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Abstract

Purpose: Previous studies investigating the association between EPHX1 polymorphisms (Tyr113His and His139Arg)
and cancer risk have yielded inconsistent results. This meta-analysis was performed to derive a more precise
estimation of relationship between two EPHX1 polymorphisms and risk of different types of cancer.

Methods: Data were extracted from relevant studies detected by a systematic literature search. Odds ratios (ORs)
with 95% confidence intervals (CIs) were calculated to assess the strength of the association between EPHX1
polymorphisms and cancer risk.

Results: This meta-analysis carefully collected 99 studies on these two polymorphisms and cancer risk published
up to March 2014, consisting of 45 studies (20,091 cases and 27,396 controls) for Tyr113His and 54 studies
(19,437 cases and 27,289 controls) for His139Arg. The results in overall population did not show any significant
association between these two polymorphisms and cancer risk for all genetic models. However, EPHX1 Tyr113His
homozygote individuals have a significantly increased risk of cancer among Asians (homozygote model: OR =1.46,
95% CI=1.05–2.03; recessive model: OR =1.39, 95% CI =1.10–1.76) and mixed population (homozygote model:
OR =1.17, 95% CI =1.02–1.34; recessive model: OR =1.17, 95% CI =1.02–1.33), but not Caucasians.

Conclusion: His/His genotype of EPHX1 Tyr113His polymorphism is a risk factor for developing caner for Asian and
mixed population, while no evidence was found for the association between the EPHX1 His139Arg polymorphism
and increased cancer risk.

Keywords: EPHX1 polymorphisms, Meta-analysis, Cancer risk
Background
Xenobiotic catalytic pathway is an important defense
mechanism against carcinogenesis [1]. As a critical bio-
transformation enzyme of this pathway, microsomal epox-
ide hydrolase (EPHX1) plays a key role in the detoxification
of potential carcinogens from endogenous compounds as
well as exogenous chemicals, which ultimately convert
them into less toxic metabolites [2-5].
The EPHX1 gene is located on chromosome 1q42 with

9 exons and 8 introns. Functional studies have shown that
two common polymorphic sites in the gene affecting EPHX1
enzyme activity. The tyrosine to histidine substitution in
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exon 3 (Tyr113His, site: T337C, dbSNP: rs1051740) sharply
decreases its enzyme activity by nearly 40%, whereas the
histidine to arginine substitution in exon 4 (His139Arg,
site: A415G, dbSNP: rs2234922) could increase the enzyme
activity by approximately 25% [6]. Given the significance of
EPHX1 in eliminating carcinogenicity of toxic compounds
like epoxides, it could be proposed that these two func-
tional polymorphisms may lead to individual variations of
xenobiotic detoxification and further influence susceptibil-
ity to chemical carcinogen-induced cancers.
Over the past two decades, a number of studies have

been conducted to investigate the relationship between
EPHX1 polymorphisms and cancer in different popula-
tions. However, the results of these studies are conflicting
rather than conclusive. Several previous meta-analyses
were flawed in their lack of sufficient data or there were
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methodological problems. One meta-analysis by Li et al.
found that no significant association between EPHX1 poly-
morphisms (Tyr113His and His139Arg) and increased risk
of cancers [7]. However, several studies [8-10] included in
this meta-analysis were incorrectly classified according to
source of controls, which may lead to an inaccurate result.
Some recent studies did not evaluate the deviations from
Hardy–Weinberg equilibrium (HWE) in control subjects
[11-13], which could bias the estimates of genetic effects
in genetic association studies and meta-analysis [14]. Since
that date, several more studies have emerged to assess
the relationship between the Tyr113His and/or His139Arg
polymorphisms of the EPHX1 gene and susceptibility to a
variety of cancers. Given the new information, we system-
atically evaluated the effect of these two polymorphisms
on cancer risk in an updated meta-analysis with increased
statistical power in order to get a more precise and reliable
assessment of the association.

Materials and methods
Search strategy
A comprehensive literature search was performed using
PubMed database for relevant articles published (last search:
March 14, 2014) with the following terms: ((“epoxide hydro-
lase 1”) OR EPHX1) AND (((polymorphism) OR (SNP)) OR
variant)) AND ((((neoplasm) OR cancer) OR carcinoma)
OR leukemia). All the references of retrieved articles and
supplementary data were checked when key information
relevant to the meta-analysis was missing.

