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LETTER TO THE EDITOR

Vemurafenib-resistant BRAF selects 
alternative branch points different from its 
wild-type BRAF in intron 8 for RNA splicing
Masahiko Ajiro and Zhi‑Ming Zheng*

Abstract 

One mechanism of resistance of the melanoma‑associated BRAF kinase to its small molecule inhibitor vemurafenib is 
by point mutations in its intron 8 resulting in exons 4–8 skipping. In this report, we carried out in vitro BRAF RNA splic‑
ing assays and lariat RT‑PCR to map the intron 8 branch points in wild‑type and BRAF mutants. We identify multiple 
branch points (BP) in intron 8 of both wild‑type (wt) and vemurafenib‑resistant BRAF RNA. In wt BRAF, BPs are located 
at ‑29A, ‑28A and ‑26A, whereas in a vemurafenib‑resistant BRAF splicing mutant, BPs map to ‑22A, ‑18A and ‑15A, 
proximal to the intron 8 3′ splice site. This finding of a distal‑to‑proximal shift of the branch point sequence in BRAF 
splicing in response to point‑mutations in intron 8 provides insight into the regulation of BRAF alternative splicing 
upon vemurafenib resistance.
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Background
BRAF proto-oncogene encodes a serine/threonine kinase 
regulator of the MAP kinase pathway, and activating 
BRAF mutations are found in 40–60  % of melanoma, 
with 90  % of them containing the V600E mutation [1, 
2]. Vemurafenib, a potent inhibitor of (V600E) BRAF in 
melanoma cells, is currently in clinical use [3–5]. How-
ever, patients treated with vemurafenib develop resist-
ance by activation of alternative signaling pathways [6–9] 
or by inducing alternative splicing of BRAF to exclude 
the RAS-binding domain encoded by exons 3–5 [10]. The 
vemurafenib-resistant melanoma cell line C3 SKMEL-
239 produces BRAF exon 3^9 splicing and contains two 
intronic point-mutations at positions -435 (C-to-A) and 
-51 (C-to-G) from the BRAF intron 8 3′ splice site. In a 
minigene system the -51 mutation, located in the com-
putationally predicted branch point (BP), was found to be 
sufficient to recapitulate BRAF exon 3^9 splicing [10, 11].

Each intron of eukaryotic primary RNA transcripts 
(pre-mRNAs) has a 5′ splice site with a GU dinucleo-
tide and a 3′ splice site with an AG dinucleotide. The 
3′ splice site also contains a BP in a 7-nt or 5-nt branch 
point sequence (BPS) and a run of 15–40 pyrimidines 
(usually Us), called polypyrimidine tract (PPT), between 
the BPS and the 3′ end AG dinucleotide. Defining the 
exon–intron boundary in pre-mRNA splicing is the first 
step in the accurate recognition of an intron 5′ splice site 
by U1 snRNA, of BPS by U2 snRNA, and of a 3′ splice 
site by U2AF (U2 auxiliary factors) modulated by many 
cellular splicing factors [12–14]. These recognition steps 
are followed by two transesterification reactions during 
spliceosome assembly. In this two-step biochemical reac-
tion, an OH group of the BP adenosine within the BPS 
performs a nucleophilic attack on a phosphodiester bond 
of the intron-5′ exon junction, resulting in the first step in 
the 5′ exon being cleaved off and forming a lariat inter-
mediate by a branching reaction of the intron 5′ end G to 
the BP adenosine via a 5′-to-2′ phosphodiester link. The 
second step is to cleave the intron from the lariat inter-
mediate by another nucleophilic attack of the OH group 
from the cleaved 5′ exon on a phosphodiester bond of the 
intron-3′ exon junction and join the cleaved 5′ exon to 
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the cleaved 3′ exon. Thus, if an intron 5′ and 3′ splice sites 
are of consensus sequence, they sequentially bind three 
different splicing factors in order to assemble the spliceo-
some. However, the splice sites in higher eukaryotes are 
usually not well conserved and binding of splicing factors 
to pre-mRNAs with non-consensus sequence is often 
inefficient. In addition, pre-mRNA splicing is subject 
to regulation by other intronic or exonic cis-elements, 
intronic splicing enhancers (ISE) or silencers (ISS) and 
exonic splicing enhancer (ESE) or silencer (ESS), often 
located at a distance. The combination of the strength of 
the various cis-regulatory elements and the local avail-
ability of splicing factors determines alternative splicing 
outcome [13, 14].

