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1 Introduction and preliminaries
Variational inequalities have become important methods to analyze many linear and non-
linear problems; see [] and [], such as linear complementarity problems in [], convex
optimization in [], imaging problems in [], etc.

Classical variational inequalities were introduced by Hartman and Stampacchia in the
s; see [] and []. They are of the form suitable to find u∗ such that (u – u∗)T f (u∗) ≥ ,
∀u ∈ K . The spaces consisting of nonlinear problems may have some interesting topolog-
ical properties: some nonlinear problem spaces are homeomorphic to the graph spaces of
their solution mappings, such as bimatrix games in [], normal game problems in [, ],
game trees in [], classical variational inequality problems [], etc.

Duvaut and Lions considered a kind of mixed variational inequality, see [], which
added a function to a classical variational inequality. The stability, algorithm, and gen-
eralization of this kind of variational inequality has been studied in many forms [–]
and applied to many fields; see [].

Let K be a compact convex subset of Rn. We consider the following mixed variational
inequality problem: to find a point u∗ ∈ K such that u∗ satisfies

θ (u) – θ
(
u∗) +

(
u – u∗)T f

(
u∗) ≥ , ∀u ∈ K , ()

where f : K →R
n is a mapping and θ : K →R is a real function. This was first introduced

in []. When f ≡  on K , this leads us to find a maximizer u∗ ∈ K of the function θ on K .

Definition . A mapping f : K → R
n is said to be monotone if (f (x) – f (y))T (x – y) ≥ ,

∀x, y ∈ K ; f is said to be strictly monotone if, f is monotone and if (f (x) – f (y))T (x – y) = ,
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then x = y; f is strongly monotone if there exists a constant c such that (f (x)– f (y))T (x–y) ≥
c‖x – y‖, ∀x, y ∈ K .

If f is monotone and θ is convex, we call the above variational inequality () a mixed
monotone variational inequality problem. Denote by M the set as follows:

M =

{

(θ , f ):
θ : K →R is continuous and convex;
f : K →R

n is continuous and monotone

}

.

For any two (θ, f), (θ, f) ∈ M, define the metric ρ between (θ, f) and (θ, f) as

ρ
(
(θ, f), (θ, f)

)
= sup

x∈K

∥
∥f(x) – f(x)

∥
∥ + sup

x∈K

∣
∣θ(x) – θ(x)

∣
∣.

Then M is a metric space. For convenience, we denote ρ((θn, fn), (θ, f)) →  by (θn, fn) ρ→
(θ, f). A point u∗ is a solution of the mixed monotone variational inequality problem
(θ , f ) ∈ M; we write it as u∗ ∈ V (θ , f ). Then a set-valued mapping V from M to K is de-
fined. It is well known that, for each (θ , f ) ∈ M, we have V (θ , f ) is nonempty. If f is strictly
monotone, then V (θ , f ) is a singleton set; for example, f + I is strictly monotone, where I
is the identity mapping on K , and if f is strongly monotone, then f is strictly monotone.

Denote by N the graph of the set-valued mapping V , that is,

N =
{

(θ , f , u) ∈ M × K | u ∈ V (θ , f )
}

.

For each (θ , f , u∗) ∈ N , let

φ
(
θ , f , u∗) = (θ , f – Cu∗ ),

where Cx denotes the constant mapping with Cx(u) = x, ∀u ∈ K . Clearly, Cu∗ ∈ M is mono-
tone, then φ is mapping from N to M. For each (θ , f ) ∈ M, define ψ(θ , f ) such that

ψ(θ , f ) = (θ , f + Cū, ū),

where ū is the unique solution of the problem (θ , f + I).

2 Main results
Theorem . ψ is a continuous mapping from M to N . φ is continuous on N .

Proof For each (θ , f ) ∈ M, since ψ(θ , f ) = (θ , f +Cū, ū), where ū ∈ V (θ , f + I), we have θ (u)–
θ (ū) + (u – ū)T (f (ū) + ū) ≥ , ∀u ∈ K , that is, ū ∈ V (θ , f + Cū). ψ maps M onto N .