Inclusion criteria
All studies were included if they met the following
criteria: (1) case–control study; (2) studies to evaluate
the association between EPHX1 gene polymorphisms
(Tyr113His and His139Arg) and risk of cancer; (3)
sufficient data for estimating an odds ratio (OR) with
95% confidence interval (CI); (4) full-text in English
available and (5) more than 100 patients. When the
same population was included in several publications, only
the most complete one was included in this meta-analysis.

Data extraction
Data were carefully evaluated and extracted from the eli-
gible studies by two investigators independently according
to the inclusion criteria listed above. The following char-
acters were collected from eligible studies: first author’s
name, year of publication, ethnicity (categorized as Asian,
Caucasian, African, or mixed), source of control groups
(population-based [PB], hospital-based [HB], family-based
[FB] or unknown), genotype frequency of cases and con-
trols, and the results of Hardy-Weinberg equilibrium
(HWE) test. When it came to discrepancy between two
investigators, another investigator was invited to discuss
and check the data until a consensus was reached.
Statistical analysis
The departure from the Hardy-Weinberg equilibrium for
the control group in each study was assessed with Pearson's
goodness-of-fit Chi-square test with 1 degree of freedom by
a web-based program (http://ihg.gsf.de/cgi-bin/hw/hwa1.pl)
and the violation of HWE was determined with a threshold
of p < 0.05. Odds ratios (ORs) with 95% confidence intervals
(CIs) were used to assess the strength of association between
the EPHX1 gene polymorphisms and cancer suscepti-
bility. Pooled ORs were performed for dominant model
(aa + Aa vs. AA, a was for the minor allele and A was
for the major allele), recessive model (aa vs. Aa + AA),
homozygote comparison (aa vs. AA), heterozygote compari-
son (Aa vs. AA), and additive model (a vs. A), respectively.
Heterogeneity among pooled studies were evaluated by the
Chi-square-based Cochran’s Q test [15] and I2 statistics [16].
To be more conservative, heterogeneity was considered to
be present when the Cochran’s Q-test P-value was less than
0.1, then random-effects model (the DerSimonian and Laird
method) [17] was utilized, otherwise, fixed-effects model
was used (the Mantel-Haenszel method) [18]. In addition,
inconsistency across studies was quantified by means of
I2 statistic, with I2 < 25%, 25-75%, and >75% considered
to represent low, moderate and high degree of hetero-
geneity, respectively [16]. Stratification analyses were
performed to test the effects of cancer types, source of
control, ethnicity and smoking status, respectively. To
explore the source of heterogeneity among the studies
of this meta-analysis, a multivariate meta-regression
analysis subjected to 10,000 permutations was under-
taken to explore the possible sources of heterogeneity.
The following study characteristics were included as co-
variates in the meta-regression analysis: ethnicity, source
of control, cancer types. Sensitivity analysis was carried
out through omitting individual study in turn to check the
consistency of the results. Publication bias was evaluated
by visual inspection of the Begg’s funnel plots [19] and the
Egger’s linear regression (P < 0.05 was considered a signifi-
cant publication bias) [20]. All statistical tests were per-
formed with metafor [21] and meta (http://cran.r-project.
org/web/packages/meta/) packages of R (version 3.0.1),
using two-sided p-values.
This meta-analysis followed the guidelines of the preferred

reporting items for systematic reviews and meta-analysis
(PRISMA) statement [22] (Additional file 1: Table S1).

Results
Study characteristics
The initial literature search through PubMed database
yielded 192 published articles. Totally, when reviewed
in full-text, 4 were not concerned with Tyr113His or
His139Arg polymorphisms in EPHX1 gene, 37 were
not cancer risk studies, 1 was not published in English,
1 was not provided in full text, 7 were not case–control
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studies, 30 were no usable reported data, and 19 were
meta-analysis or reviews; all these publications were
excluded. Among the remaining 87 articles, studies
presented separate OR by different polymorphisms,
cancer types or ethnicity, and each of them was consid-
ered separately for pooling analysis. Furthermore, 32
studies not in HWE and 39 with less 100 patients were
also deleted. Hence, 45 studies [8-10,23-63] for Tyr113His
polymorphism (20,091 cases and 27,396 controls) and 54
studies [8-10,24-26,28,29,32,34-45,47-51,53,55-61,63-81] for
His139Arg polymorphism (19,437 cases and 27,289 con-
trols) were included eventually. Genotype distributions in
the controls of all selected studies are in agreement
with HWE. The flow of study selection was shown in
Figure 1, and the main characteristics of eligible stud-
ies were summarized (Additional file 2: Table S2 and
Additional file 3: Table S3).

