since
routes between source and destination are less volatile,

queues build up as the traffic load increases and result
in larger RTT fluctuations. This is especially the case of
nodes that are carrying traffic that belong to multiple flows.
In the stationary scenario, the number of retransmit-

ted packets is lower when using the proposed experts
framework approach when compared against the number
of retransmissions resulting from Jacobson’s algorithm, as
we can see in Figure 15. When compared to the mobile
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Figure 8Mean absolute error between the predictions and the measured RTT for a 10-node MANET.
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Figure 9 Number of retransmitted packets in relation to the total number of packets transmitted for a 10-node MANET.

scenario, the number of retransmissions is lower for both
algorithms since, in the stationary scenario, there are
fewer losses due to route failure. Figure 16 shows the
average cwnd size for different congestion levels. Once
again, it is possible to see improvement in this metric
when applying our proposed approach. However, with the
increase in the RTT fluctuations in this scenario, as men-
tioned before, the occurrence of spurious timeouts may

also occur. Thus, we experienced in this scenario a higher
variability of the cwnd as seen by the larger confidence
interval exhibited when comparing it to the cwnd results
in Scenario I (Figure 5).

5.4 Scenario IV - bursty traffic
In this scenario, we subject the network to bursty traffic
loads as a way to evaluate the performance of the proposed
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Figure 10 Packet delivery ratio for a 10-node MANET.
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Figure 11 TCP cwnd for a 10-node MANET with different traffic loads.

RTT estimation strategy as traffic load fluctuates. The
results shown here reflect the simulation of a network
with 20 mobile nodes in which every node starts a TCP
flow of 1,000 packets every 200 s; this happens through-
out the 90 min of simulation. Thus, nodes would transmit
for a while and then remain silent until the next cycle of
200 s. We also vary the speed of the nodes between (1, 10),

(20, 30), and (40, 50) m/s, which allows average speeds of
5, 25, and 45 m/s, respectively.
In relation to previous scenarios, the experts framework

yields higher performance improvement when compared
to Jacobson’s algorithm due to the fact that it is able to
adapt to RTT fluctuations faster. This is attributed to the
weight sharing feature of the experts. This performance
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Figure 12 Total number of packets delivered over the duration of the simulation for a 10-node MANET.
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Figure 13Mean error between the predictions and the measured RTT for the stationary network.

improvement becomes evident when looking at the plot
of the mean absolute error in Figure 17. In this figure,
the difference between the algorithms prediction errors
can vary from 100% for 25 m/s average speed, up to 200%
for 5 m/s average speed. We can also observe that the
impact of different levels of mobility are also different for
both algorithms. While Jacobson’s RTT predictor appears
to present strong variation with the mobility level, the
proposed experts algorithm presents little variation when

changing the speed of the nodes. This behavior can be
also explained by the fact that the experts framework is
able to adapt quickly to abrupt RTT variations because
of the sharing mechanism. The moving average applied
in Jacobson’s algorithm, on the other hand, is not able to
respond as fast.
Since the measured RTT fluctuations for this scenario

are much greater, the mean prediction error in this case
is larger than in the previous scenarios. We also report

Figure 14 Average queue length in bytes for both mobile and stationary scenarios.
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Figure 15 The number of retransmitted packets in relation to the total number of packets transmitted for both algorithms for the
stationary scenario.

for this scenario a much lower number of retransmit-
ted packets (Figure 18). It is also possible to observe an
improvement in the other performance parameters, i.e.,
TCP’s cwnd, yielding higher goodput (Figure 19) when
using our experts framework approach. Finally, Figure 20
shows the improvement in delivery ratio for this scenario.

It is also worth noting the interesting behavior present
in the plots for all the reported network performance met-
rics, where for lower speeds, these metrics reflect better
network performance (i.e., lower number of retransmitted
packets, higher goodput and higher delivery ratio), since
the routing paths do not change as frequently. This incur
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Figure 16 TCP’s cwnd over different congestion levels for the stationary scenario.
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Figure 17Mean absolute error between predicted andmeasured RTT for different node speeds in bursty traffic scenario.

in fewer losses and lower routing overhead. For the aver-
age speed of 25 m/s, the situation changes and the metrics
reflect the worst performance. However, when further
increasing the average speed to 45 m/s, the network met-
rics start to improve again. This behavior is consistent
with the results presented in [21], which shows that, when
topology changes happen at packet delivery time scales,

network capacity can improve when nodes are mobile
rather than stationary.

