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ABSTRACT
Background and Objectives. White adipose tissue (WAT) shows marked sex- and
diet-dependent differences. However, our metabolic knowledge of WAT, especially on
amino acid metabolism, is considerably limited. In the present study, we compared
the influence of sex on the amino acid metabolism profile of the four main WAT sites,
focused on the paths related to ammonium handling and the urea cycle, as a way to
estimate the extent of WAT implication on body amino-nitrogen metabolism.
Experimental Design. Adult female and male rats were maintained, undisturbed,
under standard conditions for one month. After killing them under isoflurane
anesthesia. WAT sites were dissected and weighed. Subcutaneous, perigonadal,
retroperitoneal and mesenteric WAT were analyzed for amino acid metabolism gene
expression and enzyme activities.
Results. There was a considerable stability of the urea cycle activities and expressions,
irrespective of sex, and with only limited influence of site. Urea cycle was more
resilient to change than other site-specialized metabolic pathways. The control
of WAT urea cycle was probably related to the provision of arginine/citrulline, as
deduced from the enzyme activity profiles. These data support a generalized role
of WAT in overall amino-N handling. In contrast, sex markedly affected WAT
ammonium-centered amino acid metabolism in a site-related way, with relatively
higher emphasis in males’ subcutaneous WAT.
Conclusions. We found that WAT has an active amino acid metabolism. Its gene
expressions were lower than those of glucose-lipid interactions, but the differences
were quantitatively less important than usually reported. The effects of sex on
urea cycle enzymes expression and activity were limited, in contrast with the wider
variations observed in other metabolic pathways. The results agree with a centralized
control of urea cycle operation affecting the adipose organ as a whole.

Subjects Biochemistry, Nutrition, Metabolic Sciences
Keywords Adipose tissue, Urea cycle, Ammonium, Citrulline, Urea, Adipose organ, Lipogenesis

INTRODUCTION
The influence of sex on adipose tissue distribution and function, and its implication

in metabolic syndrome has been known for a long time (Mayes & Watson, 2004). The
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protective effects of estrogen on adipose tissue activity (D’Eon et al., 2005), and limitation

of its hypertrophic growth (Kumar et al., 2012) and inflammation (Stubbins et al., 2012)

are key sex-related factors, which contribute to limit the disorders elicited by metabolic

syndrome (Antonio et al., 2015). The distribution of fat in gynoid and android shapes

of adult humans is a consequence of the close interrelationship of adipose tissue with

androgens and estrogens (Kotani et al., 1994), modulated by their different response to

glucocorticoids in the aftermath of a tissue defensive response against excess nutrient loads

(Alemany, 2012a).

There are clear differences between females and males in site distribution and metabolic

responses (Porter et al., 2004; Demerath et al., 2007), but most studies on adipose tissue

are limited to a single site or isolated cells, and are usually focused on the responses to

inflammation (Revelo et al., 2014).

The extensive metabolic capability of white adipose tissue (WAT) show a remarkable

uniformity in metabolic function and overall regulation (Carmean, Cohen & Brady,

2014; Romero et al., 2014). As a consequence, the assumed main function of WAT

(i.e., triacylglycerol storage as energy reserve) (Galic, Oakhill & Steinberg, 2010; Romacho et

al., 2014) is been reconsidered because of the multiple functions of this unique disperse

organ (Eringa, Bakker & Van Hinsbergh, 2012; Ferrante, 2013; Giordano et al., 2014).

However, the level of knowledge of WAT metabolism, other than the control of lipid

synthesis and storage, remains remarkably insufficient, constituting a handicap for

interpretation of its physiological role (Jensen, 2007).

WAT contains a complete urea cycle, as shown in the present study, which is, probably

implicated in the extra-splanchnic production of citrulline, a critical factor for muscle

function (Ventura et al., 2013) and inter-organ 2-amino-N transport and utilization.

However, WAT is also a massive producer of 3C fragments, such as lactate (Arriarán et al.,

2015), but including alanine (Snell & Duff, 1977). WAT is also a net exporter of glutamine

(Kowalski & Watford, 1994), and can use branched-chain amino acids for energy and

lipogenesis (Herman et al., 2010). The large combined organ size, variety of known amino

acid metabolic pathways and diverse physiological functions, hint at WAT as a potentially

important site for peripheral amino acid metabolism. The information available is scant,

we found only a couple of earlier studies (López-Soriano & Alemany, 1986; Kowalski, Wu &

Watford, 1997); this is a serious limitation for a full understanding of whether amino acids

should be also included in the well-established role of WAT in the management of energy,

from glucose and lipids.

The little we know of WAT role in amino acid metabolism is further limited by our

almost nil understanding of the role sex plays on WAT metabolism. In general terms,

androgens favor protein deposition (Griggs et al., 1989), and males tend to consume

spontaneously more protein than females (Radcliffe & Webster, 1978); on the other

hand, estrogens lower body weight (Bryzgalova et al., 2008), in spite of females (women)

having—normally—a higher body fat percentage than males (men). Young women are

more resistant to obesity than men (Meyer et al., 2011); however, after menopause, this

estrogenic protection wanes (Cagnacci et al., 2007).
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In this study, we intended to determine whether the gross differences in WAT

distribution and its resilience to change had a robust biochemical basis. Thus, we analyzed

whether the WAT urea cycle and related amino acid catabolic processes of rats showed

sex-modulated differences. To obtain a wider picture we studied the four main (largest)

WAT sites in parallel, and we included in the analysis (for comparison) a number of gene

expressions involved in the control of WAT lipogenesis from glucose and lipolysis.