Quantitative synthesis
The pooled results of meta-analysis for the association be-
tween EPHX1 polymorphisms (Tyr113His and His139Arg)
and cancer susceptibility are shown in Tables 1 and 2.
Heterogeneity across studies must be considered be-
cause it may affect the strengths of the meta-analysis.
Significant heterogeneity was observed in some com-
parisons for both EPHX1 Tyr113His and His139Arg
polymorphisms. Thus, random-effect model was used
when heterogeneity identified.
For Tyr113His polymorphism, overall, no significantly

elevated cancer risk could be observed in all genetic models
(Table 1. homozygote model: OR = 1.05, 95% CI = 0.95–
1.16; heterozygote model: OR = 0.94, 95% CI = 0.88–1.01;
additive model: OR = 1.00, 95% CI = 0.95–1.05; dominant
model: OR = 0.96, 95% CI = 0.90–1.03, Figure 2; recessive
model: OR = 1.08, 95% CI = 0.99–1.18). When stratified by
Figure 1 The flow diagram of the literature search and the study sele
ethnicity, the significantly increased cancer risks were found
among Asian population (homozygote model: OR = 1.46,
95% CI = 1.05–2.03; recessive model: OR = 1.39, 95%
CI = 1.10–1.76) and Mixed population (homozygote model:
OR = 1.17, 95% CI = 1.02–1.34; recessive model: OR = 1.17,
95% CI = 1.02–1.33). Stratified analyses by cancer
types, smoking status and source of controls indicated
no evidence of significant association between Tyr113-
His polymorphism and the cancer risk. Furthermore,
individuals carrying Tyr/His or His/His genotype have
a significantly reduced risk of lung cancer (heterozygote
model: OR = 0.80, 95% CI = 0.65-0.98; dominant model:
OR = 0.81, 95% CI = 0.68–0.98).
With respect to His139Arg polymorphism, similarly, the

combined results did not show any association with the ele-
vated risk of cancer for all genetic models (homozygote
model: OR = 1.05, 95% CI = 0.93–1.18; heterozygote model:
OR = 0.96; 95% CI = 0.91–1.01; additive model: OR = 0.99,
95% CI = 0.94–1.04; dominant model: OR = 0.97, 95%
CI = 0.92–1.03, Figure 3; recessive model: OR = 1.02,
95% CI = 0.93–1.13). When stratified according to cancer
types, no significant association with increased cancer risk
was demonstrated in all subgroups for overall population.
However, the result suggested a decreased risk for blood
cancers (additive model: OR = 0.91, 95% CI = 0.83–0.99;
dominant model: OR = 0.90, 95% CI = 0.81–0.99) and
colorectal cancer (heterozygote model: OR = 0.92; 95%
CI = 0.85–0.99). In the subgroup analysis by source of
controls, smoking status and ethnicity, no significant
association with cancer risk was observed in all sub-
groups (Table 2).

Meta-regression and sensitivity analyses
Heterogeneity is a potential issue that may affect the inter-
pretation of the results. As for Tyr113His polymorphism,
ction.



Table 1 Overall and stratified meta-analyses of the association between the EPHX1 Tyr113His polymorphism and cancer risk
Variables Noa Case/control Homozygote comparison Heterozygote comparison Dominant model Recessive model Additive model

OR (95% CI) P Pb (I2) OR (95% CI) P Pb (I2) OR (95% CI) P Pb (I2) OR (95% CI) P Pb (I2) OR (95% CI) P Pb (I2)

Total 45 20091/27396 1.05(0.95 ~ 1.16) 0.37 0.00(50.8) 0.94(0.88 ~ 1.01) 0.08 0.0(54.0) 0.96(0.90 ~ 1.03) 0.26 0.0(56.8) 1.08(0.99 ~ 1.18) 0.08 0.0(37.4) 1.00(0.95 ~ 1.05) 0.94 0.0(57.7)

Cancer
type

Blood 7 2419/2319 1.05(0.76 ~ 1.46) 0.76 0.03(56.1) 0.89(0.73 ~ 1.01) 0.24 0.06(49.8) 0.92(0.75 ~ 1.13) 0.42 0.02(60.3) 1.17(0.96 ~ 1.41) 0.12 0.14(37.3) 0.97(0.82 ~ 1.15) 0.76 0.01(65.9)

