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Abstract
In this paper, we study a discrete plant virus disease model with roguing and
replanting which is derived from the continuous case by using the well-known
backward Euler method. The positivity of solutions with positive initial conditions is
obtained. By applying analytic techniques and constructing a discrete Lyapunov
function, we obtain the result that the disease-free equilibrium is globally attractive if
R0 ≤ 1, and the disease is permanent if R0 > 1. Numerical simulations show that the
main theoretical results are true.
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1 Introduction
Plants not only provide people with essential means of subsistence, but also they offer
other creatures food and shelter. However, plants often suffer from multiple adverse fac-
tors in the process of growth, especially viruses, which causes the decline of plants yield
and quality, even famine and social unrest.

It is well known that many serious diseases of crop plants are caused by viruses. For se-
vere cases, plant diseases have caused large-scale damage to various crops, which resulted
in a diminished output in whole regions; for instance, cocoa swollen shoot in Ghana [, ]
and banana bunchy top in Australia [–]. When a crop is widely planted in a new area,
plant disease prevention usually becomes important. In most cases, we rogue (remove)
infected plants as a control strategy when disease breaks out. Since ,  million in-
fected trees have been removed in Ghana []. In addition, we can also rogue not only
visibly infected plants but also other neighboring plants which do not yet show symp-
toms [, ], but this measure may be unpopular with farmers since it involves removal of
apparently healthy plants which may still be highly productive [].

Recently, more and more attention has been paid to the discrete-time epidemic models.
In [], the authors pointed out that it is more direct, more convenient, and more accurate
to describe a disease by using the discrete-time models than the continuous-time models
since the statistic data about the disease situation is collected by day, week, month or
year. Furthermore the discrete-time models have more wealthy dynamical behaviors, such
as the discrete-time epidemic models, which have bifurcations, chaos, and other more
complex dynamical behaviors. Many important and interesting results can be found in
[–] and the references cited therein.
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We know that there are usually two methods to construct discrete-time epidemic mod-
els: (i) by making use of the compartment model theory and the property of the epi-
demic disease, (ii) by using techniques (the backward Euler scheme, the forward Euler
scheme, and Mickens’ nonstandard discretization) to discretize a continuous-time epi-
demic model. Until now, some studies have been done on discrete-time epidemic mod-
els by using the two methods mentioned above (see [–]). For example, by applying
Mickens’ nonstandard discretization, Wang et al. [] discussed dynamical behaviors for a
class of discrete SIRS models with disease courses. Muroya et al. [] proposed a discrete
epidemic model for a disease with immunity and latency spreading in a heterogeneous
host population, which was derived from the continuous case by using the well-known
backward Euler method, and they obtained the result of the global stability of the disease-
free equilibrium and the endemic equilibrium. According to the first method, Teng et al.
[] constructed a discrete SIS epidemic model with stage structure and standard incident
rate and established sufficient conditions for the permanence and extinction of the disease
of the model. Moreover, using the method of linearization, the local asymptotic stability
of the endemic equilibrium was studied. Applying the forward Euler scheme, Hu et al.
[] constructed a discrete SIR epidemic model, and they studied the local stability of the
disease-free equilibrium and the endemic equilibrium. In addition, numerical simulations
showed plentiful and complex dynamical behaviors including bifurcations.

In this paper, we use the well-known backward Euler method to discretize a continuous-
time plant virus disease model with roguing and replanting which is investigated in [].
Our main purpose is to study dynamical behaviors of the model.

The organization of this paper is as follows. In Section , the model description and
some preliminaries are given. Section  deals with the global attractivity of disease-free
equilibrium of the model. In Section , the criterion on the permanence of the disease of
the model is stated and proved. In Section , the numerical simulations are provided to
illustrate the validity of our theoretical results. Lastly, a brief discussion is given in Sec-
tion .

2 Model formulation and preliminaries
In , Chan and Jeger [] studied the following continuous-time plant virus disease
model with roguing and replanting.

