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Abstract
In this paper, using the construction of Clifford algebras, we associate to the set of
generalized Fibonacci quaternions a quaternion algebra A (i.e., a Clifford algebra of
dimension four). Indeed, for the generalized quaternion algebraH(β1,β2), denoting
E(β1,β2) = 1

5 [1 + β1 + 2β2 + 5β1β2 + α(β1 + 3β2 + 8β1β2)], if E(β1,β2) > 0, therefore
the algebra A is split. If E(β1,β2) < 0, then the algebra A is a division algebra. In this
way, we provide a nice algorithm to obtain a division quaternion algebra starting
from a quaternion non-division algebra and vice versa.
MSC: 11E88; 11B39
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1 Introduction
In ,WKClifford discovered Clifford algebras. These algebras generalize the real num-
bers, complex numbers and quaternions (see []).
The theory of Clifford algebras is intimately connected with the theory of quadratic

forms. In the following, we will consider K to be a field of characteristic not two. Let
(V ,q) be aK-vector space equipped with a nondegenerate quadratic form over the field K .
A Clifford algebra for (V ,q) is a K-algebra C with a linear map i : V → C satisfying the
property

i(x) = q(x) · C , ∀x ∈ V ,

such that for any K-algebra A and any K linear map γ : V → A with γ (x) = q(x) · A,
∀x ∈ V , there exists a unique K-algebra morphism γ ′ : C → A with γ = γ ′ ◦ i.
Such an algebra can be constructed using the tensor algebra associated to a vector

space V . Let T(V ) = K ⊕ V ⊕ (V ⊗ V ) ⊕ · · · be the tensor algebra associated to the vec-
tor space V , and let J be the two-sided ideal of T(V ) generated by all elements of the
form x ⊗ x – q(x) ·  for all x ∈ V . The associated Clifford algebra is the factor algebra
C(V ,q) = T(V )/J (see [, ]).

Theorem . (Poincaré-Birkhoff-Witt [, p.]) If {e, e, . . . , en} is a basis of V , then the
set {, ejej · · · ejs , ≤ s ≤ n, ≤ j < j < · · · < js ≤ n} is a basis in C(V ,q).

The most important Clifford algebras are those defined over real and complex vector
spaces equipped with nondegenerate quadratic forms. Every nondegenerate quadratic
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form over a real vector space is equivalent to the following standard diagonal form:

q(x) = x + · · · + xr – xr+ – · · · – xs ,

where n = r + s is the dimension of the vector space. The pair of integers (r, s) is called the
signature of the quadratic form. The real vector space with this quadratic form is usually
denoted by Rr,s and the Clifford algebra on Rr,s is denoted by Clr,s(R). For other details
about Clifford algebras, the reader is referred to [–] and [].

Example .
(i) For p = q = , we have Cl,(K ) 
 K .
(ii) For p = , q = , it results that Cl,(K ) is a two-dimensional algebra generated by a

single vector e such that e = –, and therefore Cl,(K ) 
 K (e). For K =R, it
follows that Cl,(R) 
C.

(iii) For p = , q = , the algebra Cl,(K ) is a four-dimensional algebra spanned by the
set {, e, e, ee}. Since e = e = (ee) = – and ee = –ee, we obtain that this
algebra is isomorphic to the division quaternions algebra H.

(iv) For p = , q =  or p = , q = , we obtain the algebra Cl,(K ) 
 Cl,(K ) which is
isomorphic with a split (i.e., nondivision) quaternion algebra [].

2 Preliminaries
Let H(β,β) be a generalized real quaternion algebra, the algebra of the elements of the
form a = a ·  + ae + ae + ae, where ai ∈ R, i ∈ {, , , }, and the elements of the
basis {, e, e, e} satisfy the following multiplication table:

·  e e e
  e e e
e e –β e –βe
e e –e –β βe
e e βe –βe –ββ

We denote by n(a) the norm of a real quaternion a. The norm of a generalized quater-
nion has the following expression n(a) = a + βa + βa + ββa. For β = β = , we
obtain the real division algebra H, with the basis {, i, j,k}, where i = j = k = – and
ij = –ji, ik = –ki, jk = –kj.

