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Abstract

Background: Cancer genomes evolve in both space and time, which contributes to the genetic heterogeneity that
underlies tumor progression and drug resistance. In human melanoma, identifying mechanistically important events
in tumor evolution is hampered due to the high background mutation rate from ultraviolet (UV) light. Cross-species
oncogenomics is a powerful tool for identifying these core events, in which transgenically well-defined animal
models of cancer are compared to human cancers to identify key conserved alterations.

Results: We use a zebrafish model of tumor progression and drug resistance for cross-species genomic analysis in
melanoma. Zebrafish transgenic tumors are initiated with just 2 genetic lesions, BRAF*°%F and p537", yet take 4-6
months to appear, at which time whole genome sequencing demonstrated >3,000 new mutations. An additional
4-month exposure to the BRAF inhibitor vemurafenib resulted in a highly drug resistant tumor that showed 3
additional new DNA mutations in the genes BUB1B, PINK1, and COL16A1. These genetic changes in drug resistance
are accompanied by a massive reorganization of the transcriptome, with differential RNA expression of over 800
genes, centered on alterations in CAMP and PKA signaling. By comparing both the DNA and mRNA changes to a
large panel of human melanomas, we find that there is a highly significant enrichment of these alterations in

human patients with vemurafenib resistant disease.

Conclusions: Our results suggest that targeting of alterations that are conserved between zebrafish and humans
may offer new avenues for therapeutic intervention. The approaches described here will be broadly applicable to
the diverse array of cancer models available in the zebrafish, which can be used to inform human cancer genomics.
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Background

Large-scale advances in genomic profiling of human
cancers has enabled the identification of thousands of
new potential genetic and epigenetic targets [1]. In mel-
anoma, this effort has been complicated by the rela-
tively high background mutation rate induced by
ultraviolet light (UV) [2]. This is further complicated by
recent observations that even seemingly normal skin
harbors large mutational burdens due to UV, [3], mak-
ing it difficult to discern which events are truly patho-
genic versus those that occur simply as bystanders.
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Along with ultraviolet light, human melanomas also
exhibit tremendous inter-patient heterogeneity. This is
likely due to several factors: 1) a variety of genes can act
as initiating events (i.e. BRAF, NRAS, c-Kit), 2) a lack of
knowledge of the cell of origin of individual tumors, and
3) individual germline variation in DNA repair mecha-
nisms. As the tumors evolve under drug therapy (i.e.
BRAF inhibitors or immunotherapy), each of these factors
make it increasingly challenging to identify key genomic
events promoting such evolution.

Evaluating genetic evolution in melanoma will be facil-
itated by models which faithfully recapitulate the human
disease, yet allow for precise control over the above vari-
ables. This will allow for identification of core muta-
tional events and mechanisms that are intrinsic to
melanoma, and not simply due to the background effects
of UV radiation. Towards this end, we and others have
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previously developed several zebrafish models of melan-
oma [4—7] that show remarkable similarity to the human
disease at histological, functional and genomic levels [8].
The zebrafish has emerged as an important new model
in cancer biology because of its unique capabilities in
terms of transgenesis, genetic manipulation, unbiased
screens and in vivo imaging [9]. The advantages of
evaluating cancer evolution in models such as the fish is
that we can rigorously control the cell of tumor initi-
ation, use genetically well-defined oncogenic initiating
events and the fish spontaneously develop melanoma in
a well-defined germline background.

One limitation of using these transgenic models of
cancer is a lack of computational methods for assessing
the tumor genomes over time and space. We previously
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utilized an exome-sequencing approach to identify genes
under selection in these melanomas [8], but did not ad-
dress mutation rates genome-wide or how this changes
during the emergence of drug resistance. Such an ap-
proach will be necessary to truly capitalize on the
strengths of the zebrafish cancer models.