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

S′(t) = r(K – N(t)) – μS(t) – kS(t) I(t)
K ,

E′(t) = kS(t) I(t)
K – (μ + k)E(t),

I ′(t) = kE(t) – (μ + k)I(t),
R′(t) = kI(t) – (μ + α)R(t),

(.)

where S(t), E(t), I(t), and R(t) denote the numbers of susceptible, latently infected, in-
fectious, and post-infectious individuals at time t, respectively. μ is the natural mortality,
which is not attributed to disease and is common to each category. α is an additional
mortality in the post-infectious category owing to the cumulative effect of the disease.
ki (i = , , ) are the conversion rates of the disease’s progression from susceptible to la-
tent, from latent to infectious, and from infectious to post-infectious, respectively. K is
the maximum plant population size, defined in terms of agronomic considerations. It is
assumed that the actual total population size is presented by N (N = S + E + I + R), recruit-
ment to the population is by replanting at a rate proportional r to the difference between
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the actual number of plants present, N , and the maximum population size, K . A qual-
itative analysis of this model presents the stable dynamics and threshold conditions for
distinguishing the disease’s extinction or permanence.

By applying a variation of backward Euler scheme discretetization, we propose the fol-
lowing discrete plant virus disease model, which is derived from system (.).

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

S(n + ) = S(n) + r(K – N(n + )) – μS(n + ) – kS(n + ) I(n+)
K ,

E(n + ) = E(n) + kS(n + ) I(n+)
K – (μ + k)E(n + ),

I(n + ) = I(n) + kE(n + ) – (μ + k)I(n + ),
R(n + ) = R(n) + kI(n + ) – (μ + α)R(n + ),
N(n) = S(n) + E(n) + I(n) + R(n).

(.)

Considering the biological background of model (.), therefore, any solution of model
(.) satisfies the following initial condition:

S() > , E() > , I() > , R() > . (.)

Lemma . Any solution (S(n), E(n), I(n), R(n)) of model (.) with initial condition (.),
is positive for any n >  and ultimately bounded.

Proof Suppose that (S(n), E(n), I(n), R(n)) is any solution of model (.) with initial condi-
tion (.); apparently model (.) is equivalent to the following iteration system:

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

E(n + ) = 
+μ+k

(E(n) + kS(n + ) I(n+)
K ),

I(n + ) = 
+μ+k

(I(n) + kE(n + )),
R(n + ) = 

+μ+α
(R(n) + kI(n + )),

N(n + ) = N(n) + rK – (r + μ)N(n + ) – αR(n + ).

(.)

Next, we will prove the positivity of solution by using the inductive method. When n = ,
we have

E() =


 + μ + k

(

E() +
k

K
(
N() – E() – I() – R()

)
I()

)

, (.)

I() =


 + μ + k

(
I() + kE()

)
, R() =


 + μ + α

(
R() + kI()

)
, (.)

N() =


 + r + μ

(
rK + N() – αR()

)
, (.)

and

S() = S() + r
(
K – N()

)
– μS() – kS()

I()
K

. (.)

From (.)-(.) we see that if only E() is confirmed, then I(), R(), N(), and S() will
be afterwards confirmed.

Firstly, we prove that if E() >  and then I() > , R() > , and S() > . From (.), we
directly obtain I() >  when E() > . Secondly, from I() >  we further obtain the result
that R() > .
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Let x = S(), from (.) and (.) we obtain

�(x) �
(

 + μ +
k

K
I()

)

x – S() – r
(
K – N()

)
= ,

where N() = x+E()+I()+R(). It is obvious that �(x) is monotonically increasing for x ≥
 when E() > . Because �() = –S() – r(K – I() – E() – R()) <  and limx→+∞ �(x) =
+∞, we obtain the result that �(x) =  has a unique positive solution x̄. Hence, we finally
have S() = x̄ > . Moreover, we also have N() = S() + E() + I() + R() > .

Let y = E(), then from (.)-(.), we see that y satisfies the following equation:

�(y) � y –


 + μ + k

(

E() +
k

K
I()

(
N() – I() – R() – y

)
)

= ,

where

N() =
A – αkky

B
,

I() =
I() + ky
 + μ + k

,

and

R() =
C + kky

D
,

where

A =
(
rK + N()

)
( + μ)( + μ + k) + α( + μ + k)

(
rK + S() + E()

)
+ αI()( + μ),

B = ( + μ + α)( + r + μ)( + μ + k),

C = R()( + μ + k) + kI(),

D = ( + μ + α)( + μ + k).