Prostate 3 1706/1192 1.54(0.57 ~ 4.16) 0.86 0.00(88.9) 1.31(0.82 ~ 2.01) 0.26 0.00(79.7) 1.39(0.80 ~ 2.41) 0.24 0.00(87.1) 1.29(0.62 ~ 2.65) 0.50 0.0(82.2) 1.27(0.81 ~ 1.97) 0.30 0.00(89.7)

Esophageal 3 593/1086 1.09(0.78 ~ 1.51) 0.63 0.19(40.5) 1.01(0.52 ~ 1.93) 0.99 0.00(86.0) 1.08(0.63 ~ 1.84) 0.79 0.00(81.6) 1.16(0.85 ~ 1.58) 0.34 0.20(38.4) 1.09(0.84 ~ 1.41) 0.51 0.07(61.9)

Colorectal 9 5512/6787 0.98(0.86 ~ 1.11) 0.75 0.85(0.0) 1.00(0.93 ~ 1.08) 0.98 0.79(0.0) 0.99(0.93 ~ 1.07) 0.98 0.80(0.0) 0.98(0.87 ~ 1.11) 0.76 0.87(0.0) 1.00(0.94 ~ 1.05) 0.87 0.84(0.0)

Other 7 2425/2872 1.20(0.90 ~ 1.59) 0.22 0.06(50.4) 1.00(0.81 ~ 1.24) 0.99 0.01(66.7) 1.04(0.84 ~ 1.29) 0.74 0.00(69.4) 1.18(0.98 ~ 1.42) 0.08 0.40(2.8) 1.06(0.91 ~ 1.23) 0.45 0.01(65.5)

Lung 9 2065/5429 0.80(0.57 ~ 1.12) 0.20 0.00(62.5) 0.80(0.65 ~ 0.98) 0.03 0.00(65.0) 0.81(0.68 ~ 0.98) 0.03 0.01(62.5) 0.91(0.66 ~ 1.25) 0.57 0.01(61.7) 0.87(0.75 ~ 1.01) 0.08 0.0(65.5)

Head
and neck

3 825/821 1.04(0.74 ~ 1.47) 0.81 0.98(0.0) 0.87(0.71 ~ 1.07) 0.19 0.82(0.0) 0.90(0.74 ~ 1.10) 0.30 0.85(0.0) 1.11(0.80 ~ 1.54) 0.53 0.99(0.0) 0.96(0.83 ~ 1.12) 0.61 0.91(0.0)

Breast
cancer

4 4546/6890 1.02(0.90 ~ 1.17) 0.73 0.15(43.0) 0.99(0.91 ~ 1.07) 0.73 0.60(0.0) 0.99(0.92 ~ 1.07) 0.35 0.99(0.0) 1.14(0.89 ~ 1.46) 0.31 0.05(62.6) 1.00(0.97 ~ 1.03) 0.93 0.68(0.0)

Source
of control

PB 31 16035/23111 1.03(0.93 ~ 1.14) 0.54 0.06(29.7) 0.97(0.92 ~ 1.03) 0.28 0.10(25.1) 0.98(0.93 ~ 1.04) 0.45 0.06(30.4) 1.03(0.96 ~ 1.11) 0.38 0.14(21.9) 1.00(0.95 ~ 1.04) 0.91 0.03(34.7)

HB 11 3517/3627 0.94(0.77 ~ 1.15) 0.56 0.08(40.9) 0.81(0.69 ~ 0.96) 0.01 0.00(59.4) 0.85(0.74 ~ 0.98) 0.03 0.03(49.4) 1.05(0.86 ~ 1.27) 0.66 0.05(45.7) 0.93(0.84 ~ 1.03) 0.16 0.05(45.3)

Ethnicity

Caucasian 26 11757/18447 0.94(0.87 ~ 1.03) 0.17 0.29(11.7) 0.93(0.87 ~ 1.00) 0.04 0.09(28.7) 0.93(0.87 ~ 1.00) 0.04 0.06(31.7) 0.97(0.89 ~ 1.05) 0.45 0.49(0.0) 0.96(0.91 ~ 1.00) 0.07 0.08(29.6)

Mixed 7 5645/5502 1.17(1.02 ~ 1.34) 0.03 0.42(0.7) 1.00(0.93 ~ 1.09) 0.96 0.57(0.0) 1.03(0.96 ~ 1.11) 0.44 0.53(0.0) 1.17(1.02 ~ 1.33) 0.02 0.44(0.0) 1.05(0.99 ~ 1.11) 0.11 0.43(0.0)