Here, we utilize a transgenic zebrafish melanoma to
define genetic events that occur in the months after the
initiation of BRAFY®°F expression, and determine how
these tumors evolve under drug selection with a BRAF
inhibitor, as schematically demonstrated in Fig. 1.
These data reveal a surprising amount of genetic evolu-
tion that occurs in the absence of UV damage, which
can be further augmented after these melanomas be-
come resistant to BRAF inhibitors. These data suggest
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Fig. 1 Schematic representation of experimental plan. Fish with the genotype mitfa-BRAFV600E+/+;p53-/-mitfa-/- are completely devoid of melanocytes
due to a mutation in the mitfa gene, but carry the BRAFV60OE transgene in their germline. Upon transgenic expression of a miniCoopR rescue cassette in
which the mitfa promoter drives an MITFA minigene, the animals develop mosaic resuce of melanocytes. A small number of these melanocytes
will eventually complete all the steps of malignant transformation, and emerge as a cutaneous melanoma. From one such melanoma, a stable
cell line, ZMEL1, was derived. Genomic DNA was isolated from this line, along with normal DNA from the original fish from which the tumor
was derived. These DNA samples were used for whole-genome sequencing to call mutations specific to the ZMEL1 tumor. The ZMEL1 line is
highly sensitive to growth inhibition by BRAF inhibitors, as expected. Continuous culture for of the ZMEL1 line in the presence of high dose of
the BRAF inhibitor vemurafenib for 4 months gave rise to a derivative cell line, ZMEL-R1, which demonstrates a 10-fold reduction in sensitivity
to vemurafenib. RNA was isolated from this line, along with RNA from the parental ZMEL1 line, which was then used for both differential
expression analysis as well as mutation calling
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that the mechanisms leading to genomic instability in
melanoma may not solely be due to a straightforward
mutagenic insult such as UV, and likely reflects proper-
ties of the melanoma cell itself.

We use these new approaches to compare the zebra-
fish genomes to human melanoma genomes. During
drug resistance, we find strong conservation of both
DNA mutations as well as mRNA transcriptional pro-
files. This data highlights the capacity for cross-species
oncogenomic approaches to filter out the highly noisy
changes seen in human melanoma, and identify core
mechanisms of tumor progression and drug resistance.
These methods can be broadly applied to other tumor

types.

Results

ZMEL1 line derivation

For these studies, we utilized the previously developed
zebrafish melanoma model [6, 7], in which human onco-
genic BRAFY?F is expressed under the melanocyte spe-
cific mitfa promoter. We generated these melanomas
using the mosaic miniCoopR system [10, 11]. The stable
transgenic mitfa-BRAFY*" animals were crossed into
animals with homozygous mutations in p53 and mitfa it-
self. These animals are completely devoid of melanocytes
due to the mitfa mutation [12], but harbor the capacity
for melanoma initiation when mosaically injected with a
transgene containing an mitfa and GFP rescue cassette.
From one such animal at 6 months of age, we extracted
a large GFP+ melanoma from the skin, and then estab-
lished a stable GFP+ zebrafish melanoma cell line called
ZMEL1 (Fig. 1), as previously described [13]. This line
was used for all subsequent studies.

Whole-genome sequencing of the ZMEL1 melanoma line
Since the tumor from which the ZMEL1 line was initi-
ated with only 2 genetic lesions, BRAFY*F activation
and p53 loss of function, characterization of its genome
gave us an opportunity to characterize further genetic
evolution that contributed to tumor formation over
these 6 months. We extracted genomic DNA from this
stable cell line, along with normal genomic DNA from
the muscle of the original transgenic animal. These 2
samples were then subject to Illumina sequencing to a
depth of 39X for both the tumor and normal DNA.

Point mutations in ZMEL1

We aligned the Illumina reads using the GSNAP aligner
[14], which is SNP tolerant and we felt would perform
better than BWA given the generally high levels of SNPs
seen in the zebrafish genome compared to the human
genome. Because most mutation calling pipelines are op-
timized for the human genome,we decided to run two
separate pipelines, MuTect [15] and Shimmer [16], in
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order to optimize the balance between false-positives
and false-negatives.