�(y) is a quadratic equation in y. Let us rewrite it in the form

�(y) = ay + by + c,

with

a =
kkF

K( + μ + k)( + μ + k)
,

b =
(

 –
k

K( + μ + k)

(
I()

 + μ + k
F +

k

 + μ + k
H

))

,

c = –
E()

 + μ + k
–

kI()
K( + μ + k)( + μ + k)

H .

Here,

H =
A
B

–
I()

 + μ + k
–

C
D

,
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F =
αkk

B
+

k

 + μ + k
+

kk

D
+ .

Obviously, A > , B > , C > , D > , F > , a > .
By the characteristic of a quadratic equation, we know that if c < , then �(y) =  has a

unique positive solution y ∈ (, +∞).
Now, we prove that c < . By calculating, we obtain the result that c < .
From the above discussions we see that �(y) =  has a unique positive solution y ∈

(, +∞). Let E() = y. We also have I() > , R() > , and S() > . Therefore, the posi-
tivity of S() > , I() > , and R() >  is finally obtained.

When n = , we obtain

E() =


 + μ + k

(

E() +
k

K
(
N() – E() – I() – R()

)
I()

)

,

I() =


 + μ + k

(
I() + kE()

)
, R() =


 + μ + α

(
R() + kI()

)
,

N() =


 + r + μ

(
rK + N() – αR()

)
,

and

S() = S() + r
(
K – N()

)
– μS() – kS()

I()
K

.

Besides, by arguments similar to the above, we also can obtain the result that E() > ,
I() > , R() > , and S() > . Finally, by using induction, we can prove that S(n) > ,
E(n) > , I(n) > , and R(n) >  for all n > .

In the following we will prove that the solution of model (.) is ultimately bounded.
From the fourth equation of model (.), we have

N(n + ) =
N(n) + rK – αR()

 + r + μ
≤ N(n) + rK

 + r + μ
.

It is well known that the auxiliary equation

U(n + ) =
U(n) + rK
 + r + μ

has a globally asymptotically stable equilibrium U∗ = rK
r+μ

, since by the comparison
principle of the difference equations, we have lim supn→∞ N(n) ≤ rK

r+μ
. In other words,

(S(n), E(n), I(n), R(n)) is ultimately bounded. This completes the proof. �

Define φ(p, n) = pE(n) – I(n) and ϕ(p) = pkr
r+μ

+ k – ( + 
p )k, where p >  is a constant

and n >  is an integer.

Lemma . If there exists a constant p >  such that ϕ(p) ≤ , then there exists an integer
N >  such that either φ(p, n) ≥  for all n ≥ N or φ(p, n) ≤  for all n ≥ N.

Proof Actually, we assume that the conclusion does not hold, then we find that φ(p, n)
oscillates about . Hence, for any N > , there exists an integer q ≥ N such that φ(p, q) < 
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and φ(p, q + ) ≥ . Thus we have

I(q + ) ≤ pE(q + ) (.)

and

 < pE(q + ) – I(q + ) – pE(q) + I(q)

= p
(
E(q + ) – E(q)

)
–

(
I(q + ) – I(q)

)

= p
[

kS(q + )
I(q + )

K
– (μ + k)E(q + )

]

–
[
kE(q + ) – (μ + k)I(q + )

]

=
[

pk

K
S(q + ) + (μ + k)

]

I(q + ) –
[

μ +
(

 +

p

)

k

]

pE(q + )

≤
[

pkr
r + μ

+ (μ + k)
]

I(q + ) –
[

μ +
(

 +

p

)

k

]

pE(q + ).

Substituting (.) into the above inequality, we further have

pE(q + )
[

pkr
r + μ

+ k –
(

 +

p

)

k

]

> ,

that is, pE(q + )ϕ(p) > . From Lemma ., we have E(q + ) > , and hence ϕ(p) > , which
leads to a contradiction. This completes the proof. �

3 Global attractivity of disease-free equilibrium
In this section, we are going to discuss the global attractivity of the disease-free equilib-
rium of model (.). In order to obtain the existence of a disease-free equilibrium and an
endemic equilibrium of model (.), we introduce a constant

R =
rkk

(μ + r)(μ + k)(μ + k)
.