In this report, we experimentally mapped the BPS in 
BRAF intron 8 that controls the constitutive RNA splic-
ing of wild-type (wt) BRAF exon 8^9 and discovered an 
alternative BPS in the intron 8 of a vemurafenb-resistant 
mutant (mt) BRAF pre-mRNA.

Result and discussion
BRAF intron 3 and intron 8 are suboptimal
Both annotated BRAF intron 3 and intron 8 are large, 
with a size of ~25.6  kb for the intron 3 and 6.7  kb for 
intron 8. To understand what might contribute to the 
observed alternative exon 3^9 splicing of vemurafenib-
resistant BRAF RNA, we analyzed sequence structures 
of the 5′ and 3′ splice sites in BRAF introns 3 and 8 and 
also the 5′ splice site of BRAF intron 9 considering that 
exon definition may play an important role in defining 
an upstream 3′ splice site [13, 15, 16]. Recognition of an 
intron 5′ splice site by U1 snRNA requires the 5′-termi-
nal 11 nts of the U1 snRNA to base-pair directly with 
the 5′ splice site [17]. We found that all three analyzed 5′ 
splice sites have consensus sequence GURAGU [18, 19], 
but only intron 3 and intron 9 5′ splice sites can base-pair 
fully to the six core nucleotides of the U1 snRNA 5′ end, 
whereas the intron 8 5′ splice site is missing a nucleo-
tide at position -1 upstream of the 5 splice site (Fig. 1a). 
The inability of the U1 snRNA 5′ core nucleotide to fully 
base-pair with the 5′ splice site affects U1 snRNA binding 
and decreases splice site strength [20–22].

In general, a consensus 3′ splice site is composed of 
three critical elements: BPS, PPT (usually with a stretch 
of U residues), and an AG dinucleotide at the 3′ end of 
the intron. Mammalian consensus BPSs are YNYURAC 
[23, 24] or YUNAN, [25–27] with 90 % of BPSs occurring 
within 19–37 (median 25) nucleotides upstream of the 3′ 
AG dinucleotides and 78 % of the BP nucleotides within a 
BPS being an adenosine [27]. Analysis of the intron 3 and 
intron 8 3′ splice sites using Human Splice Finder (http://
www.umd.be/HSF/) [28] revealed that both introns bear 
a non-consensus 7-nt BPS within the distance range in 

intron 3, but further upstream (46 nts) in intron 8. The 
intron 8 3′ splice site is also predicted to have multiple 
non-consensus 5-nt BPSs within the distance range to its 
3′ AG dinucleotide (Fig. 1b). Moreover, both introns have 
a weak PPT interspersed by purines with runs of uridines 
no longer than three. Altogether, the weak nature of these 
3′ splice sites would subject them to regulation by RNA 
cis-elements or trans-acting factors.