Asian 11 2534/3205 1.46(1.05 ~ 2.03) 0.04 0.00(75.1) 1.04(0.77 ~ 1.40) 0.81 0.00(81.7) 1.16(0.88 ~ 1.53) 0.30 0.00(56.8) 1.39(1.10 ~ 1.76) 0.01 0.01(60.7) 1.19(0.99 ~ 1.42) 0.05 0.0(79.4)

Smoking
status

Smoker 9 1786/2114 0.99(0.80 ~ 1.23) 0.95 0.42(1.4) 0.85(0.66 ~ 1.10) 0.21 0.03(52.1) 0.89(0.71-1.11) 0.30 0.05(47.8) 1.07(0.87 ~ 1.31) 0.56 0.43(0.5) 0.97(0.88 ~ 1.08) 0.60 0.13(36.7)

Non-smoker 8 1357/1947 1.45(0.89 ~ 2.37) 0.14 0.00(71.4) 1.19(0.88 ~ 1.60) 0.27 0.01(63.6) 1.27(0.92 ~ 1.74) 0.14 0.00(71.7) 1.29(0.92~1.82) 0.14 0.05(50.0) 1.23(0.97 ~ 1.57) 0.09 0.00(75.8)

PB: population based; HB: hospital based. Pb: P-values for heterogeneity from Q test; I2 refers to the proportion of total variation owing to between-study heterogeneity.
Bold font marks where fixed effect model used.
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Table 2 Overall and stratified meta-analyses of the association between the EPHX1 His139Arg polymorphism and cancer risk
Variables Noa Case/control Homozygote comparison Heterozygote comparison Dominant model Recessive model Additive model

OR (95% CI) P Pb (I2) OR (95% CI) P Pb (I2) OR (95% CI) P Pb (I2) OR (95% CI) P Pb (I2) OR (95% CI) P Pb (I2)

Total 54 19437/27289 1.05(0.93 ~ 1.18) 0.73 0.09(21.3) 0.96(0.91 ~ 1.01) 0.15 0.02(31.5) 0.97(0.92 ~ 1.03) 0.30 0.00(40.1) 1.02(0.93 ~ 1.13) 0.66 0.23(12.0) 0.99(0.94 ~ 1.04) 0.57 0.00(44.9)

Cancer
type

Other 11 3160/4581 0.94(0.75 ~ 1.20) 0.64 0.53(0.0) 0.97(0.87 ~ 1.10) 0.51 0.56(0.0) 0.97(0.87 ~ 1.06) 0.47 0.53(0.0) 0.96(0.76 ~ 1.21) 0.71 0.53(0.0) 0.97(0.89 ~ 1.05) 0.50 0.46(0.0)

Blood 9 2929/3629 0.87(0.67 ~ 1.13) 0.29 0.90(0.0) 0.90(0.81 ~ 1.00) 0.05 0.25(21.4) 0.90(0.81 ~ 0.99) 0.04 0.47(0.0) 0.90(0.70 ~ 1.17) 0.44 0.82(0.0) 0.91(0.83 ~ 0.99) 0.04 0.80(0.0)

Esophageal 3 593/1081 1.30(0.50 ~ 3.38) 0.59 0.07(61.8) 1.02(0.65 ~ 1.62) 0.92 0.03(72.6) 1.06(0.66 ~ 1.73) 0.80 0.01(77.3) 1.30(0.54 ~ 3.13) 0.56 0.10(56.5) 1.10(0.71 ~ 1.69) 0.67 0.01(79.2)

Colorectal 10 5552/7089 1.14(0.85 ~ 1.53) 0.39 0.02(53.5) 0.92(0.85 ~ 0.99) 0.03 0.97(0.0) 0.94(0.87 ~ 1.01) 0.09 0.73(0.0) 1.17(0.87 ~ 1.58) 0.29 0.02(54.0) 0.97(0.91 ~ 1.03) 0.28 0.11(36.8)

Lung 14 4767/8411 1.14(0.83 ~ 1.56) 0.42 0.02(49.3) 1.10(0.94 ~ 1.27) 0.24 0.00(63.4) 1.10(0.93 ~ 1.29) 0.27 0.00(71.9) 0.97(0.80 ~ 1.17) 0.76 0.16(27.2) 1.07(0.93 ~ 1.24) 0.36 0.00(74.1)

