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Abstract
A delayed SEIRS-V model on the transmission of worms in a wireless sensor network is
considered. Choosing delay as a bifurcation parameter, the existence of the Hopf
bifurcation of the model is investigated. Furthermore, we use the normal form
method and the center manifold theorem to determine the direction of the Hopf
bifurcation and the stability of the bifurcated periodic solutions. Finally, some
numerical simulations are presented to verify the theoretical results.

Keywords: Hopf bifurcation; delay; SEIRS-V model; stability; periodic solution;
wireless sensor network

1 Introduction
In past several decades, many authors have studied different mathematical models which
illustrate the dynamical behavior of the transmission of computer viruses based on the
classical epidemic models due to the lots of similarities between biological viruses and
computer viruses [–]. In [], Yuan and Chen investigated the behavior of virus propa-
gation in a network by proposing an e-SEIR model. In [], Mishra and Pandey proposed
an SEIRS model to investigate the transmission of worms in a network. As wireless sensor
networks are unfolding their vast potential in a plethora of application environments, se-
curity still remains one of the most critical challenges yet to be fully addressed [, ]. In
order to study the attacking behavior of possible worms in a wireless sensor network and
considering that there is a basic similarity between the software viruses spread among
wireless devices and the transmission of epidemic diseases in a population, Mishra and
Keshri [] proposed the following SEIRS-V model:

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

dS(t)
dt = A – βS(t)I(t) – (μ + p)S(t) + δR(t) + ηV (t),

dE(t)
dt = βS(t)I(t) – (μ + α)E(t),

dI(t)
dt = αE(t) – (μ + ε + γ )I(t),

dR(t)
dt = γ I(t) – (μ + δ)R(t),

dV (t)
dt = pS(t) – (μ + η)V (t),

()

where S(t),E(t), I(t),R(t) andV (t) represent the numbers of sensor nodes at time t in states
susceptible, exposed, infectious, recovered and vaccinated, respectively. A is the inclusion
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of new nodes to the wireless sensor network, β is the transmission coefficient. α, γ , δ, η
and p are state transition rates. ε and μ are the crashing rates of the sensor nodes due to
the attack of worms and the reason other than the attack of worms, respectively. Mishra
and Keshri [] studied the stability of system ().
As is known, computer virus models with time delay have been investigated by many

authors [–]. In [], Feng et al. investigated a viral infection model in computer net-
works with time delay due to the temporary immunity period of the recovered computers.
In [], Dong et al. proposed a computer virus model with time delay due to the time that
the computers in a network use antivirus software to clean the viruses and investigated
the Hopf bifurcation of the model by choosing the delay as a bifurcation parameter. Moti-
vated by the work above, and considering that the sensor nodes need some time to clean
the worms in a wireless sensor network by using antivirus software and the recovered and
the vaccinated sensor nodes have a temporary immunity period after which they may be
infected again because of antivirus software, we incorporate two delays into system ()
and get the following delayed SEIRS-V system on the transmission of worms in a wireless
sensor network:

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

dS(t)
dt = A – βS(t)I(t) – (μ + p)S(t) + δR(t – τ) + ηV (t – τ),

dE(t)
dt = βS(t)I(t) – (μ + α)E(t),

dI(t)
dt = αE(t) – (μ + ε)I(t) – γ I(t – τ),

dR(t)
dt = γ I(t – τ) –μR(t) – δR(t – τ),

dV (t)
dt = pS(t) –μV (t) – ηV (t – τ),

()

where τ is the time that the sensor nodes need to clean the worms by using antivirus
software and τ is the temporary immunity period after which they may be infected again
because of antivirus software. For the convenience of analysis, we assume that τ = τ. Let
τ = τ, then system () becomes

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

dS(t)
dt = A – βS(t)I(t) – (μ + p)S(t) + δR(t – τ ) + ηV (t – τ ),

dE(t)
dt = βS(t)I(t) – (μ + α)E(t),

dI(t)
dt = αE(t) – (μ + ε)I(t) – γ I(t – τ ),

dR(t)
dt = γ I(t – τ ) –μR(t) – δR(t – τ ),

dV (t)
dt = pS(t) –μV (t) – ηV (t – τ ).

()

This paper is organized as follows. In Section , we investigate local stability of the pos-
itive equilibrium and obtain sufficient conditions for the existence of local Hopf bifurca-
tion. In Section , we determine direction and stability of the Hopf bifurcation by using
the normal form theory and the center manifold theorem. In order to testify the theoreti-
cal analysis, a numerical example is presented in Section . Section  concludes the paper
and indicates future directions for research.