Proposition . ([, Proposition .]) The quaternion algebra H(β,β) is isomorphic to
quaternion algebra H(xβ, yβ), where x, y ∈ K∗.

The quaternion algebra H(β,β) with β,β ∈ K∗ is either a division algebra or is iso-
morphic to H(–,–)
M(K ) [].
For other details about the quaternions, the reader is referred, for example, to [, , ].
The Fibonacci numbers were introduced by Leonardo of Pisa (-) in his book

Liber abbaci, book published in  AD (see [, pp., ]). This name is attached to the
following sequence of numbers:

, , , , , , , , , . . . ,
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with the nth term given by the formula

fn = fn– + fn–, n≥ ,

where f = , f = .
In [], the author generalized Fibonacci numbers and gave many properties of them:

hn = hn– + hn–, n ≥ ,

where h = p, h = q, with p, q being arbitrary integers. In the same paper [, relation ()],
the following relation between Fibonacci numbers and generalized Fibonacci numbers
was obtained:

hn+ = pfn + qfn+. (.)

For the generalized real quaternion algebra, the Fibonacci quaternions and generalized
Fibonacci quaternions are defined in the same way:

Fn = fn ·  + fn+e + fn+e + fn+e,

for the nth Fibonacci quaternions and

Hn = hn ·  + hn+e + hn+e + hn+e = pFn + qFn+, (.)

for the nth generalized Fibonacci quaternions.
In the following, we will denote the nth generalized Fibonacci number and the nth gen-

eralized Fibonacci quaternion element by hp,qn , respectivelyHp,q
n . In this way, we emphasize

the starting integers p and q.
It is known that the expression for the nth term of a Fibonacci element is

fn =
√

[
αn – βn] = αn

√


[
 –

βn

αn

]
, (.)

where α = +
√


 and β = –
√


 .
From the above, we obtain the following limit:

lim
n→∞n(Fn) = lim

n→∞
(
f n + βf n+ + βf n+ + ββf n+

)

= lim
n→∞

(
αn


+ β

αn+


+ β

αn+


+ ββ

αn+



)

= sgnE(β,β) · ∞,

where E(β,β) = 
 [ + β + β + ββ + α(β + β + ββ)], since α = α +  (see []).

If E(β,β) > , there exists a number n ∈ N such that for all n ≥ n, we have n(Fn) > .
In the same way, if E(β,β) < , there exists a number n ∈ N such that for all n ≥ n, we
have n(Fn) < . Therefore, for all β,β ∈Rwith E(β,β) �= , in the algebraH(β,β) there
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is a natural number n =max{n,n} such that n(Fn) �= . Hence Fn is an invertible element
for all n ≥ n. Using the same arguments, we can compute the following limit:

lim
n→∞

(
n
(
Hp,q

n
))

= lim
n→∞

(
hn + βhn+ + βhn+ + ββhn+

)
= sgnE′(β,β) · ∞,

where E′(β,β) = 
 (p + αq)E(β,β), if E′(β,β) �=  (see []).

Therefore, for all β,β ∈ R with E′(β,β) �= , in the algebra H(β,β) there exists a
natural number n′

 such that n(Hp,q
n ) �= , henceHp,q

n is an invertible element for all n≥ n′
.

Theorem . ([, Theorem .]) For all β,β ∈R with E′(β,β) �= , there exists a nat-
ural number n′ such that for all n ≥ n′, Fibonacci elements Fn and generalized Fibonacci
elements Hp,q

n are invertible elements in the algebra H(β,β).

Theorem . ([, Theorem .]) The set Hn = {Hp,q
n /p,q ∈ Z,n ≥ m,m ∈ N} ∪ {} is a

Z-module.

3 Main results
Remark . We remark that the Z-module from Theorem . is a free Z-module of rank
two. Indeed, ϕ : Z × Z→Hn, ϕ((p,q)) = Hp,q

n is a Z-module isomorphism and {ϕ(, ) =
Fn,ϕ(, ) = Fn+} is a basis inHn.

Remark . By extension of scalars, we obtain that R ⊗Z Hn is an R-vector space of di-
mension two. A basis is {e = ⊗Fn, e = ⊗Fn+}. We have thatR⊗ZHn is an isomorphic
with the R-vector spaceHR

n = {Hp,q
n /p,q ∈R} ∪ {}. A basis inHR

n is {Fn,Fn+}.