MATERIALS AND METHODS
Experimental design and animal handling
All animal handling procedures and the experimental setup were in accordance with

the animal handling guidelines of the corresponding European and Catalan Authorities.

The Committee on Animal Experimentation of the University of Barcelona specifically

authorized the procedures used in the present study (DMAH-5483).

The experimental setup consisted on keeping two groups of undisturbed rats (female

and male) under standard conditions for four weeks, in order to limit the influence of

factors other than sex on the parameters analyzed.

Nine week old female and male Wistar rats (Harlan Laboratory Models, Sant Feliu de

Codines, Spain) were used. The rats (N = 6 per group) were housed in pairs (same sex)

in solid-bottom cages with wood shards for bedding. They had free access to water and

ate normal rat chow (type 2014, Harlan). The rats were kept in a controlled environment

(lights on from 08:00 to 20:00; 21.5–22.5 ◦C; 50–60% humidity) for one month.

The rats, without dietary manipulation, were killed, under isoflurane anesthesia, at the

beginning of a light cycle (08:30–10:00), by aortic exsanguination, using dry-heparinized

syringes; then, they were rapidly dissected, taking samples of WAT sites: mesenteric (ME),

perigonadal (epididymal in males, periovaric in females, PG), retroperitoneal (RP) and

subcutaneous (inguinal fat pads, SC). The samples were blotted and frozen with liquid

nitrogen; after weighing, they were ground under liquid nitrogen and stored at −80 ◦C

until processed. Later, the dissection of the rats continued, extracting the remaining WAT

in ME, EP and RP sites; the rats were skinned, and the whole subcutaneous WAT was

dissected. The weights of the recovered WAT were computed only to establish the total

mass of each WAT site.

Blood plasma parameters
The blood obtained from the aorta was centrifuged to obtain plasma, which was frozen and

kept at −80 ◦C until processed. Plasma samples were used to measure glucose (kit #11504),

triacylglycerols (kit #11828), total cholesterol (kit #11505) and urea (kit # 11537), all

from Biosystems, Barcelona Spain. Lactate was measured with another kit (ref. #1001330;

Spinreac, Sant Esteve de Bas, Spain). Amino acids were analysed individually using an

amino acid analyser (Pharmacia-LKB-Alpha-plus, Uppsala, Sweden) from plasma samples

deproteinized with acetone (Arola, Herrera & Alemany, 1977). Since the method used did

not provide fair analyses for glutamine (Gowda, Gowda & Raftery, 2015) and other amino

acids (Trp, Cys, Asn), we decided to present only the partial sum of the other amino acids as

a single indicative value.
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Preparation of tissue homogenates
Frozen tissue samples were homogenized, using a tissue disruptor (Ultraturrax IKA-T10,

Ika Werke, Staufen, Germany), in 5 volumes of chilled 70 mM hepes buffer pH 7.4

containing 1 mM dithiothreitol (Sigma, St Louis MO USA), 50 mM KCl, 1 g/L Triton

X-100 (Sigma) and 1 g/L lipid-free bovine serum albumin (Sigma). In homogenates to

be used for carbamoyl-P synthase 2 estimation, the concentration of Triton X-100 was

halved to decrease foaming. The homogenates were centrifuged for 10 min at 5,000 × g;

the floating fat layers and gross debris precipitates were discarded. The clean homogenates

were kept on ice, and used for enzymatic analyses within 2 h of their preparation.

Tissue protein content was estimated with the Lowry method (Lowry et al., 1951). After

development of color, fat droplet suspension-generated turbidity was eliminated with the

addition of small amounts of finely powdered solid MgO before reading the absorbance.

In the measurements of homogenate protein content, homogenization buffer (which

contained albumin) was used as blank. Enzyme activities were expressed in nkat/g protein.

Enzyme activity analyses
Carbamoyl-P synthase was estimated from the incorporation of 14C-bicarbonate (Perkin

Elmer, Bad Neuheim, Germany) into carbamoyl-P using a method previously described

by us (Arriarán et al., 2012). No significant carbamoyl-P synthase 1 activity was detected

(and its gene was not expressed, either, in WAT). Thus, only carbamoyl-P synthase 2 was

measured.

All other enzyme activities (ornithine carbamoyl-transferase, arginino-succinate

synthase, arginino-succinate lyase and arginases 1 and 2) were estimated following recently

developed methods, which are presented in detail in Supplemental Information 1 both to

justify their adequacy and to allow others to employ a methodology developed for adipose

tissue.

Gene expression analysis
Total tissue RNA was extracted from frozen tissue samples using the Tripure reagent

(Roche Applied Science, Indianapolis IN USA), and was quantified in a ND-100

spectrophotometer (Nanodrop Technologies, Wilmington DE USA). These data were

also used to determine the total RNA content of the tissue (per g of tissue weight or g of

protein) in order to establish comparisons between the quantitative importance of gene

expressions. RNA samples were reverse transcribed using the MMLV reverse transcriptase

(Promega, Madison, WI USA) system and oligo-dT primers.

Real-time PCR (RT-PCR) amplification was carried out using 10 µL amplification

mixtures containing Power SYBR Green PCR Master Mix (Applied Biosystems, Foster City,

CA USA), 4 ng of reverse-transcribed RNA and 150 nmol of primers. Reactions were run

on an ABI PRISM 7900 HT detection system (Applied Biosystems) using a fluorescent

threshold manually set to 0.15 for all runs.

A semi-quantitative approach for the estimation of the concentration of specific gene

mRNAs per unit of tissue/RNA or protein weight was used (Romero et al., 2007). Rplp0 was
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Figure 1 Scheme of the core of amino acid metabolism in WAT: urea cycle and ammonium han-
dling. The abbreviations (marked in red) of the enzymes involved in the pathways depicted are the same
described in Table 1 and throughout this study.

the charge control gene (Eagni et al., 2013). We expressed the data primarily as the number

of transcript copies per gram of protein in order to obtain comparable data between the

groups. The genes analyzed and a list of primers used is presented in Table 1.