2 Local stability of positive equilibrium and existence of local Hopf bifurcation
It is not difficult to verify that if R = αβA(μ+η)+pη(μ+α)(μ+ε+γ )

(μ+p)(μ+α)(μ+η)(μ+ε+γ ) > , then system () has the
unique positive equilibrium D∗(S∗,E∗, I∗,R∗,V∗), where

S∗ =
(μ + α)(μ + ε + γ )

αβ
, E∗ =

μ + ε + γ

α
I∗,

http://www.advancesindifferenceequations.com/content/2014/1/295
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R∗ =
γ

μ + δ
I∗, V=

p(μ + α)(μ + ε + γ )
αβ(μ + η)

,

I∗ =
αβA(μ + δ)(μ + η) + pη(μ + α)(μ + δ)(μ + ε + γ ) – (μ + p)(μ + α)(μ + δ)(μ + η)(μ + ε + γ )

β(μ + α)(μ + δ)(μ + η)(μ + ε + γ ) – αβδγ (μ + η)
.

The Jacobian matrix of system () about the positive equilibrium D∗ is

J(D∗) =

⎛
⎜⎜⎜⎜⎝

λ – a  –a –be–λτ –be–λτ

–a λ – a –a  
 –a λ – a – be–λτ  
  –be–λτ λ – a – be–λτ 

–a    λ – a – be–λτ

⎞
⎟⎟⎟⎟⎠,

where

a = –(βI∗ +μ + p), a = –βS∗, a = βI∗,

a = –(μ + α), a = βS∗, a = α,

a = –(μ + ε), a = –μ, a = p, a = –μ,

b = δ, b = η, b = –γ ,

b = γ , b = –δ, b = –η.

Thus, the characteristic equation of system () at D∗ is

λ +Aλ
 +Aλ

 +Aλ
 +Aλ +A +

(
Bλ

 + Bλ
 + Bλ

 + Bλ + B
)
e–λτ

+
(
Cλ

 +Cλ
 +Cλ +C

)
e–λτ +

(
Dλ

 +Dλ +D
)
e–λτ = , ()

where

A = –aa(aaa + aaa),

A = aaa(a + a) + aaa(a + a)

+ aaaa + aaa(a + a),

A = –a
(
aa + aa + (a + a)(a + a)

)
– aaa – aa(a + a) – aa(a + a),

A = aa + aa + (a + a)(a + a)

+ a(a + a + a + a),

A = –(a + a + a + a + a),

B = aab(aa – aa) – aaa(ab + ab)

– aa(aab + aab + aab),

B = b
(
aa(a + a) + aa(a + a)

)
+ aaa(b + b)

+ b
(
aa(a + a) + aa(a + a)

)
+ b

(
aa(a + a) + aa(a + a)

)

http://www.advancesindifferenceequations.com/content/2014/1/295
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+ ab(aa – aa – aa – aa),

B = ab(a + a + a) – b
(
aa + aa + (a + a)(a + a)

)
– b

(
aa + aa + (a + a)(a + a)

)
– b

(
aa + aa + (a + a)(a + a)

)
,

B = b(a + a + a + a) + b(a + a + a + a)

+ b(a + a + a + a) – ab,

B = –(b + b + b), C = bb + bb + bb,

C = ab(b + b) – bb(a + a + a) – bb(a + a + a)

– bb(a + a + a),

C = bb
(
aa + a(a + a)

)
– aabb + bb

(
aa + a(a + a)

)
+ bb

(
aa + a(a + a)

)
– ab

(
b(a + a) + b(a + a)

)
,

C = ab(aab + aab – aab) + aa(abb – abb)

– aa(abb + abb + abb),

D = –bbb, D = bbb(a + a) – abbb,

D = aabbb + aabbb – aaabb.

Multiplying eλτ on both sides of Eq. (), it is easy to obtain

Bλ
 + Bλ

 + Bλ
 + Bλ + B +

(
λ +Aλ

 +Aλ
 +Aλ

 +Aλ +A
)
eλτ

+
(
Cλ

 +Cλ
 +Cλ +C

)
e–λτ +

(
Dλ

 +Dλ +D
)
e–λτ = . ()

When τ = , Eq. () reduces to

λ +mλ
 +mλ

 +mλ
 +mλ +m = , ()

where

m = A + B +C +D, m = A + B +C +D,

m = A + B +C +D, m = A + B +C,

m = A + B = p + α + δ + ε + γ + η + βI∗ + μ.