Next, we prove that ψ is continuous on M. Let {(θn, fn)}∞n= ⊂ M with (θn, fn) ρ→ (θ, f).
We need to show that (θn, fn +Cūn ) ρ→ (θ, f +Cū ) and ‖ūn – ū‖ → , where ūn ∈ V (θn, fn +
I) and ū ∈ V (θ, f + I). Since

θn(u) – θn(ūn) + (u – ūn)T(
fn(ūn) + ūn

) ≥ , ∀u ∈ K

and

θ(u) – θ(ū) + (u – ū)T(
f(ū) + ū

) ≥ , ∀u ∈ K ,
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we have

θn(ū) – θn(ūn) + (ū – ūn)T(
fn(ūn) + ūn

) ≥  ()

and

θ(ūn) – θ(ū) + (ūn – ū)T(
f(ū) + ū

) ≥ . ()

Adding equation () and equation (), it follows that

θn(ū) – θ(ū) + θ(ūn) – θn(ūn) + (ū – ūn)T(
fn(ūn) – f(ū) + ūn – ū

) ≥ .

Then

θn(ū) – θ(ū) + θ(ūn) – θn(ūn) + (ū – ūn)T(
fn(ūn) – f(ū)

) ≥ ‖ū – ūn‖.

This is equivalent to the following inequality:

θn(ū) – θ(ū) + θ(ūn) – θn(ūn)

– (ū – ūn)T(
f(ū) – f(ūn) + f(ūn) – fn(ūn)

)

≥ ‖ū – ūn‖.

By transposition, we have

θn(ū) – θ(ū) + θ(ūn) – θn(ūn) – (ū – ūn)T(
f(ūn) – fn(ūn)

)

≥ ‖ū – ūn‖ + (ū – ūn)T(
f(ū) – f(ūn)

)
.

Since f is monotone, we have (ū – ūn)T (f(ū) – f(ūn)) ≥ . Then

θn(ū) – θ(ū) + θ(ūn) – θn(ūn) – (ū – ūn)T(
f(ūn) – fn(ūn)

) ≥ ‖ū – ūn‖.

Therefore, we have

‖ū – ūn‖ ≤ ∣
∣θn(ū) – θ(ū)

∣
∣ +

∣
∣θ(ūn) – θn(ūn)

∣
∣ +

∣
∣(ū – ūn)T(

f(ūn) – fn(ūn)
)∣∣

≤ ∣
∣θn(ū) – θ(ū)

∣
∣ +

∣
∣θ(ūn) – θn(ūn)

∣
∣ + ‖ū – ūn‖

∥
∥f(ūn) – fn(ūn)

∥
∥.

Then

(
 –

∥∥f(ūn) – fn(ūn)
∥∥)‖ū – ūn‖ ≤ ∣∣θn(ū) – θ(ū)

∣∣ +
∣∣θ(ūn) – θn(ūn)

∣∣.

Since θn → θ and maxu∈K ‖f(u) – fn(u)‖ → , we have ‖ū – ūn‖ → . Hence, it can be
checked that

∥∥fn(u) + Cūn (u) – f(u) – Cū (u)
∥∥

≤ ∥∥fn(u) – f(u)
∥∥ +

∥∥Cūn (u) – Cū (u)
∥∥

=
∥∥fn(u) – f(u)

∥∥ + ‖ūn – ū‖ → .