Figure 1 depicts a scheme of the relationships between the amino acid metabolism-

related enzymes which gene expressions have been analyzed in this study. This Figure also

shows acronyms or abbreviations of the names of the enzyme-genes used in Figs. 2 and 3.

Sex differences in gene expression
The ample variability of cell volume, blood flow, innervation, size of fat deposits etc. of

WAT poses additional problems for comparison between different anatomical (i.e., site),

physiological (i.e., sex, diet) and pathological (i.e., obesity) situations (Caspar-Bauguil et

al., 2005; Prunet-Marcassus et al., 2006; Gil et al., 2011). The variability of lipid reserves

may convert in irrelevant comparisons based on weight; the use of DNA or cell number

is a better approach, but the multiple types of cells coexisting in WAT (and their widely

variable numbers) may also alter direct comparisons. We used as basic comparison the

protein content, largely because it has been the choice reference for enzyme activity and, by

extension to gene expressions and their possible interactions. However, probably a better

way to measure changes in functional activity may be the analysis of mRNA production.

These changes do not parallel those of weight, protein content or cell numbers, but are

a fair index of the relative importance of translation of the genes involved with respect

to total protein synthesis. In fact, their use is complementary of the analysis of enzyme

activity-gene expression referred to protein weight, since it includes a new variable:

metabolic transcendence for the cell of the synthesis of the corresponding mRNAs. We
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Table 1 Primer sequences used in the analysis of WAT gene expressions.

Protein Gene EC Primer sequence 5′ > 3′ Primer sequence 3′ > 5′ bp

CPS2 Glutamine-dependent carbamoyl-phosphate synthase Cad 6.3.5.5 AGTTGGAGGAGGAGGCTGAG ATTGATGGACAGGTGCTGGT 90

OTC Ornithine carbamoyl transferase Otc 2.1.3.3 CTTGGGCGTGAATGAAAGTC ATTGGGATGGTTGCTTCCT 126

ASS Arginino-succinate synthase Ass1 6.3.4.5 CAAAGATGGCACTACCCACA GTTCTCCACGATGTCAATGC 100

ASL Arginino-succinate lyase Asl 4.3.2.1 CCGACCTTGCCTACTACCTG GAGAGCCACCCCTTTCATCT 104

ARG1 Arginase-1 Arg1 3.5.3.1 GCAGAGACCCAGAAGAATGG GTGAGCATCCACCCAAATG 126

ARG2 Arginase-2 Arg2 3.5.3.1 GCAGCCTCTTTCCTTTCTCA CCACATCTCGTAAGCCAATG 122

NAGS N-acetyl-glutamate synthase Nags 2.3.1.1 GCAGCCCACCAAAATCAT CAGGTTCACATTGCTCAGGA 82

eNOS Nitric oxide synthase, endothelial Nos3 1.14.13.39 CAAGTCCTCACCGCCTTTT GACATCACCGCAGACAAACA 138

GS Glutamine synthetase Glul 6.3.1.2 AACCCTCACGCCAGCATA CTGCGATGTTTTCCTCTCG 148

Gase Glutaminase kidney isoform, mitochondrial Gls 3.5.1.2 CCGAAGGTTTGCTCTGTCA AGGGCTGTTCTGGAGTCGTA 63

GDH1 Glutamate dehydrogenase 1, mitochondrial Glud1 1.4.1.3 GGACAGAATATCGGGTGCAT TCAGGTCCAATCCCAGGTTA 122

GCS Glycine cleavage system H protein, mitochondrial Gcsh – AAGCACGAATGGGTAACAGC TCCAAAGCACCAAACTCCTC 146

AMPD AMP deaminase 2 Ampd2 3.5.4.6 CGGCTTCTCTCACAAGGTG CGGATGTCGTTACCCTCAG 78

AlaT1 Alanine aminotransferase 1 Gpt 2.6.1.2 GTATTCCACGCAGCAGGAG CACATAGCCACCACGAAACC 85

AlaT2 Alanine aminotransferase 2 Gpt2 2.6.1.2 CATTCCCTCGGATTCTCATC GCCTTCTCGCTGTCCAAA 146

BCT1 Branched-chain-amino-acid aminotransferase, cytosolic Bcat1 2.6.1.42 TGCCCAGTTGCCAGTATTC CAGTGTCCATTCGCTCTTGA 138

BCT2 Branched-chain-amino-acid aminotransferase, mitochondrial Bcat2 2.6.1.42 AGTCTTCGGCTCAGGCACT ATGGTAGGAATGTGGAGTTGCT 84

GLUT4 Solute carrier family 2 (facilitated glucose transporter), member 4 Glut4 – CACAATGAACCAGGGGATGG CTTGATGACGGTGGCTCTGC 127

HK Hexokinase-2 Hk2 2.7.1.1 ATTCACCACGGCAACCACAT GGACAAAGGGATTCAAGGCATC 113

G6PDH Glucose-6-phosphate 1-dehydrogenase G6pdx 1.1.1.49 GACTGTGGGCAAGCTCCTCAA GCTAGTGTGGCTATGGGCAGGT 77

ME NADP-dependent malic enzyme Me1 1.1.1.40 TTCCTACGTGTTCCCTGGAG GGCCTTCTTGCAGGTGTTTA 131

PDHK2 Pyruvate dehydrogenase kinase 2, mitochondrial Pdk2 2.7.11.2 TCACTCTCCCTCCCATCAA CGCCTCGGTCACTCATTT 75