Obviously,m > . By the Routh-Hurwitz criterion, sufficient conditions for all roots of
Eq. () to have a negative real part are given in the following form:

D = det

(
m 
m m

)
> , ()

D = det

⎛
⎜⎝
m  
m m m

 m m

⎞
⎟⎠ > , ()

http://www.advancesindifferenceequations.com/content/2014/1/295
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D = det

⎛
⎜⎜⎜⎝
m   
m m m 
m m m m

  m m

⎞
⎟⎟⎟⎠ > , ()

D = det

⎛
⎜⎜⎜⎜⎜⎜⎝

m    
m m m  
m m m m m

  m m m

    m

⎞
⎟⎟⎟⎟⎟⎟⎠

> . ()

Thus, if condition (H) Eq. ()-Eq. () holds, D∗ is locally asymptotically stable in the
absence of delay.
For τ > , let λ = iω (ω > ) be the root of Eq. (). Then we can get

{
g cos τω – g sin τω + g = h sinτω + h cosτω,
g sin τω + g cos τω + g = h cosτω – h sinτω,

where

g = Aω
 – (A +C)ω +A +C,

g = ω – (A –C)ω + (A –C)ω,

g = Bω
 – Bω

 + B,

g = Aω
 – (A –C)ω +A –C,

g = ω – (A +C)ω + (A +C)ω,

g = Bω – Bω
, h = –Dω, h =Dω

 –D.

Then we can get

(g cos τω – g sin τω + g) + (g sin τω + g cos τω + g) = h + h. ()

According to sin τω =±√
 – cos τω, we consider the following two cases.

Case . sin τω =
√
 – cos τω, then Eq. () becomes

(
g cos τω – g

√
 – cos τω + g

) + (
g

√
 – cos τω + g cos τω + g

)
= h + h, ()

which is equivalent to

e cos τω + e cos τω + e cos τω + e cos τω + e = , ()

where

e =
(
g + g + g + g – h – h

) – (gg – gg),

e = 
(
g + g + g + g – h – h

)(gg + gg)

http://www.advancesindifferenceequations.com/content/2014/1/295
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– (gg – gg)(gg – gg),

e = (gg + gg) – (gg – gg) + (gg – gg)

+ 
(
g + g – g – g

)(
g + g + g + g – h – h

)
,

e = (gg + gg)
(
g + g – g – g

)
+ (gg – gg)(gg – gg),

e =
(
g + g – g – g

) + (gg – gg).

Let cos τω = r and denote

f (r) = r +
e
e
r +

e
e
r +

e
e
r +

e
e
.

Thus,

f ′(r) = r +
e
e

r +
e
e

r +
e
e
.

Set

r +
e
e

r +
e
e

r +
e
e

= . ()

Let y = r + e
e

. Then Eq. () becomes

y + γy + γ = ,

where

γ =
e
e

–
e
e

, γ =
e

e
–
ee
e

+
e
e
.

Define

β =
(

γ



)

+
(

γ



)

, β =
– +

√
i


,

y = 

√
–

γ


+

√
β + 

√
–

γ


–

√
β,

y = 

√
–

γ


+

√
ββ + 

√
–

γ


–

√
ββ


 ,

y = 

√
–

γ


+

√
ββ


 +



√
–

γ


–

√
ββ.

Then we can get the expression of cos τω, and we denote f(ω) = cos τω. Substitute
f(ω) = cos τω into Eq. (), we can get the expression of sin τω, and we denote f(ω) =
sin τω. Thus, a function with respect to ω can be established by

f  (ω) + f  (ω) = . ()

http://www.advancesindifferenceequations.com/content/2014/1/295
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If all the parameters of system () are given, we can calculate the roots of Eq. () by
Matlab software package. Therefore, we make the following assumption in order to give
the main results in this paper.
(H) Eq. () has finite positive roots which are denoted by ω,ω, . . . ,ωk , respectively.

For every fixed ωi ( ≤ i≤ k), the corresponding critical value of time delay is

τ
(j)
i =


ωi

arccos f(ωi) +
jπ
ωi

, i = , , . . . ,k, j = , , , . . . .