Head
and neck

4 1035/1075 1.28(0.81 ~ 2.02) 0.30 0.99(0.0) 0.84(0.70 ~ 1.01) 0.06 0.69(0.0) 0.88(0.73 ~ 1.05) 0.14 0.70(0.0) 1.35(0.85 ~ 2.13) 0.20 1.0(0.0) 0.94(0.81 ~ 1.01) 0.41 0.78(0.0)

Breast
cancer

3 1401/1423 1.04(0.69 ~ 1.59) 0.85 0.49(0.0) 0.91(0.77 ~ 1.07) 0.04 0.66(0.0) 0.92(0.79 ~ 1.08) 0.30 0.67(0.0) 1.09(0.93 ~ 1.13) 0.70 0.49(0.0) 0.95(0.83 ~ 1.09) 0.44 0.66(0.0)

Source of
control

HB 16 5010/5638 1.14(0.93 ~ 1.41) 0.21 0.99(0.0) 0.96(0.88 ~ 1.05) 0.37 0.20(22.7) 0.98(0.90 ~ 1.06) 0.63 0.32(11.4) 1.17(0.95 ~ 1.44) 0.15 0.99(0.0) 1.00(0.94 ~ 1.08) 0.94 0.66(0.0)

PB 36 14191/21351 1.04(0.89 ~ 1.22) 0.61 0.01(39.4) 0.96(0.90 ~ 1.03) 0.22 0.01(39.4) 0.97(0.90 ~ 1.04) 0.40 0.00(50.7) 1.04(0.90 ~ 1.21) 0.56 0.05(30.0) 0.99(0.92 ~ 1.05) 0.64 0.00(57.2)

Ethnicity

Asian 13 2957/3770 0.97(0.75 ~ 1.27) 0.84 0.51(0.0) 0.99(0.89 ~ 1.11) 0.90 0.26(18.6) 0.99(0.89 ~ 1.10) 0.88 0.14(30.6) 0.98(0.76 ~ 1.28) 0.90 0.59(0.0) 1.01(0.90 ~ 1.13) 0.90 0.09(37.1)

Caucasian 32 12294/17831 1.10(0.93 ~ 1.30) 0.26 0.03(34.8) 0.95(0.88 ~ 1.02) 0.18 0.01(44.0) 0.97(0.89 ~ 1.04) 0.39 0.00(52.8) 1.07(0.95 ~ 1.21) 0.27 0.11(24.4) 0.99(0.92 ~ 1.06) 0.71 0.00(57.3)

Mixed 7 3921/5262 0.90(0.73 ~ 1.12) 0.35 0.81(0.0) 0.94(0.86 ~ 1.04) 0.22 0.43(0.0) 0.94(0.86 ~ 1.03) 0.16 0.69(0.0) 0.92(0.74 ~ 1.14) 0.45 0.71(0.0) 0.95(0.88 ~ 1.02) 0.15 0.93(0.0)

African 2 265/426 0.81(0.22 ~ 2.96) 0.75 0.08(21.3) 1.09(0.79 ~ 1.50) 0.60 0.78(0.0) 1.06(0.78 ~ 1.45) 0.69 0.46(0.0) 0.78(0.23 ~ 2.73) 0.70 0.08(66.6) 1.03(0.94 ~ 1.01) 0.84 0.22(34.7)

Smoking
status

Smoker 9 2331/2542 1.08(0.64 ~ 1.83) 0.77 0.01(61.5) 1.19(0.88 ~ 1.60) 0.27 0.00(76.6) 1.16(0.85 ~ 1.58) 0.35 0.00(79.9) 1.04(0.68~1.60) 0.86 0.06(46.8) 1.09(0.84 ~ 1.41) 0.52 0.00(80.1)

Non-smoker 8 1498/2336 1.25(0.90 ~ 1.75) 0.19 0.67(0.0) 1.05(0.91 ~ 1.21) 0.49 0.78(0.0) 1.08(0.94 ~ 1.23) 0.30 0.71(0.0) 1.24(0.89 ~ 1.72) 0.21 0.71(0.0) 1.08(0.96 ~ 1.22) 0.19 0.60(0.0)