Reconstitution of wt exon 8^9 and mt exon 3^9 splicing 
of BRAF in vitro
When compared to the melanoma SKMEL-239 cells 
which are sensitive to vemurafenib treatment, the vemu-
rafenib-resistant melanoma C3 SKMEL-239 cells harbor 
both -435 C-to-A and -51 C-to-G mutations within the 
BRAF intron 8 and exhibit activation of BRAF exon 3^9 
splicing, leading to reduction of the constitutive BRAF 
exon 8^9 splicing of BRAF (Fig.  2a, b). The -51 muta-
tion has been shown to be sufficient to induce exon 3^9 
splicing in a BRAF minigene system [11]. To map the 
BPS directing exon 8^9 and exon 3^9 splicing of BRAF 
in  vitro, and because the annotated BRAF intron 3 
(~25.6 kb) and intron 8 (6.7 kb) are extremely large, we 
constructed a wt BRAF DNA template with a truncated 
intron 8 from SKMEL-239 cells and a mt BRAF DNA 
template with a chimeric intron 3 and intron 9 from C3 
SKMEL-239 cells for generation of pre-mRNAs under a 
T7 promoter. Thus, the wt BRAF pre-mRNA transcribed 
in  vitro had a truncated intron 8 from the middle of 
the intron and the mt BRAF pre-mRNA had a chimeric 
intron of which the intron 3 5′ splice site (64 nts) was 
fused with the intron 8 3′ splice site (440 nts) including 
the point mutations in the intron (Fig. 3a). The 3′ end of 
each BRAF pre-mRNA used in this assay also contained 
a native 5′ splice site (a U1-binding site) from intron 9 
(Fig. 3a, pre-mRNAs 1 and 3, also Fig. 1a) or a consensus 
U1-binding site (Fig. 3a, pre-mRNAs 2 and 4) to promote 
RNA splicing efficiency [29]. In vitro RNA splicing was 
conducted in the presence of HeLa nuclear extract [30, 
31]. This in vitro RNA splicing assay revealed that both 
wt and mt BRAF pre-mRNAs spliced equally efficiently 
in a 2 h reaction, with the expected sizes of splicing prod-
ucts (Fig. 3b) and accumulation of splicing lariats and lar-
iat-intermediates from all four pre-mRNAs (Fig. 3b, top 
two bands). There was no difference in splicing efficiency 
among the BRAF pre-mRNAs with a consensus U1 
binding site or a native U1 binding site from the intron 
9 attached to the RNA 3′ end. Interestingly, we noticed 
that the lariats and lariat-intermediates derived from mt 
BRAF exon 3^9 splicing were running slower than that of 
wt BRAF exon 8^9 splicing in a 6 % denaturing PAGE gel 
(Fig.  3b). Although the intron of mt BRAF pre-mRNAs 
is 13 nts longer than that of the wt BRAF pre-mRNAs, 

http://www.umd.be/HSF/
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the observed slowly migrating lariats and lariat-inter-
mediates derived from mt BRAF pre-mRNAs suggested 
that a larger loop in the mt lariats than the wt lariats was 
formed when a 5′–2′ phosphodiester branching reaction 
during mt RNA splicing occurred between the intron 5′ 
splice site GU and a BP nucleotide. These data indicate 
that the mt RNA might utilize a BPS closer to the intron 
3′ splice site than the wt RNA.

Identification of distinct sets of alternative BPs for wt 
and mt BRAF splicing by lariat RT‑PCR
Given the successful reconstitution of wt and mt BRAF 
splicing in  vitro, we then performed lariat RT-PCR on 
the lariats and lariat-intermediates derived from BRAF 
pre-mRNAs 1 and 3. In the lariat RT-PCR, SuperScript 

II induces a nucleotide substitution at the BP by reading 
through the BP 5′-to-2′ phosphodiester bond present in 
the lariats or lariat-intermediates during reverse tran-
scription, thereby converting the lariat circle into linear 
cDNA that can be amplified by PCR. Thus, lariat RT-PCR 
specifies the branched nucleotide from a BPS upstream 
of the 3′ splice site AG dinucleotide and has been widely 
used for branch point mapping (Fig. 4a) [31–33]. Lariat 
RT-PCR products from the wt and mt BRAF RNA splic-
ing (Fig. 3b) were gel-extracted (Fig. 4b) and analyzed by 
TA-cloning and sequencing (Fig.  4c). After screening of 
23 bacterial colonies from each lariat RT-PCR product, 
we found that eight colonies had an insertion of the wt 
lariat products and others displayed no insertion. Three 
adenosines, -29A, -28A and -26A from the intron 8 3′ 