Then (θn, fn + Cūn ) ρ→ (θ, f + Cū ).
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For the part with φ is continuous on N , let {(θn, fn, un)}∞n= ⊂ N with (θn, fn) ρ→ (θ, f) and
‖un – u‖ → ; we show that φ(θn, fn, un) ρ→ φ(θ, f, u). In fact, for each u ∈ K , we have

∥∥θn(u) – θ(u)
∥∥ +

∥∥fn(u) – f(u) – un + u
∥∥

≤ ∥
∥θn(u) – θ(u)

∥
∥ +

∥
∥fn(u) – f(u)

∥
∥ + ‖un – u‖ → ,

then φ(θn, fn, un) ρ→ φ(θ, f, u). �

Let X be the set of (θ , f ) satisfying: (i) θ : K → R is proper convex lower semi-continuous;
(ii) f : K →R

n is continuous and monotone. Then each variational inequality (θ , f ) ∈ X has
a solution (see []) and further if f is strictly monotone, then the corresponding solution
is unique. Then (X,ρ) is a metric space. From Theorem ., there can be obtained some
stability results for solution sets of mixed monotone variational inequalities.

Corollary . The set-valued mapping V is upper semi-continuous from M to K .

Proof From the proof of Theorem ., ψ : X → N is continuous, noting that M ⊂ X is
closed, then N , the graph of V , is closed. Therefore, V is upper semi-continuous. �

Remark . By Corollary ., V is upper semi-continuous on M. Then, when f +εnI → f

as positive εn →  and θn → θ, there is a convergent subsequence {xnk } of {xn} with {xn} =
V (θn, f + εnI) such that xnk → x ∈ V (θ, f). Alternatively, from Theorem ., let εn > , if
we define ψεn (θ , f ) = (θ , f + εnCūn , ūn) for each (θ , f ) ∈ M, where {ūn} = V (θ , f + εnI), then
ψεn is also a continuous mapping from M to N . Note that ūn ∈ V (θ , f + εnCūn ), therefore,
if εn → , we assert that there exists a subsequence {ūnk } of {ūn} with ūnk → u ∈ V (θ , f ).

Theorem . The mappings φ ◦ ψ and ψ ◦ φ are identity mappings on M and N , respec-
tively.

Proof For each (θ , f ) ∈ M, from the definition of ψ and φ, we have

φ ◦ ψ(θ , f ) = φ(θ , f + Cū, ū)

= (θ , f + Cū – Cū, ū)

= (θ , f ),

where ū ∈ V (θ , f + I).
For each (θ , f , u∗) ∈ N , we have

ψ ◦ φ
(
θ , f , u∗) = ψ(θ , f – Cu∗ )

= (θ , f – Cu∗ + Cū, ū),

where ū ∈ V (θ , f – Cu∗ + I). Then

θ (u) – θ (ū) + (u – ū)T(
f (ū) – u∗ + ū

) ≥ , ∀u ∈ K .
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Particularly, we have

θ
(
u∗) – θ (ū) +

(
u∗ – ū

)T(
f (ū) – u∗ + ū

) ≥ . ()

Note that (θ , f , u∗) ∈ N , we have

θ (ū) – θ
(
u∗) +

(
ū – u∗)T f

(
u∗) ≥ . ()

Then, by adding equation () and equation (), we obtain

(
u∗ – ū

)T(
f (ū) – f

(
u∗) + ū – u∗) ≥ ,

hence,

(
u∗ – ū

)T(
f
(
u∗) – f (ū)

)
+

(
u∗ – ū

)T(
u∗ – ū

) ≤ .

From the monotonicity of f , we get ‖u∗ – ū‖ ≤ . Therefore, u∗ = ū, hence, ψ ◦φ(θ , f , u∗) =
(θ , f , u∗). �

Theorem . The spaces N and M are homeomorphic.

Proof It follows immediately from Theorems . and .. �

Remark . The homeomorphism results were shown between game spaces and the
graphs of solutions mappings in games [–]. For any population game F : X → R

n, each
Nash equilibrium point x∗ of the game F is equivalent to x∗ being a solution of variational
inequality (y – x∗)T F(x∗) ≤ ; see []. A population game F belongs to the class of stable
population games when F is monotone, then, from Theorem ., we can assert that the
space of stable population games is homeomorphic to the graph space of their solution
mappings. Theorem . generalizes the homeomorphism result for classical variational
inequalities in [].