PB: population based; HB: hospital based. Pb: P-values for heterogeneity from Q test; I2 refers to the proportion of total variation owing to between-study heterogeneity.
Bold font marks where fixed effect model used.
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Figure 2 Forest plot for association of EPHX1 Tyr113His polymorphism and cancer risk (dominant model, CT + CC vs. TT).
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the heterogeneity was observed in all genetic models
and the detailed data are shown in Table 1. With respect
to His139Arg polymorphism (Table 2), the heterogeneity
was detected in homozygote comparison, heterozygote
model, dominant model and additive model. We therefore
explored the source of heterogeneity by cancer type,
ethnicity, and source of control by meta-regression in
all comparisons with significant heterogeneity. As a
result, for Tyr113His polymorphism, source of control
may be the major source of heterogeneity in homozygote
model (P = 0.024), heterozygote model (P = 0.000), domin-
ant model (P = 0.002) and additive model (P = 0.005), but
not recessive model. However, for His139Arg polymorph-
ism, none of these variables showed statistically significant



Figure 3 Forest plot for association of EPHX1 His139Arg polymorphism and cancer risk (dominant model, GA + GG vs. AA).
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Figure 5 Begg’s funnel plot for publication bias in studies on
EPHX1 His139Arg polymorphism and cancer (dominant model,
GA + GG vs. AA).
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associations in multivariate meta-regression model
(P > 0.05), suggesting factors mentioned above could
not explain the heterogeneity among studies.
The influences of each individual study on the overall

ORs for Tyr113His/His139Arg polymorphisms were
evaluated. The results showed the pooled ORs of these
two polymorphisms were not materially altered by the
omission of any individual study, suggesting credibility
for the conclusions (Additional file 4: Figure S1 and
Additional file 5: Figure S2).

Publication bias
Begg’s funnel plot and Egger’s test were performed to as-
sess the publication bias of literatures. The shape of fun-
nel plots (Figures 4 and 5) did not reveal any evidence of
asymmetry. The statistical results of Egger’s test still did
not show publication bias for Tyr113His polymorphism
(additive model: P = 0.146; homozygote comparison:
P = 0.620; heterozygote model: P = 0.189; dominant model:
P = 0.054; recessive model: P = 0.915) and His139Arg
polymorphism (additive model: P = 0.125; homozygote
comparison: P = 0.847; heterozygote model: P = 0.255;
dominant model: P = 0.111; recessive model: P = 0.153).

Discussion
With increased knowledge of human gene functions and
the architecture of genetic variations, it has become
clear that individual variation in genetic backgrounds,
such as single nucleotide polymorphism, could substan-
tially influence cancer risk with specific environmental
exposure. However, evidences from studies of genetic
epidemiology were usually too conflicting to draw
conclusions. Meta-analysis shed light on objective and
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Figure 4 Begg’s funnel plot for publication bias in studies on
EPHX1 Tyr113His polymorphism and cancer (dominant model,
CT + CC vs. TT).
comprehensive assessment of the associations between
polymorphisms and cancer risks. Several single nucleotide
polymorphisms were identified as cancer risk factors for
specific populations by means of meta-analysis [82-84].
The genetic polymorphisms of EPHX1, Tyr113His and

His139Arg, may affect enzyme activity involved in general
oxidative defenses against a number of environmental sub-
stances [6]. Variations in the expression and activity level
of EPHX1 as a result of such polymorphisms could cause
individual variations of detoxifying capability, then further
influence the risk of chemical carcinogen-induced cancers
[85]. The findings from some previous studies suggested
that genetic polymorphism in EPHX1 has important roles
in the development of cancers [55,86-88]. However, others
reported no association of EPHX1 polymorphisms with
risk of cancers [24,26,34,45]. This inconsistency may
be due to tremendous difference in sample size, diverse
ethnic background, sampling bias, publication bias, or
inadequate statistical power. The benefits of meta-analysis
include a larger number of participants, different geo-
graphic locations, and the possibility of inclusion of a
wider range of population groups, all of which could
derive a more precise estimation and further increase
the generalizability of the results.
In this meta-analysis, 99 eligible case–control studies

including 39,528 cases and 54,685 controls were included
to provide a comprehensive assessment of the relationship
between EPHX1 polymorphisms and cancer risk. The
results revealed that neither EPHX1 Tyr113His poly-
morphism, nor His139Arg polymorphism have signifi-
cant association with the cancer susceptibility for all
comparing models when all studies were accumulated
together. Further stratified analysis according to cancer
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types, smoking status, or source of controls did not
suggest a significantly increased risk. Moreover, His139Arg
polymorphism might play a potentially protective role
in the development of blood cancer based on dominant
model and additive model, and colorectal cancer by het-
erozygous model. Meanwhile Tyr113His polymorphism
showed possible protective effect on risk for lung cancer
by heterozygote model and dominant model.
Stratified analysis by ethnicity allowed for assessing