PDHK4 Pyruvate dehydrogenase [acetyl transferring] kinase 4, mitochondrial Pdk4 2.7.11.2 GTCAGGCTATGGGACAGATGC TTGGGATACACCAGTCATCAGC 137

CATPL ATP citrate lyase Acly 2.3.3.8 GACCAGAAGGGCGTGACCAT GTTGTCCAGCATCCCACCAGT 96

ACoAC Acetyl-CoA carboxylase 1 Acaca 6.4.1.2 AGGAAGATGGTGTCCGCTCTG GGGGAGATGTGCTGGGTCAT 145

FAS Fatty acid synthase Fasn 2.3.1.85 CTTGGGTGCCGATTACAACC GCCCTCCCGTACACTCACTC 163

PCATl Carnitine palmitoyltransferase 1, liver isoform Cpt1a 2.3.1.21 CCGCTCATGGTCAACAGCA CAGCAGTATGGCGTGGATGG 105

PCATm Carnitine palmitoyltransferase 2, mitochondrial Cpt2 2.3.1.21 TGCTTGACGGATGTGGTTCC GTGCTGGAGGTGGCTTTGGT 152

ACADH Long-chain acyl-CoA dehydrogenase, mitochondrial Acadl 1.3.8.8 ATGCCAAAAGGTCTGGGAGT TCGACCAAAAAGAGGCTAATG 148

ATL Adipose triacylglycerol lipase Atgl 3.1.1.3 CGGTGGATGAAGGAGCAGACA TGGCACAGACGGCAGAGACT 138

HSL Hormone-sensitive lipase Lipe 3.1.1.79 CCCATAAGACCCCATTGCCTG CTGCCTCAGACACACTCCTG 94

LPL Lipoprotein lipase Lpl 3.1.1.34 GAAGGGGCTTGGAGATGTGG TGCCTTGCTGGGGTTTTCTT 103

60S acidic ribosomal protein 0 (housekeeping gene) Rplp0 – GAGCCAGCGAAGCCACACT GATCAGCCCGAAGGAGAAGG 62
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Figure 2 Urea cycle enzyme activities and expressions of their coding genes in four WAT sites of female
and male rats. All data are the mean ± sem of 6 animals, and are presented in a log scale. The numerical
data are shown in Tables S1 and S2. Panels in column (A): enzyme activities, red (intense colour) columns
correspond to males and orange (light colour) corresponds to female rats. (B): gene expressions, blue
(intense colour) columns represent the males, and green (light colour) represents the females. CPS2,
carbamoyl-P synthase 2; OTC, ornithine carbamoyl-transferase; ASS, arginino-succinate synthase; ASL,
arginino-succinate lyase; ARG, arginase. Statistical analysis (2-way anova) of the differences between
groups. Activity: there were no significant differences for “sex”; CPS2 and ASL showed P < 0.0001
for “site”. Expression: only CPS2 showed a significant (P = 0.0002) for “sex”: there were significant
differences for “site” in CPS2 and ASL (P < 0.0001), OTC (P = 0.0081), ARG1 + 2 (P < 0.0001); ASS
showed no significant differences. The application of post-hoc Tuckey test between male/female pairs are
shown in the Figure as red stars.
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Figure 3 Expression of genes coding for enzymes of amino acid metabolism in WAT sites of male
and female rats. All data are the mean ± sem of 6 animals, and are presented in a log scale. The
numerical data are shown in Table S3. Blue (dark colour) columns represent the males, and green (light
colour) represents the females. NAGS, N-acetyl glutamate synthase; Ase1, arginase 1; Ase 2, Arginase 2;
eNOS, endothelial nitric oxide synthase; GS, glutamine synthetase; Gase, glutaminase; GDH1, glutamate
(continued on next page...)
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Figure 3 (...continued)

dehydrogenase (NADPH); AMPD, AMP deaminase; AlaT1, alanine transaminase 1; AlaT2, alanine
transaminase 2; BCT1, branched-chain amino acid transaminase 1; BCT2, branched-chain amino acid
transaminase 2. Statistical analysis (2-way anova) of the differences between groups. The variable “sex”
showed global differences for Gase (P < 0.0001), eNOS (P = 0.0014) and AlaT2 (P = 0.0018). The
variable “site” showed significant differences for all genes (P < 0.0001 for eNOS, Gase, GDH1, AMPD,
BCT1 and AlaT2; P = 0.0005 for Ase1; P = 0.0014 for GS; P = 0.0023 for AlaT1, P = 0.024 for BCT2, and
P = 0.039 for GCS) except N-acetyl-glutamate synthase. The application of post-hoc Tuckey test between
male/female pairs are shown in the Figure as red stars between the corresponding columns.

calculated the relationships of gene expressions to total tissue RNA (a crude approximation

to mRNA) only to compare the specific effect of sex on a gene expression in a given site.

Any significant deviation on the proportion of a gene expression with respect to the whole

RNA mass may imply a differential modulation of this expression. We included these

additional data to provide further insight into the ways and means of manifestation of

sex-related differences.

Statistics
Student’s t test (unpaired) and two-way ANOVA comparisons between groups (using

the post-hoc Tuckey test), correlations and curve fitting (including Vi estimations) were

analyzed with the Prism 5 program (GraphPad Software, San Diego CA USA). Data were

presented as mean ± sem, and a limit of significance of P < 0.05 was used throughout.