It is easy to verify that model (.) has only a disease-free equilibrium P( rK
μ+r , , , ) when

R ≤ , and it has a unique endemic equilibrium P∗(S∗, E∗, I∗, R∗) when R > , except for
P, where

S∗ =
K(μ + k)(μ + k)

kk
,

E∗ =
μ + k

k
I∗,

I∗ =
rK – K (μ+k)(μ+k)(μ+α)

kk
kS∗

K + r + r μ+k
k

+ r k
μ+α

,

R∗ =
k

μ + α
I∗.

Therefore, we can claim that R is the basic reproduction number of model (.).

Theorem . Disease-free equilibrium P of model (.) is globally attractive iff R ≤ .
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Proof The proof of necessity is simple, we hence omit it here. Now, we prove the suffi-
ciency. When R < , we have

k

μ + k
<

(μ + r)(μ + k)
rk

and

ϕ

(
k

μ + k

)

= (μ + k)(R – ) < .

Therefore, there exists a constant p > k
μ+k

with p sufficiently close to k
μ+k

such that
ϕ(p) <  and

k

p
– (μ + k) < , (.)

rkp
μ + r

– (μ + k) < . (.)

When R = , we have

k

μ + k
=

(μ + r)(μ + k)
rk

and

ϕ

(
k

μ + k

)

= (μ + k)(R – ) = .

Hence, for the constant p = k
μ+k

, we have ϕ(p) = , k
p –(μ+k) = , and rkp

μ+r –(μ+k) = .
To sum up, we see that, if R ≤ , there always exists a constant p >  such that

k

p
– (μ + k) ≤ , (.)

rkp
μ + r

– (μ + k) ≤ , (.)

and ϕ(p) ≤ . Therefore, from the point of view of Lemma ., for R ≤ , we only need to
consider the following two cases.

Case . pE(n) ≤ I(n) for n ≥ N.
Case . pE(n) ≥ I(n) for n ≥ N.
First of all, we consider Case . From the third equation of model (.), for all n ≥ N, we

have

I(n + ) ≤ I(n) +
(

k

p
– (μ + k)

)

I(n + ). (.)

Then (.) implies that I(n) is decreasing for n ≥ N. Therefore, limn→∞ I(n) =: I∗ exists
and I∗ ≥ . Further the second equation of model (.) shows that limn→∞ E(n) =: E∗ exists
and E∗ = μ+k

k
I∗.
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For any constant ε >  there exists an integer Nε >  such that I∗ – ε ≤ I(n) ≤ I∗ + ε for
all n ≥ Nε . Then, from the third equation of model (.) we obtain for any n ≥ Nε


 + μ + α

[
R(n) + k

(
I∗ – ε

)] ≤ R(n + ) ≤ 
 + μ + α

[
R(n) + k

(
I∗ + ε

)]
.

Considering the following auxiliary equations:

U(n + ) =


 + μ + α

(
U(n) + k

(
I∗ + ε

))
(.)

and

V (n + ) =


 + μ + α

(
V (n) + k

(
I∗ – ε

))
, (.)

the comparison theorem of difference equations implies that

V (n) ≤ R(n) ≤ U(n) for all n ≥ Nε ,

where U(n) and V (n) are the solutions of (.) and (.) with initial conditions U(Nε) =
R(Nε) and V (Nε) = R(Nε), respectively. Since

lim
n→∞ U(n) =

k(I∗ + ε)
μ + α

, lim
n→∞ V (n) =

k(I∗ – ε)
μ + α

,

we obtain

k(I∗ – ε)
μ + α

≤ lim inf
n→∞ R(n) ≤ lim sup

n→∞
R(n) ≤ k(I∗ + ε)

μ + α
.

This shows that limn→∞ R(n) =: R∗ exists and R∗ = k
μ+α

I∗. By a similar argument, we obtain
the result that limn→∞ N(n) =: N∗ exists and N∗ = rK (μ+α)–αkI∗

(μ+α)(r+μ) .
From (.) we directly obtain ( k

p – (μ + k))I∗ ≥ . When R < , by (.) it follows that
I∗ = . Consequently, E∗ = , R∗ =  and N∗ = rK

μ+r . Therefore, we finally have

lim
n→∞

(
S(n), E(n), I(n), R(n)

)
=

(
rK

μ + r
, , , 

)

. (.)