From Theorem ., N is homeomorphic to the space M. Furthermore, we see that N is
homeomorphic to the graph of a continuous mapping from M to K .

Let π be the projection from N to K and K̃ be a compact convex subset of Rn with
K ⊂ int(f̄ ). Then there exists a retraction r from K̃ to K , that is, r(x) = x, ∀x ∈ K . From
Urysohn lemma, there is a continuous mapping s from K̃ to the closed interval [, ] such
that s(x) = , ∀x ∈ K , and s(x) = , ∀x ∈ Bd(Kε), where Bd(Kε) denotes the boundary of K̃ .

Define two mappings α, β from [, ] × M × K̃ to M × K̃ such that, for each (t, θ , f , x̃) ∈
[, ] × M × K̃ ,

αt = α(t, θ , f , x̃) = (θ , f̄ , x̃) with f̄ = f – s(x̃)tCx

and

βt = β(t, θ , f̄ , x̃) = (θ , f , x̃) with f = f̄ + s(x̃)tCx,

where x = r(x̃).
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Theorem . Let h = π ◦ ψ : M → K . Then: (i) for each t ∈ [, ], βt ◦ αt and αt ◦ βt

are identity mappings on M × K̃ ; (ii) for each t ∈ [, ], x̃ ∈ Bd(K̃), αt(·, ·, x̃) is a constant
mapping; (iii) α is an identity on M × K̃ ; α is a homeomorphism between N and the graph
of h with its inverse β.

Proof (i) For each (θ , f , x̃) ∈ M × K̃ , we have βt ◦ αt(θ , f , x̃) = βt(θ , f – s(x̃)tCx, x̃) = (θ , f , x̃)
and αt ◦ βt(θ , f , x̃) = αt(θ , f + s(x̃)tCx, x̃) = (θ , f , x̃).

(ii) For each x̃ ∈ Bd(K̃) and (θ , f , x̃) ∈ M × K̃ , αt(θ , f , x̃) = (θ , f – s(x̃)tCx, x̃). Noting that
x̃ ∈ Bd(K̃), we have s(x̃) = , then αt(θ , f , x̃) = (θ , f , x̃).

(iii) It is clear that α is an identity on M × K̃ . Next, for each (θ , f , x̃) ∈ N , we have x̃ ∈
V (θ , f ), then x̃ ∈ K . Hence s(x̃) =  and r(x̃) = x = x̃. Therefore, α(θ , f , x̃) = (θ , f – Cx, x̃) =
(φ(θ , f , x), x). One needs to show that x = π ◦ ψ(φ(θ , f , x)). Since ψ ◦ φ is an identity on N ,
we have π ◦ψ(φ(θ , f , x)) = π (θ , f , x) = x. Conversely, for each point (θ , f , x̃) on the graph of
the h, we need to show (θ , f , x̃) ∈ α(N). Since x̃ = π ◦ψ(θ , f ), we have ψ(θ , f ) = (θ , f +Cx̃, x̃),
then (θ , f + Cx̃, x̃) ∈ N . Hence, α(θ , f + Cx̃, x̃) = (θ , f̂ , x̃) with f̂ = f + Cx̃ – s(x̃)Cx and x = r(x̃).
Noting that (θ , f + Cx̃, x̃) ∈ N , we have x̃ ∈ K , then x = r(x̃) = x̃ and s(x̃) = . Therefore, f̂ = f .
The proof is completed. �

Remark . From Theorems . and ., the graph of set-valued mapping V is homeo-
morphic to M and the graph of a continuous mapping. Easily, we see that the graph of a
continuous mapping can be homeomorphic to the graph of a constant mapping. There-
fore, N and M are all homeomorphic to the graph of a constant mapping. Like (un)knots
and Nash dynamics [], this may contribute to variational dynamics like [].