RESULTS
Basic parameters
Table 2 shows the body and main adipose tissue sites weights of undisturbed female

and male animals. When aged 13 weeks, female rats weighed about 62% of their male

counterparts. The males accumulated more fat than females, both in individual sites and as

a whole. However, the sum of the four sites analyzed showed almost identical proportions

vs. body weight, c. 8%. However, there were sex-related individual site differences in

relative size expressed as percentage of body weight. There were also differences in total

protein and RNA proportions (per g of fresh tissue) between the different sites, but there

were no global effects attributable to the variable “sex”.

The main plasma parameters studied are presented in Table 3. Plasma glucose levels

were higher in males than in females. However, these data were influenced by isoflurane

anesthesia (Zardooz et al., 2010), and are presented only as a general indication of

normalcy. No differences were observed for lactate and total cholesterol. Triacylglycerol

levels were significantly higher in females (albeit in the limit of statistical significance).

Both plasma urea and the partial sum of amino acids were also higher in female than in

male rats.

Urea cycle enzymes
Figure 2 depicts urea-cycle enzyme activities and the expression of their corresponding

genes in four main WAT sites of male and female rats. In both cases, activity and gene

expression, the data were presented per g of tissue protein. The data are displayed on a log
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Table 2 Body and WAT site weight and composition of adult male and female Wistar rats. The data
correspond to the mean ± sem of 6 different animals. Statistical significance of the differences between
groups was established with a 2-way anova; post-hoc Tuckey test: an asterisk * represents P < 0.05
differences between sex groups. Comparison of differences between the sums of sites was done using
the Student’s t test.

Parameter Unit Site Male Female p site p sex

Body weight g – 373 ± 6.1 232 ± 8.2 – <0.0001

SC 12.2 ± 0.20* 7.02 ± 0.25

ME 4.94 ± 0.49* 3.92 ± 0.33

PE 7.34 ± 0.64* 4.83 ± 0.39

RE 6.29 ± 0.79* 2.79 ± 0.35

<0.0001 <0.0001
g

Σ WAT 30.8 ± 1.7 18.6 ± 0.93 – <0.0001

SC 3.28 ± 0.05 3.04 ± 0.11

ME 1.33 ± 0.18 1.69 ± 0.13

PE 1.97 ± 0.13 2.10 ± 0.21

RE 1.69 ± 0.22 1.22 ± 0.17

<0.0001 NS

WAT weight

% BW

Σ WAT 8.26 ± 0.47 8.05 ± 0.52 – NS

SC 63.1 ± 11.6 51.8 ± 3.3

ME 74.2 ± 7.4 84.2 ± 2.6

PE 44.3 ± 1.6 54.4 ± 2.4
Protein mg/g

RE 65.1 ± 6.3 62.9 ± 4.7

<0.0001 NS

SC 248 ± 51 219 ± 19

ME 880 ± 84 793 ± 88

PE 94.3 ± 6.0 119 ± 10
RNA µg/g

RE 48.8 ± 4.1 78.4 ± 4.1

<0.0001 NS

Notes.
% BW, Percentage of body weight.

Table 3 Main energy plasma parameters of adult female and male Wistar rats. The data correspond
to the mean + sem of 6 different animals. Statistical significance of the differences between groups was
established with the unpaired Student’s t test.

Parameter Units Male Female P sex

Glucose mM 10.20 ± 0.42 8.64 ± 0.34 0.0169

Lactate mM 3.10 ± 0.29 3.78 ± 0.24 NS

Total cholesterol mM 1.97 ± 0.07 1.98 ± 0.16 NS

Triacylglycerols mM 1.50 ± 0.06 1.69 ± 0.06 0.0491

Urea mM 3.90 ± 0.17 5.13 ± 0.25 0.0029

Amino acidsa mM 3.34 ± 0.08 3.96 ± 0.18 0.0104

Notes.
a This value does not include Gln, Asn, Trp and Cys.

scale to allow a visual comparison of the site patterns of enzyme activities and expressions.

The data used in this representation are also tabulated in numeric form in Tables S1 and

S2. There was a considerable coincidence in the patterns of enzyme activity distribution

(and male–female similarities) in enzyme activities for all four sites. This pattern was

not paralleled by that of the corresponding gene expression data, which also showed
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considerable uniformity in their patterns across the WAT sites. The statistical analysis

of the data in Fig. 2 showed significant differences for “site” for all enzyme expressions

except for arginino-succinate synthase. The site-related differences in enzyme activities,

however, were limited to arginino-succinate lyase and carbamoyl-P synthase.

Subcutaneous WAT showed more differences between sexes than other locations, affect-

ing carbamoyl-P synthase 2 (both activity and gene expression) and arginino-succinate

lyase (only activity). Arginino-succinate synthase activity showed differences between

females and males in mesenteric WAT, and its higher expression was observed in periovaric

WAT.

Other amino acid metabolism-related gene expressions
Figure 3 shows the gene expressions of the non-urea cycle enzymes presented in Fig. 1,

as well as differentiated arginases 1 and 2, which were combined in Fig. 2. The data are

depicted also on a log scale to facilitate pattern comparison; the corresponding numerical

results are shown in Table S3.

In all sites, the expression of e-NOS was, at least one order of magnitude higher than

arginase; subcutaneous WAT being an exception: despite showing a similar pattern of

expressions, the levels of mRNA per g of tissue protein were higher for most genes, in

subcutaneous WAT, than in the other three sites. There was a generalized predominance

of glutamine synthetase expression over that of glutaminase. The glycine cleavage

system (specifically the H protein of the complex) and AMP deaminase showed also

a robust expression, at levels comparable to those of alanine transaminases. The two

branched-chain amino acid transaminases were also within this range, but the expression

of the form 2 was much higher.