As seen in Fig. 2 and Additional file 1: Table S1, the
MuTect algorithm called a total of 13,811 potential point
mutations (Fig. 2, inner ring) in the ZMEL1 tumor,
whereas Shimmer called a much smaller number at 2079
mutations (Fig. 2, middle ring). Looking at the overlap
between these two mutation callers, we surprisingly
found only 178 mutations (Fig. 2, outer ring) in com-
mon. This is a higher degree of non-concordance than is
typically seen in human cancer samples, but likely re-
flects the fact that the zebrafish genome is more repeti-
tive than the human genome, with a much higher
frequency of SNPs [17], such that a sequencing depth of
39X may not be fully sufficient for the mutation calling
algorithms to perform optimally.

To further determine the performance of each muta-
tion caller, we validated a subset of the called variants
from each pipeline (Fig. 3a). For each caller, we stratified
the mutations into quartiles based on quality scores, and
then selected representative mutations from each quar-
tile for validation. In total, we selected 384 loci for valid-
ation (Additional file 2: Table S2 and Additional file 3:
Table S3), including 128 mutations that were called by
both callers, and 128 mutations uniquely called by either
MuTect, and 128 uniquely called by Shimmer (Fig. 3,
left). We PCR amplified each genomic locus from the
originally isolated genomic DNA, and then used a
pooled MiSeq run to assess whether the called muta-
tions from the HiSeq run were correct. Overall, both
MuTect and Shimmer produced a validation rate of 23%,
with 60/256 for MuTect and 59/256 for Shimmer. How-
ever, the overlapping mutations in MuTect and Shimmer
produced a significantly higher validation rate of 38%
(49 out of 128 mutations called by both pipelines, Fig. 3,
right)). The majority of the false positives we found in
the validation run were due to germline SNPs that were
not detected in the initial low-coverage HiSeq run, sug-
gesting that greater sequencing depth would improve
these results further.

We also wished to determine whether the quality
scores produced by each mutation calling pipeline could
serve as a guide to weeding out false positives. To assess
this, we constructed ROC (Receiver Operating Charac-
teristic) curves and then analyzed the sensitivity of each
caller separately or together. As seen in Fig. 3b, MuTect
generally performed better by ROC analysis, with an es-
timation that the higher quality scores were more likely
to validate in the MiSeq run. In contrast, Shimmer qual-
ity scores generally had little relationship to actual valid-
ation status on the MiSeq run.

Overall, we conclude that for mutation calling from
zebrafish tumor DNA, using multiple mutational callers
and identifying the overlapping mutations, especially
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Fig. 2 Circos plot showing called mutations in the ZMEL1 line. MuTect called the greatest number of mutations, as shown in the inner ring, with
far fewer called by Shimmer (middle ring). The number of overlapping mutations, which have a higher validation rate, is shown in the outermost

ring of the plot

those with high quality MuTect scores, is most likely to
yield mutations that can be validated by an orthogonal
method.

Nature of the mutations

Given the better overall performance of MuTect, we
quantified the type of substitutions we found either be-
fore or after the MiSeq validation run (Fig. 4). As ex-
pected, the the vast majority (55-65%) of the point
mutations occurred in intergenic regions, with another
28-40% occurring in intronic regions. As expected based
on the exonic component of the genome, approximately
1.4-2.5% of the mutations occurred with gene bodies.
Thus, there does not appear to be strong selection for
mutations that occur only in exons, and instead these
are spread across the genome fairly evenly. In both the
raw MuTect data (Fig. 4a) as well as the MiSeq valid-
ation run (Fig. 4b), the majority of the identified muta-
tions were G>A/C>T substitutions. These did not

show a strong propensity for being dipyrimidine dimers
as would be expected if these were UV-light induced:
17% of the mutations occurred at TCA triplets, and an-
other 10% at TCG triplets, with only 5% at TCC triplets
(Additional file 1: Table S1). In general, across all human
cancers C > T substitutions tend to be the most common
[18], consistent with our dataset.