Case . sin τω = –
√
 – cos τω, then Eq. () becomes

(
g cos τω + g

√
 – cos τω + g

) + (
g cos τω – g

√
 – cos τω + g

)
= h + h. ()

Similar as in Case , we can get the expression of cos τω denoted as f∗(ω) and the ex-
pression of sin τω denoted by f∗(ω), and further we get a function with respect to ω that
can be established by

f ∗(ω) + f ∗(ω) = . ()

We assume that Eq. () has finite positive roots denoted by ω′
,ω′

, . . . ,ω′
k , respectively.

Then we can get the critical value of time delay corresponding to every fixed positive root
ω′
i of Eq. ():

τ
′(j)
i =


ω′
i
arccos f∗

(
ω′
i
)
+
jπ
ω′
i
, i = , , . . . ,k, j = , , , . . . .

Let

τ =min
{
τ
()
i , τ ′()

i
}
, i = , , . . . ,k.

Then, when τ = τ, Eq. () has a pair of purely imaginary roots ±iω.
Next, we verify the transversality condition. Taking the derivative of λ with respect to τ

in Eq. (), it is easy to obtain

[
dλ

dτ

]–

=
g(λ) + g(λ)eλτ + g(λ)e–λτ + g(λ)e–λτ

h(λ) – h(λ)eλτ
–

τ

λ
,

with

g(λ) = Bλ
 + Bλ

 + Bλ + B,

g(λ) = λ + Aλ
 + Aλ

 + Aλ +A,

g(λ) = Cλ
 + Cλ +C,

g(λ) = Dλ +D,

h(λ) = Cλ
 + (C + D)λ + (C + D)λ + (C + D)λ,

h(λ) = λ +Aλ
 +Aλ

 +Aλ
 +Aλ

 +Aλ.

http://www.advancesindifferenceequations.com/content/2014/1/295
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Thus,

[
dλ

dτ

]–

λ=iω

=
PR + PIi
QR +QIi

,

where

PR =
(
ω

 – (A + C)ω
 +A +C

)
cos τω

+
(
Aω


 + (C – A)ω

)
sin τω

+D cosτω + Dω sinτω + B – Bω

,

PI =
(
ω

 – (A – C)ω
 +A +C

)
sin τω

–
(
Aω


 – (C + A)ω

)
cos τω

–D sinτω + Dω cosτω + Bω – Bω

,

QR =
(
ω
 –Aω


 +Aω



)
cos τω +

(
Aω


 –Aω


 +Aω

)
sin τω

+Cω

 – (C + D)ω

,

PI =
(
ω
 –Aω


 +Aω



)
sin τω –

(
Aω


 –Aω


 +Aω

)
cos τω

+ (C + D)ω – (C + D)ω
.

Obviously, if condition (H) PRQR + PIQI �=  holds, then Re[ dλ
dτ
]–λ=iω

�= . Therefore, by
the Hopf bifurcation theorem in [], we have the following results.

Theorem  For system (), if conditions (H)-(H) hold, then the positive equilibrium
D∗(S∗,E∗, I∗,R∗,V∗) of system () is asymptotically stable for τ ∈ [, τ), and system () un-
dergoes a Hopf bifurcation at the positive equilibrium D∗(S∗,E∗, I∗,R∗,V∗) when τ = τ.

3 Direction and stability of the Hopf bifurcation
Let τ = τ +μ,μ ∈ R so thatμ =  is the Hopf bifurcation value of system () and normalize
the time delay by t → (t/τ ). Let u(t) = S(t) – S∗, u(t) = E(t) – E∗, u(t) = I(t) – I∗, u(t) =
R(t) – R∗, u(t) = V (t) –V∗, then system () can be transformed into the following form:

u̇(t) = Lμut + F(μ,ut), ()

where ut = (u(t),u(t),u(t),u(t),u(t))T ∈ C = C([–, ],R),

Lμφ = (τ +μ)
(
A′φ() + B′φ(–)

)
and

F(μ,φ) = (τ +μ)

⎛
⎜⎜⎜⎜⎜⎜⎝

–βφ()φ()
βφ()φ()





⎞
⎟⎟⎟⎟⎟⎟⎠
,

http://www.advancesindifferenceequations.com/content/2014/1/295
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where

A′ =

⎛
⎜⎜⎜⎜⎜⎜⎝

a  a  
a a a  
 a a  
   a 
a    a

⎞
⎟⎟⎟⎟⎟⎟⎠
,

B′ =

⎛
⎜⎜⎜⎜⎜⎜⎝

   b b
    
  b  
  b b 
    b

⎞
⎟⎟⎟⎟⎟⎟⎠
.