When R = , if I∗ > , then from the first equation of model (.) and E∗ = μ+k
k

I∗ we
obtain

μ + k

k
I∗ =


 + μ + k

(
μ + k

k
I∗ +

k

K

(
rK(μ + α) – αkI∗

(μ + α)(r + μ)
–

μ + k

k
I∗ –I∗ –

kI∗

μ + α

)

I∗
)

,

that is,

(μ + k)(μ + k)
k

=
kr

r + μ
–

k

K

(
αkI∗

(μ + α)(r + μ)
+

μ + k

k
I∗ + I∗ +

k

μ + α
I∗

)

.
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Consequently,

 =
(μ + k)(μ + k)

k
–

rk

r + μ

=
rk

r + μ

(
(μ + k)(μ + k)(r + μ)

rkk
– 

)

=
rk

r + μ

(


R
– 

)

= –
k

K
I∗

(
αk

(μ + α)(r + μ)
+

μ + k

k
+  +

k

μ + α

)

< ,

which leads to a contradiction. Hence, I∗ = . Furthermore, E∗ = , R∗ = , and N∗ = rK
μ+r .

Therefore, (.) holds.
Next, we consider Case . From the second equation of model (.), and according to

Lemma . we have S(n) ≤ rK
μ+r . So for n ≥ N, we have

E(n + ) ≤ E(n) +
(

rkp
μ + r

– (μ + k)
)

E(n + ). (.)

Then (.) implies that E(n) is decreasing for n ≥ N. Therefore, limn→∞ E(n) =: E∗ exists
and E∗ ≥ . By a similar argument to the above, we obtain the result that limn→∞ I(n) =: I∗,
limn→∞ R(n) =: R∗ and limn→∞ N(n) =: N∗ exists, respectively. Obviously,

I∗ =
k

μ + k
E∗, R∗ =

k

μ + α
I∗, N∗ =

rK – αR∗

r + μ
.

From (.) we directly obtain ( rkp
μ+r – (μ + k))E∗ ≥ . When R < , by (.) it follows

E∗ = . Furthermore, I∗ = , R∗ =  and N∗ = rK
r+μ

. This shows that (.) holds.
When R = , if E∗ > , then from the first equation of model (.), as in the above, we

also obtain

E∗ =


 + μ + k

(

E∗ +
k

K
(
N∗ – E∗ – I∗ – R∗)I∗

)

,

that is,

(μ + k)E∗ =
k

K

(
rK(μ + α) – αkI∗

(μ + α)(r + μ)
–

μ + k

k
I∗ – I∗ –

k

μ + α
I∗

)

I∗.

From E∗ = μ+k
k

I∗, we have

(μ + k)E∗ =
k

K

(
rK(μ + α) – αkI∗

(μ + α)(r + μ)
–

μ + k

k
I∗ – I∗ –

k

μ + α
I∗

)
k

μ + k
E∗,

that is,

μ + k =
rkk

(r + μ)(μ + k)
–

kk

K(μ + k)

(
αkI∗

(μ + α)(r + μ)
+

μ + k

k
I∗ + I∗ +

k

μ + α
I∗

)

.
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By a similar argument to the above, we also can obtain

 = μ + k –
rkk

(r + μ)(μ + k)

= (μ + k)
(

 –
rkk

(μ + k)(μ + k)(r + μ)

)

= (μ + k)( – R)

= –
kk

K(μ + k)
I∗

(
αk

(μ + α)(r + μ)
+

μ + k

k
+  +

k

μ + α

)

< ,

which leads to a contradiction. Hence, E∗ = . Furthermore, I∗ = , R∗ = , and N∗ = rK
μ+r .

Therefore, (.) is true.
From the above discussions, we obtain the result that the disease-free equilibrium P is

globally attractive. This completes the proof of Theorem .. �

4 Permanence of disease
In this section, we mainly prove the permanence of model (.) when R > . The disease
I(n) in model (.) is to be said permanent, if there exist constants M > m >  such that
for any solution (S(n), E(n), I(n), R(n)) of model (.) with initial condition (.) one has

m ≤ lim inf
n→∞ I(n) ≤ lim sup

n→∞
I(n) ≤ M.

We have the following result.

Theorem . The disease I(n) in model (.) is permanent iff R > .

Proof The necessity is obvious. In fact, if R ≤ , then from Theorem . the disease-free
equilibrium is globally attractive.