the ethnic differences in the association of cancer risk.
As for His139Arg polymorphism, no significant associations
were found in any genetic model among all populations.
However, with respect to the Tyr113His polymorphism, an
increased risk of cancer based on homozygote and recessive
model could be observed in Asian and mixed population,
indicating there is an obvious race-specific effect in the
association. It was consistent with the results from two
recent meta-analyses for hepatocellular cancer [89]
and lung cancer [90]. Further subgroup analysis by the
cancer types in Asian and Mixed population was not
performed due to the limited data for individual cancer
type according to our inclusion criteria.
Heterogeneity between studies should be noted because

it may potentially affect the strengths of the meta-analysis.
In the current meta-analysis, significance heterogeneity
was observed for both EPHX1 Tyr113His and His139Arg
polymorphisms. Thus, random-effect models were used if
significant heterogeneity was identified. Furthermore,
multivariate meta-regression analysis involving covari-
ates, such as source of control, cancer type, ethnicity,
was performed to explore the source of heterogeneity.
The results from meta-regression emphasized that the
heterogeneity of polymorphism Tyr113His was associated
with source of control in homozygote model, heterozygote
model, dominant model and additive model, but not reces-
sive model. Neither cancer type, nor ethnicity was found to
be the source of heterogeneity. However, as for His139Arg,
results indicated none of these three covariates could
be the main source of the between-study heterogeneity.
It suggested that some other confounding factors, such
as environmental exposures, gene-gene interaction,
and lifestyle might lead to the heterogeneity. Large
studies for both polymorphisms with comprehensive
classification information are needed to facilitate the
subgroup analysis according to these factors, which is
unavailable for present meta-analysis because of inad-
equate information from our original data sources.
Although our result is suggestive, there are still some

limitations inherited from the published studies and our
analysis strategies. First, the present conclusion was
drawn based on unadjusted estimates, while a more pre-
cise analysis with the necessary adjustment by other co-
variates including age, lifestyle, gene–gene interactions
and environmental factors should be conducted when
more detailed individual data were available. Second, al-
though some results were significant, the p–values were
on the borderline, i.e. slightly less than 0.05. Further large
and well-designed studies are required for confirmation.
Finally, most studies were from Caucasian population, it is
critical that larger and well-designed multi-centric studies
based on Asians and other racial-ethnic groups should be
performed to re-evaluate the association. In spite of these,
our meta-analysis also had some advantages. First, the
quality of case–control studies included in current meta-
analysis was satisfactory and met our inclusion criterion,
ensuring the quality of our results. Second, the sensitivity
analysis showed that no individual study materially altered
the pooled ORs indicating statistical stableness and ro-
bustness of the current meta-analysis. In addition, no
publication bias for the association between these two
polymorphisms and cancer risk could be observed,
which further confirmed the credibility.
In conclusion, our investigations suggested that the

EPHX1 His139Arg polymorphism might not contribute
to the susceptibility of all cancer types for overall popu-
lation, whereas Tyr113His polymorphism might be asso-
ciated with increased risk of cancer in the Asian and
mixed population. Larger well-designed epidemiological
studies with different cancer types, ethnically diverse
populations and functional evaluations are warranted
to confirm our findings.
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Additional file 1: Table S1. PRISMA Checklist for this meta-analysis.

Additional file 2: Table S2. Principal characteristics of the studies
included on EPHX1 Tyr113His polymorphism.

Additional file 3: Table S3. Principal characteristics of the studies
included on EPHX1 His139Arg polymorphism.

Additional file 4: Figure S1. Sensitivity analysis of the summary OR of
the association between EPHX1 Tyr113His polymorphism and cancer
susceptibility in dominant model. Results were computed by omitting
each study in turn. Random-effects model was used. The two ends of the
dotted lines represent the 95% confidence interval.

Additional file 5: Figure S2. Sensitivity analysis of the summary OR of
the association between EPHX1 His139Arg polymorphism and cancer
susceptibility in dominant model. Results were computed by omitting
each study in turn. Random-effects model was used. The two ends of the
dotted lines represent the 95% confidence interval.
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