The statistical comparisons of the data in Fig. 3 present limited effects for sex; overall

only nitric oxide synthase, alanine transaminase 2 and glutaminase showed significant

overall differences between female and male rats. Paired sex-related differences were

concentrated in subcutaneous WAT, with higher male values in the expression of

nitric oxide synthase, glutamine synthase (but female-predominant glutaminase), AMP

deaminase and alanine transaminase 1. No sex-related differences were found in the

other sites, except higher male values in alanine transaminase 2 of perigonadal WAT. The

differences between sites, however, were more marked, affecting all genes studied except

N-acetyl-glutamate synthase (low expression) and arginase 2, which was expressed only in

subcutaneous WAT.

Gene expressions of proteins involved in WAT acyl-glycerol
metabolism
Figure 4 presents the gene expressions of the key transporter and enzymes that regulate

the lipogenic process from glucose to acetyl-CoA and from that metabolite to acyl-CoA,

including the three most important WAT lipases. The data are presented in a log scale

and the numerical data are shown in Table S4. In spite of a considerable uniformity in the

patterns for all four sites, there were marked differences in the extent of gene expression.

In general, subcutaneous WAT values were higher, than those of the other sites. Again,
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Figure 4 Expression of genes coding for transporter and enzymes related to lipogenesis from glucose
and catabolism of lipid stores in WAT sites of male and female rats. All data are the mean ± sem
of 6 animals, and are presented in a log scale. The numerical data are shown in Table S4. Blue (dark
colour) columns represent the males, and green (light colour) represents the females. GLUT4, glucose
transpoirter 4; HK, hexokinase; G6PDH, glucose-6P dehydrogenase; ME, malic enzyme; (continued on
next page...)
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Figure 4 (...continued)

PDHK2, pyruvate dehydrohenase kinase 2; PDHK4, pyruvate dehydrohenase kinase 4; CATPL, citrate:
ATP lyase; AcCoAC, acetyl-CoA carboxylase; FAS, fatty acid synthase; PCATl, palmitoleoyl-carnitine
acyl-transferase (liver); PCATm, palmitoleoyl-carnitine acyl-transferase (muscle); AcADH, acyl-CoA de-
hydrogenase; ATL, adipose triacylglycerol lipase; HSL, hormone-sensitive lipase; LPL, lipoprotein lipase.
Statistical analysis (2-way anova) of the differences between groups. The variable “sex” showed global
differences for HK (P = 0.0009), AcCoAC (P = 0.0035), GLUT4 (P = 0.0040), CATPL (P = 0.010),
G6PDH (P = 0.020), PHDK4 (P = 0.020), ME (P = 0.024) and ATL (P = 0.026). The variable “site”
showed significant differences for HSL, ATL and LPL (P < 0.0001), PCATl (P = 0.0004), G6PDH
(P = 0.0005), PDHK2 (P = 0.0013). PDHK4 (P = 0.0016), ACADH (0.0022), HK (P = 0.0057), PCATm
(P = 0.015) and AcCoAC (P = 0.0384). The application of post-hoc Tuckey test between male/female
pairs are shown in the Figure as red stars (P < 0.05).

overall (for mesenteric, retroperitoneal and perigonadal WAT), female expression values

tended to be higher than those of the males for genes coding proteins favoring glucose

incorporation (GLUT4, hexokinase), generation of NADPH (glucose-6P dehydrogenase,

malic enzyme), and lipogenesis (citrate: ATP lyase, and acetyl-CoA carboxylase).

Regulation of pyruvate dehydrogenase by its inhibiting kinases was higher in males,

suggesting a lower mitochondrial availability of acetyl-CoA. In males, mitochondrial

handling of fatty acids (carnitine palmitoleoyl-transferases, acyl-CoA dehydrogenases) and

lipolysis (except adipose triacylglycerol lipase) showed higher relative expressions than in

females.

Subcutaneous WAT showed higher expression values for males in pyruvate dehydro-

genase kinase 4, palmitoleoyl.carnitine acyl-transferase (liver), acyl-CoA dehydrogenase

and both lipoprotein and adipose triacylglycerol lipases. In mesenteric WAT, the only

significant difference was for higher malic enzyme expression in females. In retroperitoneal

WAT, female expression values were higher for malic enzyme, citrate: ATP lyase and

acetyl-CoA carboxylase. Again, in perigonadal WAT, female expression values were higher

for glucose-6P dehydrogenase. The overall differences for “site” were significant for all

genes investigated except for GLUT4, malic enzyme, citrate: ATP lyase and fatty acid

synthase.

Comparison of female and male gene expression
Table 4 summarizes the sex-related differences in gene expression. The data are presented

in two cooperative forms: expression per unit of protein and per unit of RNA weight

in the tissue. The corresponding numerical data for RNA data and complete statistical

analysis are shown on Table S5. Table 4 shows only the cases where female–male differences

were significant, and the genes are divided in four sections. In the first, corresponding to

urea-cycle enzymes, only carbamoyl-P synthase 2 of subcutaneous WAT showed higher

female than male values. No other differences were seen. There was a high degree of

superimposition between the data obtained from protein and RNA; but the number of

enzymes with statistically significant between sexes was higher in most WAT sites when the

data of reference was RNA than when related to tissue protein.

Other amino acid metabolism data showed a relative predominance of higher relative

expressions in males, especially affecting the transaminases. The sites with more differences
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Table 4 Comparison of male-female specific expression of genes in different WAT sites with respect
to tissue total protein or RNA. The data are the mean ± sem of 6 animals per group, and are expressed
as fmol of the corresponding gene mRNA per g of protein or mg of total RNA. The complete numerical
data Table for RNA is presented in Table S5. Only significant differences are shown. M > F represents
that male data were significantly higher than those of females; F > M represented that female data were
significantly higher than those of males. Analysis of significance was done using 1- and 2-way anovas
(the latter for combined sites). The data in regular font correspond to significant values in the expression
of fmol/mg RNA, those in italics correspond to the data which were significant only when expressed as
fmol/g protein. The data in bold correspond to differences statistically significant both when referred to
tissue protein and RNA.