Now, we prove the sufficiency. When R > , we have

ϕ

(
(μ + k)(μ + r)

rk

)

= (μ + k)( – R) < ,
k

μ + k
>

(μ + k)(μ + r)
rk

.

Hence, there exists a constant p >  with p sufficiently close to (μ+k)(μ+r)
rk

such that ϕ(p) < 
and

k

μ + k
> p >

(μ + k)(μ + r)
rk

.

Therefore,

k

p
– (μ + k) >  (.)

and

rkp – (μ + k)(μ + r) > . (.)
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Let (S(n), E(n), I(n), R(n)) be any solution of model (.) with initial condition (.). From
lim supn→∞ N(n) ≤ rK

r+μ
, we see that there exists an integer T >  such that

 < S(n), E(n), I(n), R(n) <
rK

r + μ
(.)

for all n ≥ T. By Lemma . and ϕ(p) < , we obtain the result that there exists an integer
T ≥ T such that φ(p, n) ≤  for all n ≥ T or φ(p, n) ≥  for all n ≥ T. Suppose that
φ(p, n) ≥  for all n ≥ T. Then E(n) ≥ 

p I(n) for all n ≥ T. From the third equation of
model (.), we have

I(n + ) – I(n) = kE(n + ) – (μ + k)I(n + )

≥
(

k

p
– (μ + k)

)

I(n + ). (.)

Hence, by (.) and (.), I(n) is increasing for all n ≥ T. Consequently, limn→∞ I(n) =:
I∗ exists and I∗ > . Further, it follows from (.)

 ≥
(

k

p
– (μ + k)

)

I∗ > ,

which leads to a contradiction. Therefore, we only need to consider φ(p, n) ≤  for all
n ≥ T. That is,

pE(n) ≤ I(n) for all n ≥ T. (.)

By (.), choosing a sufficiently small constant  < ε <  such that

 <
pkr
r + μ

– pkε – (μ + k). (.)

Considering the following auxiliary equation:

W (n + ) =
W (n)

 + μ + kρ
K

+


 + μ + kρ
K

rKμ

r + μ
, (.)

where the parameter  ≤ ρ ≤ . Equation (.) has a positive equilibrium W ∗
ρ = 

μ+ kρ
K

rKμ

r+μ

which is globally asymptotically stable. Obviously, limρ→ W ∗
ρ = rK

r+μ
. Hence, for above ε,

there is a constant ρ ∈ (, ε), such that W ∗
ρ > rK

r+μ
– εK

 .
By the global asymptotic stability of equilibrium W ∗

ρ of (.), for the above ε, there
exists an integer T >  such that for any initial integer n >  and initial value W satisfying
 ≤ W ≤ rK

r+μ
,

Wρ (n) > W ∗
ρ –

εK


, for all n ≥ n + T,

where Wρ (n) is the solution of (.) with ρ = ρ and initial condition Wρ (n) = W.
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Hence,

Wρ (n) >
rK

r + μ
– εK , for all n ≥ n + T. (.)

Furthermore, we consider the following auxiliary equation:

U(n + ) =
U(n)

 + μ + k
+

rkη

 + μ + k
, (.)

where  < η < . Obviously, (.) has the globally asymptotically stable equilibrium U∗
η =

rkη
μ+k

. Thus, for the above ρ, there is a constant η ∈ (, ρ
 ) such that U∗

η < ρ
 . By the

global uniform asymptotic stability of equilibrium U∗
η of (.), for ρ

 > , there is an in-
teger T >  such that for any initial time n and initial value U for which  ≤ U ≤ M,
where M is given above, we have

Uη (n) < U∗
η +

ρ


, for all n ≥ n + T,

where Uη (n) is the solution of (.) with η = η and initial condition Uη (n) = U. Hence,

Uη (n) <
ρ


, for all n ≥ n + T. (.)

In order to obtain the permanence of disease I(n) of model (.), we discuss the following
three cases.