Let T(HR

n ) be the tensor algebra associated to the R-vector spaceHR

n , and let C(HR

n ) be
the Clifford algebra associated to the tensor algebra T(HR

n ). From Theorem ., it results
that this algebra has dimension four.

Case 1:H(β1,β2) is a division algebra
Remark . Since in this case E(β,β) >  for all n ≥ n′ (as in Theorem .), then HR

n
is an Euclidean vector space. Indeed, let z,w ∈ HR

n , z = xFn + xFn+, w = yFn + yFn+,
x,x, y, y ∈ R. The inner product is defined as follows:

〈z,w〉 = xyn(Fn) + xyn(Fn+).

We remark that all properties of the inner product are fulfilled. Indeed, since for all n≥ n′

we have n(Fn) >  and n(Fn+) > , it results that 〈z, z〉 = xn(Fn) + xn(Fn+) =  if and only
if x = x = , therefore z = .

OnHR

n with the basis {Fn,Fn+}, we define the following quadratic form qHR
n
:HR

n →R:

qHR
n
(xFn + xFn+) = n(Fn)x + n(Fn+)x.

Let QHR
n
be a bilinear form associated to the quadratic form qHR

n
,

QHR
n
(x, y) =



(
qHR

n
(x + y) – qHR

n
(x) – qHR

n
(y)

)
= n(Fn)xy + n(Fn+)xy.
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The matrix associated to the quadratic form qHR
n
is

A =

(
n(Fn) 
 n(Fn+)

)
.

We remark that detA = n(Fn)n(Fn+) >  for all n ≥ n′. Since E(β,β) > , therefore
n(Fn) >  for n > n′. We obtain that the quadratic form qHR

n
is positive definite and the

Clifford algebra C(HR

n ) associated to the tensor algebra T(HR

n ) is isomorphic to Cl,(K )
which is isomorphic to a split quaternion algebra.
From the above results and using Proposition ., we obtain the following theorem.

Theorem . If H(β,β) is a division algebra, there is a natural number n′ such that for
all n≥ n′, the Clifford algebra associated to the real vector spaceHR

n is isomorphic with the
split quaternion algebra H(–,–).

Case 2:H(β1,β2) is not a division algebra
Remark . (i) If E(β,β) > , then HR

n is an Euclidean vector space, for all n ≥ n′, as in
Theorem .. Indeed, let z,w ∈ HR

n , z = xFn + xFn+, w = yFn + yFn+, x,x, y, y ∈ R.
The inner product is defined as follows:

〈z,w〉 = xyn(Fn) + xyn(Fn+).

(ii) If E(β,β) < , then HR

n is also an Euclidean vector space, for all n ≥ n′, as in The-
orem .. Indeed, let z,w ∈ HR

n , z = xFn + xFn+, w = yFn + yFn+, x,x, y, y ∈ R. The
inner product is defined as follows:

〈z,w〉 = –xyn(Fn) – xyn(Fn+).

We have 〈z, z〉 = –xn(Fn) – xn(Fn+), and since for all n ≥ n′ we have n(Fn) <  and
n(Fn+) < , it results that 〈z, z〉 = –xn(Fn) – xn(Fn+) =  if and only if x = x = , there-
fore z = .

OnHR

n with the basis {Fn,Fn+},we define the following quadratic form qHR
n
:HR

n →R:

qHR
n
(xFn+xFn+) = qHR

n
(xFn + xFn+) = n(Fn)x + n(Fn+)x.

Let QHR
n
be a bilinear form associated to the quadratic form qHR

n
,

QHR
n
(x, y) =



(
qHR

n
(x + y) – qHR

n
(x) – qHR

n
(y)

)
= n(Fn)xy + n(Fn+)xy.