In the following part, we generalize the results (Theorems .-.) to Hilbert spaces in
relation to linear mappings.

Let K be a compact convex subset in a Hilbert space (X, 〈·, ·〉), where 〈·, ·〉 represents the
inner product on X. Denote by X∗ the dual space of X (all continuous linear mappings
on X). A mapping T from K to X∗ is said to be monotone if (T(u) – T(v), u – v) ≥ ,
∀u, v ∈ K , where (·, ·) is the pairing of X∗ and X. A monotone mapping T is called strictly
monotone if (T(u) – T(v), u – v) =  implies u = v.

Let T : K → X∗ and f ∈ X∗, we consider the mixed variational inequality problem: to
find a u ∈ K such that

(
T(u), v – u

)
+ θ (v) – θ (u) ≥ (f , v – u), ∀v ∈ K . ()

Denote by M′ the set

M′ =

⎧
⎪⎨

⎪⎩
(θ , T , f ):

θ : K → R is continuous and convex;
T : K → X∗ is continuous on K ;
f ∈ X∗

⎫
⎪⎬

⎪⎭
.

For each (θ , T , f ), it is well known that this kind of mixed variational inequality problem
with (θ , T , f ) has a solution; if T is strictly monotone, then the solution is unique; denote
by V ′(θ , T , f ) the set of all solutions of the problem (θ , T , f ), then a set-valued mapping V ′

from M′ to K is well defined.



Song and Yang Journal of Inequalities and Applications  (2016) 2016:236 Page 7 of 11

For two α = (θ, T, f),α = (θ, T, f) ∈ M′, measure the metric between them by

ρ ′(α,α) = sup
x∈K

∣∣θ(x) – θ(x)
∣∣ + sup

x∈K

∥∥T(x) – T(x)
∥∥ + ‖f – f‖,

where, for each g, g ∈ X∗,

‖g – g‖ = sup
‖y‖=,y∈X

∣
∣(g, y) – (g, y)

∣
∣.

Let N ′ be the graph of V ′, that is,

N ′ =
{

(θ , T , f , u) ∈ M′ × K | u ∈ V ′(θ , T , f )
}

.

Define a mapping φ′ : N ′ → M′ such that, for each (θ , T , f , u) ∈ N ′,

φ′(θ , T , f , u) = (θ , T – lu, f ),

where lu : K → X∗ is a mapping with lu(x) = 〈u, ·〉, ∀x ∈ K . For each T : K → X∗, let RT :
K → X∗ such that, for each x ∈ K ,

(
RT (x), z

)
=

(
T(x), z

)
+ 〈x, z〉, ∀z ∈ X.

Then we can check that RT is strictly monotone. For each (θ , T , f ) ∈ M′, define a mapping
ψ ′ on M′ such that

ψ ′(θ , T , f ) = (θ , T + lu, f , u),

where u is the unique solution of the problem (θ , RT , f ), that is, V ′(θ , RT , f ) = {u}.

Theorem . ψ ′ is a continuous mapping from M′ to N ′.

Proof For each (θ , T , f ) ∈ M′, we have ψ ′(θ , T , f ) = (θ , T + lu, u), where u ∈ V ′(θ , RT , f ).
Then

θ (v) – θ (u) +
(
T(u), v – u

)
+ 〈u, v – u〉

= θ (v) – θ (u) +
(
T(u) + lu, v – u

)

≥ (f , v – u), ∀v ∈ K ,

it follows that u ∈ V ′(T + lu), that is, ψ ′ maps M′ onto N ′.