By the Riesz representation theorem, there exists a  ×  matrix function η(θ ,μ) :
[–, ] → R× whose elements are of bounded variation such that

Lμφ =
∫ 

–
dη(θ ,μ)φ(θ ), φ ∈ C.

In fact, we choose

η(θ ,μ) = (τ +μ)
(
A′δ(θ ) + B′δ(θ + )

)
,

where δ is the Dirac delta function.
For φ ∈ C([–, ],R), we define

A(μ)φ =

{
dφ(θ )
dθ

, –≤ θ < ,∫ 
– dη(θ ,μ)φ(θ ), θ = 

and

R(μ)φ =

{
, – ≤ θ < ,
F(μ,φ), θ = .

Then system () is equivalent to the following operator equation:

u̇(t) = A(μ)ut + R(μ)ut .

The adjoint operator A∗ of A is defined by

A∗(ϕ) =

{
– dϕ(s)

ds ,  < s ≤ ,∫ 
– dηT (s, )ϕ(–s), s = ,

associated with a bilinear form

〈
ϕ(s),φ(θ )

〉
= ϕ̄()φ() –

∫ 

θ=–

∫ θ

ξ=
ϕ̄(ξ – θ )dη(θ )φ(ξ )dξ , ()

where η(θ ) = η(θ , ).

http://www.advancesindifferenceequations.com/content/2014/1/295
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Let q(θ ) = (,q,q,q,q)Teiωτθ be the eigenvector of A() corresponding to +iωτ

and q∗(s) = D(,q∗
,q∗

,q∗
,q∗

)eiωτs be the eigenvector of A∗() corresponding to –iωτ.
From the definition of A() and A∗() and by a simple computation, we obtain

q =
iω – a – be–iτω

a
q,

q =

a

(
iω – a –

bbe–iτω

iω – a – be–iτω
–

abe–iτω

iω – a – be–iτω

)
,

q =
be–iτω

iω – a – be–iτω
q, q =

a
iω – a – be–iτω

,

q∗
 = –

iω + a
a

+
abeiτω

a(iω + a + beiτω )
,

q∗
 =

(iω + a)(iω + a)
aa

–
ab(iω + a)eiτω

aa(iω + a + beiτω )
,

q∗
 = –

beiτω

iω + a + beiτω
, q∗

 = –
beiτω

iω + a + beiτω
.

From Eq. (), we have

〈
q∗(s),q(θ )

〉
= D̄

[
 + qq̄∗

 + qq̄∗
 + qq̄∗

 + qq̄∗
 + τe–iτω

(
q

(
bq̄∗

 + bq̄∗

)

+ q
(
b + bq̄∗


)
+ q

(
b + bq̄∗


))]

.

Then we choose

D̄ =
[
 + qq̄∗

 + qq̄∗
 + qq̄∗

 + qq̄∗
 + τe–iτω

(
q

(
bq̄∗

 + bq̄∗

)

+ q
(
b + bq̄∗


)
+ q

(
b + bq̄∗


))]–

such that 〈q∗,q〉 = , 〈q∗, q̄〉 = .
Next, we can obtain the coefficients which will be used to determine the properties of

the Hopf bifurcation by using a computation process similar as in []:

g = βτD̄q
(
q̄∗
 – 

)
,

g = βτD̄(q + q̄)
(
q̄∗
 – 

)
,

g = βτD̄q̄
(
q̄∗
 – 

)
,

g = βτD̄
(
q̄∗
 – 

)(
W ()

 ()q +


W ()

 ()q̄ +W ()
 () +



W ()

 ()
)
,

with

W(θ ) =
igq()
τω

eiτωθ +
iḡq̄()
τω

e–iτωθ + Eeiτωθ ,

W(θ ) = –
igq()
τω

eiτωθ +
iḡq̄()
τω

e–iτωθ + E,

http://www.advancesindifferenceequations.com/content/2014/1/295


Zhang and Si Advances in Difference Equations 2014, 2014:295 Page 11 of 15
http://www.advancesindifferenceequations.com/content/2014/1/295

where E and E can be determined by the following equations respectively:

E = 

⎛
⎜⎜⎜⎜⎝
iω – a  –a –be–iτω –be–iτω

–a iω – a –a  
 –a a′

  
  –be–iτω a′

 
–a    a′



⎞
⎟⎟⎟⎟⎠

– ⎛
⎜⎜⎜⎜⎝
E()