Fig. 1 Suboptimal features of the BRAF intron 3 and intron 8. a The sequences of indicated 5′ splice sites in base‑pairing with the 5′ end of U1 
snRNA. The lines below the U1 sequences indicate six most important U1 5′end nucleotides (core) for base‑pairing with each 5′ splice site during 5′ 
splice site recognition. The intron 5′ end sequences are bolded with the intron 5 end G as position 1 and the exon 3′ end nucleotide immediately 
upstream of the intron 5′ end G as position ‑1. b The sequences of intron 3 and intron 8 3′ splice sites with predicted 7‑nt (red lines) and 5‑nt BPS 
(green lines). The mammalian consensus 7‑nt BPS sequence YNYURAC [23, 24] or 5‑nt YUNAN [25–27] are shown for comparison. Red color A in the 
predicted 7‑nt BPS and in the predicted 5‑nt BPS indicates the putative BP adenosine A. Conservation value (CV) for each predicted 7‑nt BPS is 
calculated by using Human Splice Finder (http://www.umd.be/HSF/), with indicated distance of the bulged A from the downstream 3′ splice site. 
Purines in the putative PPT are labeled in light blue or red

http://www.umd.be/HSF/
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splice site were identified twice each in the branching 
reaction of the wt BRAF RNA splicing (Fig.  4c, d). We 
also identified a single bacterial colony containing a -15A 
or -25A in wt lariats. For the mt lariat RT-PCR products, 
we identified 15 colonies with the insertion, of which the 
-22A, -18A and -15A were identified from multiple colo-
nies for in branching reaction of mt BRAF RNA splicing 
(Fig. 4c, d) and the -20A and -26A were found each only 
in a single colony. Surprisingly, none of the screened col-
onies showed a BP at the -51C (wt) or -51G (mt), nor a 
cryptic BP at the -88U or -109U [11] as predicted by ESE-
finder [34]. The C-to-G mutation at -51 was also found 
not to alter the conservation value of the predicted 7-nt 
BPS (Fig. 1b).

In summary, our data demonstrate that wt and mt 
BRAF RNA select a distinct set of alternative BPs in the 
intron 8 for splicing, with the wt BRAF using distal BPs 
(-29A, -28A and -26A) to the intron 3′ splice site for the 
exon 8^9 splicing and the mt BRAF using proximal BPs 
(-22A, -18A and -15A) to the intron 3′ splice site for the 
exon 3^9 splicing (Fig. 4e).

Flexibility or redundancy in BP selection has a role in 
alternative splicing and was described in both viral [33, 
35–37] and human gene expression [27, 38]. Recent 
genome-wide BP mapping studies indicate that a large 
proportion of introns have more than one BP, generally 
clustered in close proximity in relation to the 3′ splice site 
[27, 38], although a BP could be found in rare case further 

Fig. 2 Activation of BRAF exon 3^9 splicing in C3 SKMEL‑239 cells. a Diagrams showing primers used for detection of BRAF exon 8^9 or exon 3^9 
RNA splicing by RT‑PCR and point mutations in the intron 8. b RT‑PCR detection of the constitutive BRAF exon 8^9 splicing in wt SKMEL‑239 cells 
and the alternative BRAF exon 3^9 splicing in vemurafenib‑resistant C3 SKMEL‑239 cells. GAPDH RNA was used as a loading control. RT‑PCR prod‑
ucts were gel‑purified and sequenced. The splicing junction of each product is shown on the right chromatograms
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upstream of a 3′ splice site [27, 38]. Since the predicted 
-51C [11] from the 3′ splice site of intron 8 identified by 
ESEfinder [34] or by Human Splice Finder [28] was not 
mapped as an authentic BP in this study, our data imply 
that the observed mutations (-435 C-to-A and -51 C-to-
G) in the mt BRAF pre-mRNA might disrupt the bind-
ing of trans-acting factors, such as SRSF6 (SRp55) [11, 39, 
40] and SF3b/3a [41–45], to the -51 region and thereby 
prevent the recruitment of SF1 and U2 snRNA [46–48] to 
select an authentic distal BP for splicing of BRAF RNA. 
Consequently, loss of splicing factor binding to the -51 

region and activation of a proximal BP usage might lead 
to skipping of exons 4–8 in splicing of mt BRAF. The 
minigene system in this report constructed in a classical 
way [49–52] has some advantage over the minigene in 
other study [11]. The latter had an extremely large (>1 kb) 
middle exon (an exon 4/8 fusion exon inserted with a 
strawberry reporter) and a BRAF exon 9 as a terminal 
exon fused with a GFP reporter [11]. An oversized inter-
nal exon larger than 500 nts has been shown to affect 
exon definition and thereby RNA splicing [16]. In sum-
mary, our observation provides further insight into the 