5.5 Scenario V - wired network
Here, we simulate an eight-node wired network whose
topology can be seen in Figure 21. In this scenario, we
vary the traffic load by using 30, 70, and 100 concurrent
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Figure 18 Percentage of retransmitted packets for different node mean speeds in the bursty traffic scenario.
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Figure 19 Goodput for different node mean speeds in the bursty traffic scenario.

flows. Flows were evenly distributed among nodes but
start at random times throughout the 90-min duration of
the simulation. The size of a flow is uniformly distributed
between 1,000 and 10,0000 packets.
As shown in Figure 22, the mean prediction error for

Jacobson’s algorithm is almost four times higher than
when using the experts framework. The benefits of the
more accurate RTT estimates yielded by our approach is

illustrated in Figures 23,24,25 which show lower number
of retransmitted packets, higher delivery ratio, and higher
goodput as the number of TCP flows increases.

6 Linux implementation and experiments
In this section, we present our implementation of the
fixed-share experts algorithm for the Linux kernel and
report on the experiments we conducted and their results.
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Figure 20 Packet delivery ratio for different node mean speeds in the bursty traffic scenario.
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Figure 21 Simulated network topology for the wired scenario.

6.1 Fixed-point arithmetic
The simulation results reported in Section 5 refer to the
implementation of the fixed-share experts algorithm (as
described in Section 3) as implemented on the Qual-
Net network simulator. This implementation uses real
numbers. Thus, a straightforward Linux implementation
would use floating point arithmetic [22] along with float-
ing point functions of the gcc compiler’s libc library [23].
Unfortunately, while floating point numbers support both
a wide range of values and high precision, the Linux oper-
ating system lacks support for floating point manipulation
in the kerneld.
An alternative is to use fixed point arithmetic in which

the location of the radix point within a string of digits is
predetermined [24]. In our implementation, we define a
fixed point arithmetic type with a 16-bit integral part and
a 16-bit fractional part as shown below.

s b31 · · · b16 . b15 · · · b0

In our Linux implementation we used a sign magnitude
representation in which a 33rd bit records the sign (an
alternate implementation of the data type would reduce
the integer part to 15 bits so that the resulting type would
fit entirely within a single 32-bit processor register.)
Our fixed point numeric type has the following char-

acteristics: range = −65535.99998to+65535.99998 and
precision = 0.000015. We consider these characteristics
adequate for the range of numeric values expected.

6.2 Linux implementation
We implemented both the fixed share experts algo-
rithm and the Eifel algorithm [4] in the Linux
kernel version 2.6.28.3. We modified the function
tcp_rtt_estimator() to return the output of the
RTT as evaluated by either of the RTT prediction algo-
rithms. Our implementation of the Eifel algorithm, to
the best of our knowledge, is faithful to the algorithm
described in [4] for predicting the RTT and setting the
RTO.
Our Linux implementation of the fixed share experts

algorithm differs from ourQualNet implementation of the
algorithm in two areas. First, the implementation scales
RTTmeasurements. Ameasured RTT of 1 tick in the sim-
ulator means 500 ms, while a measured RTT of 1 tick in
the Linux implementation means 4 ms. Consequently, our
Linux implementation scales RTT measurements from
the operating system by 1

125 before passing them to the
fixed share experts algorithm, and it scales RTT predic-
tions from the experts algorithm by 125 before returning
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Figure 22Mean absolute error between the predictions and the measured RTT for the wired scenario.
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Figure 23 Number of retransmitted packets in relation to the total number of packets transmitted for the wired scenario.

them to the operating system. Such scaling prevents the
implemented algorithm from misinterpreting the greater
precision of the Linux RTT measurements as larger pre-
diction errors.
The second difference in the Linux implementation of

algorithm is inspired by the algorithm’s response to large
and abrupt reductions in the measured RTTs. Large RTT
reductions cause the weights of formerly correct experts

to experience greater losses in extreme cases immedi-
ately underflowing to 0. In these cases, if the weights of
the newly correct experts already have decayed to zero,
then all experts’ weights will be zero simultaneously, and
the machine learning algorithm will be unable to make
a prediction. Normally, the fixed-sharing feature of the
experts algorithm helps increase the weights of newly
correct experts, but sharing cannot compensate for this
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Figure 24 Packet delivery ratio for the wired scenario.
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Figure 25 Total number of packets delivered for the wired scenario.