For the part that ψ ′ is continuous on M′: let {(θn, Tn, fn)}∞n= ⊂ M′ with (θn, Tn, fn) ρ′→
(θ, T, f) ∈ M′. It is sufficient to show that ψ ′(θn, Tn, fn) → ψ ′(θ, T, f), that is, (θn, Tn +

lun , fn) ρ′→ (θ, T + lu , f) and ‖un – u‖ → , where un ∈ V ′(θn, RTn , fn) and u ∈ V ′(θ, RT ,
f), this leads to the fact that, for each x ∈ K ,

θn(v) – θn(un) +
(
Tn(un), v – un

)
+ 〈un, v – un〉 ≥ (fn, v – un), ∀v ∈ K
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and

θ(v) – θ(u) +
(
T(u), v – u

)
+ 〈u, v – u〉 ≥ (f, v – u), ∀v ∈ K .

Particularly, we have

θn(u) – θn(un) +
(
Tn(un), u – un

)
+ 〈un, u – un〉 ≥ (fn, u – un) ()

and

θ(un) – θ(u) +
(
T(u), un – u

)
+ 〈u, un – u〉 ≥ (f, un – u). ()

Adding equation () and equation (), we get

θn(u) – θ(u) + θ(un) – θn(un) +
(
Tn(un) – T(u), u – un

)

≥ ‖un – u‖ + (fn – f, u – un).

This is equivalent to the following:

θn(u) – θ(u) + θ(un) – θn(un) +
(
(Tn – T)(un) + T(un – u), u – un

)

≥ ‖un – u‖ + (fn – f, u – un).

Since T is monotone, we have (T(un – u), u – un) ≤ . Then

θn(u) – θ(u) + θ(un) – θn(un)

+
(
(Tn – T)(un), u – un

)
– (fn – f, u – un)

≥ ‖un – u‖.

Hence,

‖un – u‖
≤ θn(u) – θ(u) + θ(un) – θn(un)

+ ‖un – u‖
(

(Tn – T)(un),
u – un

‖u – un‖
)

– ‖un – u‖
(

fn – f,
u – un

‖u – un‖
)

,

thus,

‖un – u‖ ≤  sup
x∈K

∣
∣θn(x) – θ(x)

∣
∣

+ ‖un – u‖ sup
x∈K

∥∥(Tn – T)(x)
∥∥ + ‖un – u‖‖fn – f‖,

consequently, we obtain
(

 – sup
x∈K

∥
∥(Tn – T)(x)

∥
∥ – ‖fn – f‖

)
‖un – u‖ ≤  sup

x∈K

∣
∣θn(x) – θ(x)

∣
∣.

Since (θn, Tn, fn) ρ′→ (θ, T, f), we have ‖un – u‖ → .
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In addition, for each x ∈ K ,

∣
∣θn(x) – θ(x)

∣
∣ +

∥
∥(Tn + lun )(x) – (T + lu )(x)

∥
∥ + ‖fn – f‖

≤ ∣
∣θn(x) – θ(x)

∣
∣ +

∥
∥(Tn – T)(x)

∥
∥ +

∥
∥(lun – lu )(x)

∥
∥ + ‖fn – f‖

≤ ∣
∣θn(x) – θ(x)

∣
∣ +

∥
∥(Tn – T)(x)

∥
∥ + ‖un – u‖ + ‖fn – f‖ → .

Note that ‖un – u‖ →  and (θn, Tn, fn) ρ′→ (θ, T, f), we have (θn, Tn + lun , fn) ρ′→ (θ, T +
lu , f). The proof is completed. �

Theorem . φ′ is a continuous mapping from N ′ to M′.

Proof Let {(θn, Tn, fn, un)}∞n= ⊂ N ′ with (θn, Tn, fn, un) → (θ, T, f, u) ∈ N ′, that is, (θn, Tn,

fn) ρ′→ (θ, T, f), and ‖un – u‖ → . We need to show that (θn, Tn – lun , fn) ρ′→ (θ, T –
lu , f). For each x ∈ K , we have

ρ ′((θn, Tn – lun , fn), (θ, T – lu , f)
)

= sup
x∈K

∣
∣θn(x) – θ(x)

∣
∣ + sup

x∈K

∥
∥(Tn – T)(x) – (lun – lu )(x)