Fig. 3 Reconstitution of BRAF RNA splicing for wt and mt BRAF pre‑mRNAs. a Diagrams of BRAF wt and mt pre‑mRNAs with a native 5′ splice site 
(an 11‑nt U1‑binding site) from the intron 9 (pre‑mRNA 1 and 3) or a consensus 11‑nt U1‑binding site (pre‑mRNA 2 or 4) used for in vitro RNA splic‑
ing assays, with the length of exons and a truncated intron indicated in nts for each pre‑mRNA. Positions of mutated nts in the BRAF intron 8 found 
in vemurafenib‑resistant cells are indicated. b In vitro splicing assay result for BRAF pre‑mRNAs. Identities of individual splicing products in a splicing 
gel are shown on the right
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molecular mechanisms toward understanding the regu-
lation of alternative splicing of BRAF upon vemurafenib 
resistance in melanoma.

Methods
RT‑PCR, in vitro splicing assay and lariat RT‑PCR
RT-PCR is performed as described [36] for wt SKMEL-
239 cells and C3 SKMEL-239 melanoma cells. Two 
primer sets were used separately with the primer pair 
of 3F and 9R for detection of both the constitutive and 
alternative BRAF RNA splicing and 8F and 9R only for 
the constitutive exon 8^9 splicing (Additional file 1: Table 

S1; Fig.  2a). GAPDH RNA was detected with a primer 
pair described [36] as a loading control.

BRAF pre-mRNAs were prepared by in vitro transcrip-
tion with T7 RNA polymerase from two-exon, one-intron 
DNA templates prepared by overlapping PCR [31, 36]. 
The wt BRAF template has a truncated intron 8 originally 
from SKMEL-239 cells and the mt BRAF template from 
C3 SKMEL-239 cells has a chimeric intron 3 and intron 8 
of which the intron 3 5′ splice site (64 nts) was fused with 
the intron 8 3′ splice site (440 nts) including the point 
mutations in the intron (Fig.  3a). See primer details for 
template preparation in Additional file 1: Table S1.

Fig. 4 Distinct BPS usage of wt BRAF from mt BRAF RNA splicing identified by lariat RT‑PCR. a Strategy of lariat RT‑PCR for branch point mapping. 
Splicing lariats or lariat‑intermediates from in vitro splicing assays were reverse‑transcribed by a primer R. PCR amplification of the RT products was 
carried out by a primer set of F1 and R, and then nested by another primer set of F2 and R. b Lariat RT‑PCR products (arrows) of wt (left) and mt (right) 
BRAF RNA splicing. c The mapped branch points from TA cloning and sequencing of the wt and mt BRAF lariats and lariat‑intermediates. d Fre‑
quency of the mapped branch points from wt and mt BRAF splicing by lariat RT‑PCR in combination with TA cloning and sequencing. e Illustration 
of the mapped branch points in the intron 8 used for RNA splicing of the wt and mt BRAF
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In vitro splicing assay was performed as described 
[29, 36, 53]. Briefly, 4 ng of 32P-labeled pre-mRNAs were 
incubated with HeLa cell nuclear extract at 30  °C for a 
2 h in vitro splicing reaction and followed by extraction 
of splicing products. The splicing products were resolved 
by electrophoresis on a 6 % denaturing PAGE gel. Auto-
radiograph was captured by PhosphorImager Storm 860 
(GE Healthcare Life Sciences, Pittsburgh, PA).

For lariat RT-PCR [31–33], in  vitro splicing products 
from 100  ng of cold pre-mRNAs were reverse tran-
scribed by Superscript II (Life technologies, Thermo 
Fisher Scientific) using a primer R and amplified by 
PCR with a primer pair of R and F1 first followed by a 
nested primer pair of R and F2 (Fig. 4a; Additional file 1: 
Table S1). The lariat RT-PCR products were subcloned 
into the pCR2.1 TOPO vector (Life Technologies) and 
sequenced.
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