Comparison to human melanoma

We wanted to compare the overall mutation rates in the
zebrafish tumor to human melanomas. It is likely that
the 13,811 mutations called by MuTect suffered from
both false positives and false negatives. If we estimate
that only 23% of those mutations were true, this would
yield an expected number of genome-wide mutations to
be 3176 mutations, or 2.24 mutations per Mb (3176/
1,412,464,843). We then compared this rough estimate
to a recently published series of 25 human melanomas
that had been subject to whole-genome sequencing at
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similar depths [19]. Strikingly, in that study, the average
number of point mutations was 78,775, yielding an aver-
age mutation rate of 30 mutations per Mb. However, the
number of mutations varied by two orders of magnitude
in that study, ranging from 3-111 mutations per Mb.
The zebrafish melanoma mutation rate was similar to
that reported for acral melanomas (3—14 mutations per
Mb) which are typically non-sun exposed melanomas
and therefore devoid of UV mutagenesis. This data
strongly suggests that the mutation rate in the zebrafish
tumors reflects the near complete absence of UV expos-
ure, and that the additional mutations that occur after
initiation with BRAF;p53 are due to either clonal expan-
sion or ongoing genomic instability.

Derivation of the ZMELR1 cell line

We next wanted to determine how this melanoma
evolved under drug selection in the emergence of resist-
ance. In both patients and in human cancer cell lines,
continued exposure to inhibitors of the MAP kinase
pathway leads to eventual drug resistance in nearly all
cases [20, 21]. This is true for both a variety of
BRAFYE inhibitors (i.e. vemurafenib, dabrafenib) as
well as MEK inhibitors (i.e. trametinib), and the mecha-
nisms of such resistance have invariably demonstrated
reactivation of the MAP kinase pathway [22].

To generate an analogous situation, we exposed the
ZMEL1 cells to the BRAF inhibitor vemurafenib
(1 uM) for a period of 4 months. This led to an initial
die off of nearly all cells, as expected, but with a small
population of persisters that were static in their growth
initially but eventually completely resumed growth and
re-established the culture. We call this resistant line
ZMELR]1, and it exhibits a nearly 10-fold increase in
the IC5, to vemurafenib.

Genomic analysis of the ZMELR1 cells

To understand the changes that occurred in the
ZMELR1 cells, compared to the parental ZMEL1 cells,
we chose to take advantage of recent advances in using
RNA-seq to simultaneously analyze: 1) differentially
expressed genes via analysis of the mRNA transcripts,
and 2) novel mutations in the underlying DNA via
recently described mutation calling pipelines using
mRNA-seq [23, 24].

For this analysis, we isolated total mRNA from ~10°
cells from either ZMEL1 or ZMELRI cells, and then
used polyA enrichment followed by standard Illumina li-
brary preparation. We did this using three independent
biological replicates. We then sequenced each sample
using 100 bp PE sequencing for ~25x10° reads per sam-
ple. The samples were aligned to the genome using the
Tophat/Bowtie package, and then used DeSeq?2 to iden-
tify differentially expressed genes. We used the mapped
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reads as input into the Strelka mutation calling pipeline,
as previously described, in order to identify candidate
point mutations.

RNA differential expression analysis in ZMELR1 vs. ZMEL1
We identified 852 genes that were differentially expressed
in the ZMELRI cells compared to the parental cells (FDR
<0.05, FC > 2.0), including 488 that were upregulated and
364 that were downregulated (Fig. 5a and Additional file 4:
Table S4). To identify the pathways that were altered, we
first converted these genes into their human orthologs
using the DIOPT tool (http://www.flyrnai.org/cgi-bin/
DRSC_orthologs.pl) and then input these into Ingenuity
Pathway Analysis. The most significantly altered pathways
(Fig. 5b) included those genes involved in G-protein
coupled signaling (ADCY2, ADCY5, CALCR, PDESB),
cAMP signaling (ADCY2, PDESB, VIPR2, ADRA2C), pro-
tein kinase A signaling (ADCY2, PLCD1, PTGS2, PLC1)
and leukocyte extravasation (ITGAM, PRKCB, MMP15,
ITGA1).