Parameter WAT site All sites P

SC ME PG RP

urea cycle enzymes

Carbamoyl-P synthase 2 F > M – – – F>M

Ornithine carbamoyl-transferase – – – – –

Argininosuccinate synthase – – – – –

Argininosuccinate lyase – – – – –

Arginase 1 – – – – –

other enzymes of amino acid metabolism

N-acetyl-glutamate synthase M>F – – – –

Glutamate dehydrogenase 1 – – – – –

Glutamine synthetase M>F – – – M>F

Glutaminase F>M F>M – – F>M

AMP deaminase M > F – – – M>F

Glycine cleavage system – – F>M – –

Alanine transaminase 1 M > F – – M>F M>F

Alanine transaminase 2 M>F – M > F M>F M > F

Branched-chain amino acid transaminase 1 – – M>F M>F M>F

Branched-chain amino acid transaminase 2 – – – – –

Endothelial nitric oxide synthase M > F – – M>F M > F

enzymes (and transporters) related with lipogenesis from glucose

Glucose transporter 4 – – – F>M F > M

Hexokinase 2 – – F>M F>M F > M

Glucose-6P dehydrogenase – F>M F>M F>M F > M

Malic enzyme – F > M F>M F > M F > M

Pyruvate dehydrogenase kinase 2 M>F – – M>F M>F

Pyruvate dehydrogenase kinase 4 M > F – – M>F M > F

Citrate: ATP lyase – F>M – F > M F > M

Acetyl-CoA carboxylase F>M F>M – F > M F > M

Fatty acid synthase – F>M F>M F>M F>M

(continued on next page)
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Table 4 (continued)

Parameter WAT site All sites P

SC ME PG RP

enzymes (and transporters) related with lipolysis and fatty acid oxidation

Carnitine palmitoleoyl transferase (liver) M > F – M>F M>F M>F

Carnitine palmitoleoyl transferase (muscle) – – – – M>F

Long-chain acyl-CoA dehydrogenase M > F F>M – – M>F

Adipose tissue triacylglycerol lipase F > F – – M>F M > F

Hormone-sensitive lipase – – – – M>F

Lipoprotein lipase M > F – – M>F –

were subcutaneous and retroperitoneal WAT. In contrast, lipogenesis was more highly

expressed in females, with minimal effects on subcutaneous and highest in retroperitoneal

WAT. Male predominance was observed again on pyruvate dehydrogenase kinases’

expressions, which increase marks a lower rate of production of acetyl-CoA as substrate

for acyl-CoA synthesis. Finally, in the analysis of lipolytic and lipid oxidation-related genes,

the male higher values were the norm, especially in subcutaneous and retroperitoneal

WAT.

DISCUSSION
The results presented support a wide extension of amino acid metabolism in different

sites of WAT, with enzyme activities and expressions following similar patterns in all four

sites studied. In addition to urea cycle, AMP-deaminase (Arola et al., 1981a), glutamine

synthetase (Arola et al., 1981b), glutamate dehydrogenase (Arola et al., 1979) and nitric

oxide synthase (Pilon, Penfornis & Marette, 2000), we found that WAT expresses the glycine

cleavage system (at least the H protein), so far not described.

The metabolic capabilities of WAT with respect to amino acid metabolism are probably

more extensive than usually assumed (Alemany, 2012b), largely because it is unknown,

with scant literature references to WAT amino acid metabolism (López-Soriano & Alemany,

1986; Kowalski, Wu & Watford, 1997; Herman et al., 2010; Lackey et al., 2013). The range

of expressions observed for amino acid metabolism-related enzymes in the four WAT

sites studied (Figs. 2 and 3) was mostly in the 5–500 fmol/g protein. In comparison, the

expressions (Fig. 4) for lipogenesis, the (assumed) main metabolic function of WAT,

and other lipid metabolism-related expressions were in the range of 10-1,000 fmol/g

protein. Thus, the differences between lipogenesis and amino acid metabolism-related

gene expressions were not as extensive as expected from the known massive mobilization/

deposition of triacylglycerols in adipocytes, compared with the relatively low level of cell

proteins (Salans & Dougherty, 1971) (and cytoplasm) of WAT. This is compounded by the

lack of sufficient data on WAT amino acid metabolism above indicated. The relatively

elevated amino acid metabolism enzyme levels and gene expressions found hint at a

potential relative importance of WAT on body amino acid metabolism.
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The considerable uniformity of WAT urea cycle-enzyme activities and expressions,

and their marked independence of sex can be interpreted essentially in two ways: (a) as

playing a minimal metabolic role: i.e., a residual, secondary or specialized pathway. Or,

alternatively, (b), it can be assumed to be a consequence of a well-established and robust

homeostatic maintenance of its function. That is, a role critical enough not to be sensibly

influenced by external regulatory factors such as sex hormones. The first possibility may

seem the more obvious, but it is insufficient to counter a number of critical arguments:

first of all, the unexpectedly high level of enzyme expressions and activities. Individual

urea cycle enzymes are present in many tissues, Emmanuel (1980), Nishibe (1974), and

Rath et al. (2014). However, the mere existence of a complete urea cycle in a peripheral

organ outside the splanchnic bed has not been previously described, as far as we know.