Case . I(n) ≥ η for all n ≥ T. For this case, obviously, I(n) is permanent.
Case . I(n) < η for all n ≥ T. From the first equation of model (.) and Lemma .,

we have

S(n + ) – S(n) = r
(
K – N(n + )

)
– μS(n + ) – kS(n + )

I(n + )
K

≥ r
(

K –
rK

r + μ

)

– μS(n + ) – kS(n + )
η

K

≥ r
(

K –
rK

r + μ

)

– μS(n + ) – kS(n + )
ρ

K
,

that is,

S(n + ) ≥ S(n)
 + μ + kρ

K

+


 + μ + kρ
K

rKμ

r + μ
,

for all n ≥ T. By the comparison theorem of difference equations, we have S(n) ≥ Wρ (n)
for all n ≥ T, where Wρ (n) is the solution of (.) with ρ = ρ and initial condition
Wρ (T) = S(T). Since  ≤ Wρ (T) ≤ rK

r+μ
, by (.), Wρ (n) ≥ rK

r+μ
–εK for all n ≥ T + T.

We have

S(n) ≥ rK
r + μ

– εK , for all n ≥ T + T. (.)
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Considering the second equation of model (.), by (.), (.), and (.), for all n ≥
T + T

E(n + ) – E(n) = kS(n + )
I(n + )

K
– (μ + k)E(n + )

≥
[

kS(n + )
p
K

– (μ + k)
]

E(n + )

≥
[

pk

K

(
rK

r + μ
– εK

)

– (μ + k)
]

E(n + )

=
[

pkr
r + μ

– pkε – (μ + k)
]

E(n + ).

Hence, E(n) is increasing for all n ≥ T + T. Consequently, limn→∞ E(n) =: E∗ exists and
E∗ > . Further, from above inequality we have

 ≥
[

pkr
r + μ

– pkε – (μ + k)
]

E∗ > ,

which leads to a contradiction.
Case . There exist two integer sequences {mk}∞k= and {nk}∞k= satisfying

T ≤ n ≤ m < n ≤ m < · · · < nk ≤ mk < · · ·

and limk→∞ nk = ∞ such that

I(n) < η for all n ∈
∞⋃

k=

[nk , mk],

I(n) ≥ η for all n /∈
∞⋃

k=

[nk , mk].

Obviously, we have nk+ – mk ≥  for all k = , , . . . .
Since R = rkk

(μ+r)(μ+k)(μ+k) > , we obtain

k

μ + k
>

(r + μ)(μ + k)
rk

.

Thus we can choose constants r > , r > , and  < θ <  such that

rk – r(μ + k) ≥ θ ,
rkr
r + μ

– εrk – r(μ + k) ≥ θ . (.)

Let T∗ = max{T, T}. We can choose a positive integer K such that

rξ

r


( – θ )KT∗ –

rξ

r
≥ ρ


,

where

ξ =
η

( + μ + k)(K+)T∗+ , ξ =
η

( + μ + k)T∗+ .
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In the following, we will prove I(n) ≥ ξ for all n ∈ ⋃∞
k=[nk , mk]. Let n ∈ ⋃∞

k=[nk , mk]. If
mk – nk ≤ (K + )T∗, from the third equation of model (.) we have

I(n + ) ≥ I(n)
 + μ + k

for all n ∈ [nk , mk].

Hence,

I(n + ) ≥ I(nk – )
( + μ + k)n–nk + ≥ η

( + μ + k)n–nk +

for all n ∈ [nk , mk]. Thus, we finally obtain I(n) ≥ ξ for all n ∈ [nk , mk].
If mk – nk > (K + )T∗, then similar to the discussion, we also have

I(n + ) ≥ η

( + μ + k)n–nk + for all n ∈ [nk , mk]. (.)

Particularly, we obtain from (.) I(n) ≥ ξ for all n ∈ [nk , nk + (K + )T∗] and

I(nk + T) ≥ ξ. (.)

By the second equation of model (.), we obtain for all n ≥ T and n ∈ ⋃∞
k=[nk , mk],

E(n + ) – E(n) = kS(n + )
I(n + )

K
– (μ + k)E(n + )

≤ k
rK

r + μ

I(n)
K

– (μ + k)E(n + )

≤ rk

r + μ
η – (μ + k)E(n + ),

that is,

E(n + ) <
E(n)

 + μ + k
+

rkη

( + μ + k)(r + μ)
.