situation since sharing a total weight of zero among the
experts has no effect on the experts’ individual weights. To
compensate for this occasional situation, we modified the
algorithm in the Linux implementation to detect the case
and to reinitialize the experts’ weights with values from
a uniform distribution whose mean matches the most
recently measured RTT. This change to the algorithm
does not affect the simulation results because the sim-
ulated RTT changes were sufficient to cause all experts’
weights to go to zero.

6.3 Experimental results
We acquired data from live file transfer runs using our
modified TCP kernel modules that implement the Eifel
and the experts algorithms. Data collection happened over
30 file transfers of a 16-MB file. To help filter out the
effects of gradual network changes, we interleaved the
transfers controlled by our experts approach, the Eifel
retransmission timer, and Jacobson’s algorithm. In total,
there were 10 runs of each algorithm for each of the three
conceived scenarios.
The live experiments used a different set of scenarios

than the simulations. In Scenario 1, the source of the
file transfer was a Linux machine containing the mod-
ified modules for the experts and Eifel algorithms and
the original Kernel code and TCP timer. This machine
was connected to the wired campus network at the Uni-
versity of California, Santa Cruz. The destination was
another Linux machine connected to the Internet, physi-
cally located in the state of Utah in the USA. Scenario 2
was similar to Scenario 1, except that the source was now

connected wirelessly to a 802.11 access point, which was
connected to the Internet through the UCSC campus net-
work. Scenario 3 was a full wireless scenario, where both
source and destination were connected to the same 802.11
access point. All the measurements were collected at the
source of the file transfer.
Figure 26 shows around 200 prediction trials of one of

the file transfers. It is possible to notice how much faster
the machine learning algorithm can respond to sudden
changes in the RTT value and how much closer it can
follow the real measurements.
Tables 2, 3, 4 summarize results from live experiments

for the three scenarios studied. These tables shows an
improvement on the RTT prediction from 40% in Sce-
nario 1 up to 51% in Scenario 3 when comparing the
accuracy between the experts algorithm and the stan-
dard TCP predictor. This difference is even higher when
comparing to Eifel. The other performance metrics -
average number of retransmissions and cwnd - also
improved considerably when applying our machine learn-
ing approach. On the other hand, Eifel has the advan-
tage of not requiring any parameters to be set since
gains are computed ‘on-the-fly’. In the case of Jacob-
son’s algorithm, even though a couple of parameters have
to be set in advance, it is a much simpler and easier
to implement algorithm. However, trading-off complexity
to achieve significantly higher performance is consistent
with the steady increase of processing and storage capabil-
ities available in computing and communication devices.
Thus, given the superior performance illustrated by our
results, we can conclude that our approach yields a good
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Figure 26 RTTmeasurements on the Linux kernel and predictions made by Jacobson’s and the proposed experts algorithms.

trade-off between higher complexity and performance
improvement.

6.3.1 RTO computation
In the preliminary experiments, we notice a considerable
improvement on the RTT predictions as expected and as
seen previously in the simulated results. However, curi-
ously, we experienced a higher number of retransmissions
and a lower cwnd. The reason for that was the fact that,
when computing the RTTVAR in Equation 2, the difference
between the estimation and the RTT sample (|SampleRTT −
EstimatedRTT|) is used. With a better predictor, this differ-
ence is much smaller on the average, which makes the
timer much more aggressive. During the simulations, it
was not a problem because the RTT values fluctuate over
a range that was 125 times smaller, as mentioned in the
previous section. In order to fix this problem, we made a
simple change in the way the RTTVAR is computed. Before,

Table 2 Prediction error, cwnd, and number of
retransmissions averaged over 10 runs of the same
experiment

Scenario1

Metric Eifel Jacobson Experts

Error 11.21(1.02) 8.19(0.97) 5.10(0.61)

cwnd 61.55(10.42) 69.82(6.32) 74.87(9.73)

rexmits 26.40(13.83) 31.12(17.72) 13.02(8.24)