A full operative urea cycle has been described only for liver (Emmanuel, 1980). The key

question is whether this cycle is functional or not. Due to its methodological difficulties,

it should be studied using other (i.e., tracer) techniques. However, the relatively high

enzyme activities and gene expressions observed, and the fact that all urea cycle and related

ammonium metabolism enzymes are present suggest that this distribution has a clear

functional purpose. This is, consequently, a situation different from that of tissues, which

contain only part of the cycle to serve other metabolic purposes. The lack of sex-related

differences in WAT sites of urea cycle compared with lipogenic processes, as shown in Figs.

2–4 and the remarkable uniformity in pattern distribution between WAT sites also support

the functionality of WAT urea cycle.

The varying ratios of activity/expression suggest a main post-translational control,

extended to all sites. The high ornithine carbamoyl-transferase vs. arginino-succinate

synthase activities suggest a probable implication in the peripheral (and critical) synthesis

of citrulline (Yu et al., 1996), which may complement its conversion by the kidney (Borsook

& Dubnoff, 1941). WAT participates in substrate cycles, including alanine synthesis (Snell

& Duff, 1977) and glutamine release (Kowalski & Watford, 1994) in which amino acids are

implicated. This analysis is further complicated by the quantitative importance of both

activity and gene expressions compared with those of lipogenesis, the mainstay of WAT

metabolism. Our understanding of these differences is complicated by the overall large size

of the adipose organ (Romero et al., 2014), even taking into account the metabolically inert

mass of fat. Taken together, these arguments support a significant role of WAT in amino

acid metabolism.

Our data suggest, in any case, a clear site-sex interaction (Lemonnier, 1972; Jaubert et al.,

1995) that brings up differences in the expression of several amino acid metabolism-related

genes other than urea cycle, which remains uncannily undisturbed and globally uniform.

In males, subcutaneous WAT shows higher expressions for genes related to transfer of

acyl-CoA to the mitochondria and its oxidation than females; this is consistent with the

possibility of using fatty acids as energy substrate. The higher male inhibition of pyruvate

dehydrogenase, by kinases, generalized to most sites, reinforces this trend. On the other

side, the expression of WAT lipogenic enzyme genes (especially when expressed with

respect to total RNA) was higher in females than in males. In contrast, lipases practically
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did not show differences. The different female-male specific metabolic predominance in

WAT sites prove that the limited changes in urea cycle, compared with lipogenesis, could

not be solely a consequence of overall lack of effects of sex on WAT; but it is, instead, a

specific characteristic of WAT urea cycle as compared to other metabolic pathways.

The higher lipogenic (and lower lipolytic) gene expressions of female WAT is counter-

intuitive when we think of the higher WAT mass of adult male rats (Romero et al., 2014).

Probably, the lower male gene expressions found here mirror a less active metabolism, in

conjunction with the intestine and liver. The visceral fat accumulation in adult men (Bosch

et al., 2015) as compared with women is correlated with insulin resistance (Pascot et al.,

2000) and other metabolic syndrome-related pathologies (Watanabe & Tochikubo, 2003).

The discordances in sex-related control of metabolism and fat deposition between humans

and rats are a critical caveat against generalization to humans of what is found using animal

models, in spite of shared mechanisms and trends.

In addition to the human-rodent question, the main limitation of this study is the lack

of previous data with which establish comparisons, made even more difficult by our scarce

knowledge of amino acid metabolism. The extensive and interconnected net of pathways

needs to be investigated. The most critical handicap, however, is the lack of a critical

mass of scientists and of actualized methodology: specific protein measurement reagents

(antibodies), and/or methods (and products) for the estimation of enzyme activities and

metabolites of amino acid metabolism. Consequently, the data we present here should be

taken as just an initial foray into a highly promising field of study.

An additional question may help explain the differences between sites (Lemonnier, 1972;

Rydén et al., 2014), and the influence of sex (and sex hormones), the differences in cell

populations of different WAT sites. A factor that affects the mean adipocyte size (also

influenced by obesity (Garaulet et al., 2006)) and the presence of other types of cells, in

different proportions, such as macrophages (Králová Lesná et al., 2015), stem cells (Ogura

et al., 2014) and other stromal components (Maumus et al., 2011).

Notwithstanding these caveats, the data gathered all point to a few preliminary

conclusions, which could not be yet fully proven with the data we presented, largely

because no other results are available for comparison or independent confirmation. The

potential for lipid handling of WAT sites was strongly modulated by sex, being considerably

dependent on the site studied. This part of the study, devised to provide a background

comparison for amino acid metabolism showed more extensive differences than expected,

and needs to be studied more specifically and deeply before sufficiently based conclusions

could be extracted.

There was a considerable stability of the urea cycle activities and expressions,

irrespective of sex, and with only limited influence of site. Which we interpret as this

cycle operation being more general than the specialized site metabolic peculiarities,

with robust control of WAT urea cycle, probably related to a possible role as provider of

arginine/ citrulline (Beliveau Carey et al., 1993). The resilience to change of urea cycle,

in the context of a tissue characterized by its plastic adaptability, supports a generalized,

probably essential, role in overall amino N handling.
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In contrast, sex affected deeply WAT ammonium-centered amino N metabolism in

a site-related fashion, with relatively higher levels of activity in males and in female

subcutaneous WAT. The data on amino acid catabolism fit also with a role of mesenteric

WAT as gatekeeper of the portal system, the hypothesis advanced for WAT glucose disposal

(Arriarán et al., 2015) can be easily translated to the management of possible transient

excesses of dietary amino acids.

In sum, WAT seems to play significant role in overall amino acid metabolism, including

a functional urea cycle, which is not affected by sex. Contrary to lipid/glucose-related

pathways, the data presented point to a centralized control of urea cycle operation affecting

the adipose organ as a whole.
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