By the comparison theorem of difference equations, we have E(n) ≤ Uη for all n > T,
where Uη is the solution of (.) with η = η and initial condition Uη (T) = E(T). Since
 ≤ Uη (T) ≤ M, by (.), Uη (n) ≤ ρ

 for all n ≥ T + T. Hence, E(n) ≤ ρ
 for all

n ≥ T + T. So,

E(n) ≤ ρ


(.)

for all n ∈ [nk + T, mk], where k = , , . . . .
We claim that I(n) ≥ ξ for all n ∈ [nk + (K + )T∗, mk]. If it is not true, then there is an

integer q such that I(nk + (K + )T∗ + q) < ξ and I(n) ≥ ξ for all n ∈ [nk + (K + )T∗, nk +
(K + )T∗ + q – ]. Denote t = nk + (K + )T∗ + q. Let

ν(n) = rE(n) + rI(n),
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where r and r are constants in (.). Hence, as n ∈ [nk + T∗, mk], from (.) and (.)
we have

ν(n) = ν(n + ) – ν(n)

= rE(n + ) + rI(n + ) – rE(n) – rI(n)

= r

(

k
S(n + )I(n + )

K
– (μ + k)E(n + )

)

+ r
(
kE(n + ) – (μ + k)

)
I(n)

=
(

rk
S(n + )

K
– r(μ + k)

)

I(n + ) +
(
rk – r(μ + k)

)
E(n + )

≥
(

rk

K

(
rK

r + μ
– εK

)

– r(μ + k)
)

I(n + ) +
(
rk – r(μ + k)

)
E(n + )

≥ θ
(
I(n + ) + E(n + )

)

≥ θ
(
rI(n + ) + rE(n + )

)

≥ θν(n + ).

Then

ν(n + ) ≥ ν(n)
 – θ

for all n ∈ [
nk + T∗, mk

]
.

Consequently,

ν(t) ≥ ν(nk + T∗)
( – θ )KT∗+q

≥ ν(nk + T∗)
( – θ )KT∗ ,

that is,

rE(t) + rI(t) ≥ rE(nk + T∗) + rI(nk + T∗)
( – θ )KT∗ ≥ rI(nk + T∗)

( – θ )KT∗ .

By (.), we further have

E(t) ≥ rξ

r


( – θ )KT∗ –

rξ

r
≥ ρ


,

which leads to a contradiction with (.). Therefore,

I(n) ≥ ξ for all n ∈
∞⋃

k=

[nk , mk].

When n /∈ ⋃∞
k=[nk , mk], we directly have I(n) ≥ η > ξ . Therefore, we finally obtain the

result that I(n) is permanent. This completes the proof. �

5 Numerical simulations
In this section, we carry out numerical simulations on model (.) to demonstrate the
results in Sections  and .
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Figure 1 Time series of S(n), E(n), I(n), and R(n).

Example . The parameters of model (.) are chosen as follows:

r = ., k = ., k = ., k = .,

μ = ., K = ,, α = ..

By calculating, we have the endemic equilibrium P∗ = (., ., .,
.) and the basic reproduction number R = . > . Therefore, the disease is
permanent from Theorem .. The numerical simulations are given in Figure . From
Figure , we can see that P∗ is globally attractive.

Example . The parameters are chosen as follows:

r = ., k = ., k = ., k = .,

μ = ., K = ,, α = ..

By calculating, we obtain R = . < . Thus, the disease-free equilibrium of model
(.) is globally attractive from Theorem .. The numerical simulations are given in Fig-
ure .
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Figure 2 Time series of S(n), E(n), I(n), and R(n).

6 Conclusion
In this paper, we study the dynamic behaviors of a discrete plant virus disease model with
roguing and replanting which is derived from the continuous case. By calculating, we ob-
tain the basic reproduction number R. We also prove that the disease-free equilibrium
of model (.) is globally attractive when R < , in other words, the disease goes extinct.
On the contrary, if R > , the endemic equilibrium of model (.) exists and the disease
will be endemic.

In Theorem ., we only discuss the permanence of the disease of model (.). However,
the numerical simulations in Figure  show that the endemic equilibrium of model (.)
may be globally attractive when R > .

In the real world, some plants at the beginning may show no infection, for example Cal-
letotrichum musae. We usually use the time delay to describe this phenomenon in a math-
ematical model. However, the dynamic behaviors of discrete plant virus disease models
with time delay are rarely considered. Therefore, an important and interesting open prob-
lem is whether we can obtain similar results on the permanence and extinction of the
disease for the discrete plant virus disease models with time delay. We will discuss these
problems in our future work.
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