The matrix associated to the quadratic form qHR
n
is

A =

(
n(Fn) 
 n(Fn+)

)
.
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We remark that detA = n(Fn)n(Fn+) >  for all n≥ n′.
If E(β,β) > , therefore n(Fn) >  for n > n′. We obtain that the quadratic form qHR

n
is

positive definite and the Clifford algebra C(HR

n ) associated to the tensor algebra T(HR

n ) is
isomorphic with Cl,(K ) which is isomorphic to a split quaternion algebra.
If E(β,β) < , therefore n(Fn) <  for n > n′. Then the quadratic form qHR

n
is negative

definite and the Clifford algebra C(HR

n ) associated to the tensor algebra T(HR

n ) is isomor-
phic with Cl,(K ) which is isomorphic to the quaternion division algebra H.
From the above results and using Proposition ., we obtain the following theorem.

Theorem . If H(β,β) is not a division algebra, there is a natural number n′ such that
for all n ≥ n′, if E(β,β) > , then the Clifford algebra associated to the real vector spaceHR

n

is isomorphic with the split quaternion algebra H(–,–). If E(β,β) < , then the Clifford
algebra associated to the real vector space HR

n is isomorphic to the division quaternion
algebra H(, ).

Example . () For β = , β = –, we obtain the split quaternion algebra H(, –). In
this case, we have E(β,β) = 

 [– – α] <  and, for n′ = , we obtain n(Fn) = f n + f n+ –
f n+ – f n+ < , n(Fn+) = f n+ + f n+ – f n+ – f n+ <  for all n ≥ . The quadratic form qHR

n

is negative definite, therefore the Clifford algebra C(HR

n ) associated to the tensor algebra
T(HR

n ) is isomorphic to Cl,(K ) which is isomorphic to the quaternion division algebra
H(, ).
() For β = –, β = –, we obtain the split quaternion algebra H(–,–). In this case,

we have E(β,β) = 
 [ + α] > . For n′ = , we obtain n(Fn) = f n – f n+ – f n+ + f n+ > ,

n(Fn+) = f n+ – f n+ – f n+ + f n+ >  for all n≥ . The quadratic form qHR
n
is positive definite,

therefore the Clifford algebraC(HR

n ) associated to the tensor algebra T(HR

n ) is isomorphic
to Cl,(K ) which is isomorphic to the split quaternion algebra H(–,–).
() For β = , β = –, we obtain the split quaternion algebra H(,–). In this case,

we have E(β,β) = 
 [– – α] < . For n′ = , we obtain n(Fn) = f n + f n+ – f n+ –

f n+ < , n(Fn+) = f n+ + f n+ – f n+ – f n+ >  for all n ≥ . The quadratic form qHR
n

is negative definite, therefore the Clifford algebra C(HR

n ) associated to the tensor algebra
T(HR

n ) is isomorphic to Cl,(K ) which is isomorphic to the division quaternion algebra
H(, –).
() For β = β = – 

 , we obtain the split quaternion algebra H(– 
 , –


 ). Therefore

E(β,β) = 
 > , and for n′ =  we obtain n(Fn) >  and n(Fn+) > . The quadratic form

qHR
n
is positive definite, therefore the Clifford algebra C(HR

n ) associated to the tensor al-
gebra T(HR

n ) is isomorphic to Cl,(K ) which is isomorphic to the split quaternion algebra
H(–,–).

The algorithm
() Let H(β,β) be a quaternion algebra, α = +

√


 and
E(β,β) = 

 [ + β + β + ββ + α(β + β + ββ)].
() Let V be the R-vector spaceHR

n = {Hp,q
n /p,q ∈ R} ∪ {}.

() If E(β,β) > , then the Clifford algebra C(HR

n ) associated to the tensor algebra
T(HR

n ) is isomorphic to Cl,(K ) which is isomorphic to the split quaternion algebra
H(–,–).
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() If E(β,β) < , then the Clifford algebra C(HR

n ) associated to the tensor algebra
T(HR

n ) is isomorphic to Cl,(K ) which is isomorphic to the division quaternion
algebra H(, ).

4 Conclusions
In this paper, we have extended the Z-module of the generalized Fibonacci quaternions to
a real vector spaceHR

n . We have proved that the Clifford algebra C(HR

n ) associated to the
tensor algebra T(HR

n ) is isomorphic to a split quaternion algebra or to a division algebra if
E(β,β) = 

 [+β +β +ββ +α(β +β +ββ)] is positive or negative.We also have
given an algorithm which allows us to find a division quaternion algebra starting from a
split quaternion algebra and vice versa.
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