E()





⎞
⎟⎟⎟⎟⎠,

E = –

⎛
⎜⎜⎜⎜⎜⎜⎝

a  a b b
a a a  
 a a + b  
  b a + b 
a    a + b

⎞
⎟⎟⎟⎟⎟⎟⎠

– ⎛
⎜⎜⎜⎜⎜⎜⎝

E()


E()






⎞
⎟⎟⎟⎟⎟⎟⎠
,

with

a′
 = iω – a – be–iτω ,

a′
 = iω – a – be–iτω ,

a′
 = iω – a – be–iτω ,

E()
 = –βq, E()

 = βq,

E()
 = –β(q + q̄), E()

 = β(q + q̄).

Then we can get the following coefficients:

C() =
i

τω

(
gg – |g| – |g|



)
+
g

,

μ = –
Re{C()}
Re{λ′(τ)} , β = Re

{
C()

}
, ()

T = –
Im{C()} +μ Im{λ′(τ)}

τω
.

In conclusion, we have the following results.

Theorem  For system (), if μ >  (μ < ), then the Hopf bifurcation is supercritical
(subcritical). If β <  (β > ), then the bifurcating periodic solutions are stable (unstable).
If T >  (T < ), then the bifurcating periodic solutions increase (decrease).

4 Numerical simulation
In this section, we present a numerical example to verify the theoretical analysis in Sec-
tion  and Section . Let A = , p = ., α = ., β = ., μ = ., δ = ., η = .,
ε = ., γ = .. Then we get a particular case of system ():

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

dS(t)
dt =  – .S(t)I(t) – .S(t) + .R(t – τ ) + .V (t – τ ),

dE(t)
dt = .S(t)I(t) – .E(t),

dI(t)
dt = .E(t) – .I(t) – .I(t – τ ),

dR(t)
dt = .I(t – τ ) – .R(t) – .R(t – τ ),

dV (t)
dt = .S(t) – .V (t) – .V (t – τ ).

()

http://www.advancesindifferenceequations.com/content/2014/1/295
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Figure 1 The phase plot of the states S, E, R for τ = 2.365 < 2.4273 = τ0.

Figure 2 The phase plot of the states S, I, V for τ = 2.365 < 2.4273 = τ0.

It is easy to verify that R = . >  and system () has the unique positive equilib-
rium D∗(., ., ., ., .). Further, we have ω = ., τ =
.. First, we choose τ = . < τ, the corresponding phase plots are shown in Fig-
ures  and ; it is easy to see that system () is asymptotically stable from Figures  and .
Then we choose τ = . > τ. The corresponding phase plots are illustrated by Figures 
and . We can see that system () undergoes a Hopf bifurcation in this case. This prop-
erty can also be seen from the bifurcation diagram in Figure . In addition, we obtain
λ′(τ) = . + .i, C() = –. + .i. Thus, we have μ = . > ,
β = –. < , T = –. < . From Theorem , we can conclude that the Hopf bi-
furcation is supercritical and the bifurcating periodic solutions are stable, and the period
of the periodic solutions decreases.

5 Conclusions
This paper is concerned with a delayed SEIRS-V model on the transmission of worms in
a wireless sensor network. The main results are given in terms of local stability and local
Hopf bifurcation. By choosing the delay as a bifurcation parameter, sufficient conditions

http://www.advancesindifferenceequations.com/content/2014/1/295
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Figure 3 The phase plot of the states S, E, R for τ = 2.595 > 2.4273 = τ0.

Figure 4 The phase plot of the states S, I, V for τ = 2.595 > 2.4273 = τ0.

Figure 5 The bifurcation diagramwith respect to τ .
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for local stability of the positive equilibrium and existence of the Hopf bifurcation of sys-
tem () are obtained. We have proven that when the conditions are satisfied, there exists a
critical value τ of the delay belowwhich system () is stable and above which system () is
unstable. Especially, system () undergoes a Hopf bifurcation at the positive equilibrium
when τ = τ. The occurrence of Hopf bifurcation means that the state of worms preva-
lence in a wireless sensor network changes from a positive equilibrium to a limit cycle,
which is not welcomed in a wireless sensor network. Hence, we should control the occur-
rence of Hopf bifurcation by combining some bifurcation control strategies, and we leave
this as the future work. Further, the properties of Hopf bifurcation are studied by using
the normal form method and the center manifold theorem. Finally, a numerical example
is given to support our theoretical results.
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