Prediction error (in ticks), cwnd (in packets), and number of retransmissions
averaged over 10 runs of the same experiment, computed for Scenario 1. Values
between parenthesis depict the standard deviation σ over the 10 runs. Italicized
values indicate the smalest error, largest cwnd, and lowest number of
retrasmission.

when using Jacobson’s algorithm, it made sense to use the
difference between sample and estimation since the esti-
mation was a smoothed tracking of the RTT sample, and
the RTTVAR would indicate how much variation around that
smoothed value the RTT measurements experience. Now
with the new predictor tracking the RTT measurements
much faster, we used the difference between the current
and last RTT sample to compute the RTTVAR, as indicated
in Equation 4.

RTTVAR=(1−β)·RTTVAR+β·|SampleRTTt−SampleRTTt-1|
(4)

7 Conclusions
In the present work, we proposed a novel approach to
end-to-end RTT estimation using a machine learning
technique known as the fixed-share experts framework.

Table 3 Prediction error, cwnd, and number of
retransmissions averaged over 10 runs of the same
experiment for Scenario 2

Scenario2

Metric Eifel Jacobson Experts

Error 114.52(9.15) 74.11(6.23) 67.64(4.64)

cwnd 55.38(8.34) 66.71(5.35) 74.89(7.03)

rexmits 314.20(36.25) 367.70(42.10) 250.80(20.07)

Prediction error (in ticks), cwnd (in packets), and number of retransmissions
averaged over 10 runs of the same experiment, computed for Scenario 2. Values
between parenthesis depict the standard deviation σ over the 10 runs. Italicized
values indicate the smalest error, largest cwnd, and lowest number of
retrasmission.
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Table 4 Prediction error, cwnd, and number of
retransmissions averaged over 10 runs of the same
experiment for Scenario 3

Scenario3

Metric Eifel Jacobson Experts

Error 298.24(21.41) 199.23(12.32) 131.65(7.58)

cwnd 18.91(6.68) 31.08(7.38) 38.11(5.91)

rexmits 204.62(32.43) 363.21(39.86) 159.61(24.18)

Prediction error (in ticks), cwnd (in packets), and number of retransmissions
averaged over 10 runs of the same experiment, computed for Scenario 3. Values
between parenthesis depict the standard deviation σ over the 10 runs. Italicized
values indicate the smalest error, largest cwnd and lowest number of
retrasmission.

We employ our approach as an alternative to TCP’s RTT
estimator and show that it yields higher accuracy in
predicting the RTT than the standard algorithm used
in most TCP implementations. The proposed machine
learning algorithm is able to adapt very quickly to changes
in the RTT. Our simulation results show a consider-
able reduction in the number of retransmitted packets,
while increasing goodput, particularly in more heavily
congested scenarios. We corroborate our results by run-
ning ‘live’ experiments on a Linux implementation of our
algorithm. These experiments confirm the higher accu-
racy of the machine learning approach with more than
40% improvement, not only over the standard TCP pre-
dictor but also when comparing to another well know
solution, the Eifel retransmission timer [4]. Nevertheless,
work is still needed in the case of this particular applica-
tion in order to learn how to take better advantage of the
improved estimations and change the way we set the RTO
timer.
Moreover, the task of determining the appropriate loss

function for RTT prediction in the case of setting retrans-
mission timers is not trivial. Further work to understand
the cost of making wrong decisions regarding the RTT
prediction problem, under the context of TCP, is needed.
Finally, we believe our work opens the possibility of apply-
ing on-line learning algorithms to predict other important
network variables.

Endnotes
aIn this paper, we use the terms experts framework,

experts FW, experts fixed sharing, fixed-share experts, or
simply the experts algorithm, interchangeably, referring
to the proposed machine learning algorithm.

bThese values were used in our simulations; however,
on real implementations, they can vary. That was the
case for the TCP implementation on the Linux
distribution used in our experiments, and we comment
on that in Section 6.

cThe solution proposed by Eifel for this problem (not
the algorithm itself ) made it to recent TCP kernel

implementations and were used in our experiments
reported in Section 6.

dWithin the Linux kernel, one can surround in-line
floating point code with the Linux macros
kernel_fpu_begin and kernel_fpu_end, but the
code must avoid function calls and must avoid using any
routines of the libc library.
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