∥
∥ + ‖fn – f‖

≤ sup
x∈K

∣
∣θn(x) – θ(x)

∣
∣ + sup

x∈K

∥
∥(Tn – T)(x)

∥
∥ + ‖fn – f‖

+ sup
x∈K

∥∥(lun – lu )(x)
∥∥

= ρ ′((θn, Tn, fn), (θ, T, f)
)

+ sup
‖y‖=,y∈X

∣∣〈un – u, y〉∣∣

≤ ρ ′((θn, Tn, fn), (θ, T, f)
)

+ sup
‖y‖=,y∈X

‖un – u‖‖y‖

= ρ ′((θn, Tn, fn), (θ, T, f)
)

+ ‖un – u‖ → ,

then φ′(θn, Tn – lun , fn) → φ′(θ, T – lu , f). �

Theorem . φ′ ◦ ψ ′ and ψ ′ ◦ φ′ are identity mappings on M′ and N ′, respectively.

Proof (a) φ′ ◦ψ ′ is an identity mapping on M′. For each (θ , T , f ) ∈ M′, by Theorem ., we
have

φ′ ◦ ψ ′(θ , T , f ) = φ′(θ , T + lu, f , u) = (θ , T + lu – lu, f ) = (θ , T , f ).

(b) ψ ′ ◦ φ′ is an identity mapping on N ′. For each (θ , T , f , u∗) ∈ N ′, we have

ψ ′ ◦ φ′(θ , T , f , u∗) = ψ ′(θ , T – lu∗ , f ) = (θ , T – lu∗ + lū, f , ū),

where ū ∈ V ′(θ , RT–lu∗ , f ), and RT–lu∗ means that, for each x ∈ K ,

(
RT–lu∗ (x), z

)
=

(
T(x), z

)
–

〈
u∗, z

〉
+ 〈x, z〉, ∀z ∈ X.



Song and Yang Journal of Inequalities and Applications  (2016) 2016:236 Page 10 of 11

Since ψ ′ maps M′ onto N ′, we have ū ∈ V ′(θ , T – lu∗ + lū, f ), then

θ (v) – θ (ū) +
(
T(ū) – lu∗ (ū) + lū(ū), v – ū

) ≥ (f , v – ū), ∀v ∈ K .

Hence,

θ (v) – θ (ū) +
(
(T – lu∗ + lū)(ū), v – ū

) ≥ (f , v – ū), ∀v ∈ K . ()

Let v = u∗ in (), then

θ
(
u∗) – θ (ū) +

(
(T – lu∗ + lū)(ū), u∗ – ū

) ≥ (
f , u∗ – ū

)
. ()

Since u∗ ∈ V ′(θ , T , f ), we have

θ (ū) – θ
(
u∗) +

(
T

(
u∗), ū – u∗) ≥ (

f , ū – u∗). ()

Add 〈ū – u∗, ū – u∗〉 to the left-hand side of equation (),

θ (ū) – θ
(
u∗) +

(
T

(
u∗), ū – u∗) +

〈
ū – u∗, ū – u∗〉 ≥ (

f , ū – u∗),

that is,

θ (ū) – θ
(
u∗) +

(
(T – lu∗ + lū)

(
u∗), ū – u∗) ≥ (

f , ū – u∗). ()

Adding equation () and equation (), we get

(
(T – lu∗ + lū)

(
ū – u∗), u∗ – ū

) ≥ .

Note that T – lu∗ + lū is monotone, we have

(
(T – lu∗ + lū)

(
ū – u∗), ū – u∗) = .

Furthermore, T is strictly monotone, it follows that ū = u∗. �

Theorem . The spaces M′ and N ′ are homeomorphic.

Proof It follows from Theorems ., ., and .. �

Remark . Theorem . generalizes the homeomorphism result for the variational in-
equalities to find a point u ∈ K such that (T(u), v – u) ≥ , ∀v ∈ K , in [].
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