This pathway analysis is remarkably similar to what
has been found in human melanomas that have become
resistant to BRAF inhibitors [25]. Johannessen per-
formed a screen in human melanoma cells that had been
engineered to overexpress 15,000 open reading frames
via cDNA transfection. In their analysis, G-protein
coupled receptor signaling emerged as the top-ranked
protein class the conferred resistance to BRAF inhibitors
across a range of cell lines. The specifically identified
downstream activation of adenyl cyclase, which leads to
increased cAMP levels, as the critical effector of BRAF
resistance. The human screen identified the adenyl cy-
clase gene ADCY9 and the protein kinase A subunit
PRKACA as mediators of resistance, whereas we find
upregulation of ADCY2 and ADCY5 and other compo-
nents of PKA signaling as significantly upregulated
(Fig. 6). Looking at the overlap between the upregulated
genes from the ZMELR1 to those found in the Johan-
nessen study yielded 3 additional genes that are likely
components of this core resistance mechanism: SP8§,
NR4A2, and GPR161. These are representative of the
major classes of resistance factors identified in the hu-
man screen, including G-protein coupled signaling and
transcription factors. These data suggest that core mech-
anisms of drug resistance are tightly conserved across
species. Functional validation of these conserved mecha-
nisms awaits further study, but by directly comparing
the zebrafish to human pathways and genes, we can rap-
idly identify new targets that may be useful in treating
drug resistance in melanoma.

DNA mutation calling in the ZMELR1 vs. ZMEL1
We next wanted to explore whether we could use the
RNA-seq data to identify potential genetic changes in
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the underlying DNA that could contribute to BRAF in-
hibitor resistance. As has been well-described in human
melanoma, the emergence of new point mutants often
underlies clinical resistance to these drugs. These point
mutations can often be identified retrospectively in the
bulk population of tumor prior to therapy. We used the
RNA samples from above, and after mapping applied the
Strelka algorithm to identify candidate point mutations,
as described previously and adapted in the methods,
below [23, 24].

Overall, we identified 51 potential point mutations
in the ZMELR1 line compared to the ZMEL1 line
(Additional file 5: Table S5). We reasoned that many
of these were likely false positives, based on two fac-
tors: 1) the above-described suboptimal performance
of mutation calling pipelines in zebrafish data, and 2)

the fact that these were called from RNA rather than
DNA, so may represent either allele specific expres-
sion or RNA editing events. Given these challenges,
we decided to orthogonally validate a subset of these
potential mutations, similar to what we did for the
ZMEL1 whole-genome sequencing described above.
We selected mutations with a range of variant-allele
fractions, 3 to 100%. Since the mutations in this case
were called in the mRNA, to validate these we isolated
genomic DNA from the ZMEL1 and ZMELRI1 cells,
and successfully PCR amplified 28 candidate loci.
These were then subject to Sanger sequencing, and the
traces were manually inspected to look for the pres-
ence of mutated peaks. We found that 11.1% (3/27) of
the mutations were validated (Fig. 7a): a C> T substi-
tution in BUB1BA, a C > A substitution in COL16A1,



Kansler et al. BMC Genomics (2017) 18:136

Page 9 of 13

Genetic alteration ~ ® Missense mutation ® Truncating mutation

a
- Variant allele frequencies in
T 150 ZMEL-R1 line
o susica M ek [ coviean
o
g 100qe « , GTAGTCCTAT GCTGCTGCCT GGCATGCCCC
2 ...
.
5 . hoapin aintws Dy e
o M R I n -~ L
© 0 ®® 0000 00 l a
S Ve
NP D LAP o D & & 5o Q@6 & & A . |
P e e T T A T

N © < & & &

& B &
J¥. 5

Gene
TCGA melanoma dataset Vemurafenib resistance melanoma dataset

Altered in 23 (7%) of 346 samples Altered in 10 (13%) of 78 cases/patients

BUB1B 2% wRvmeis BUB1B 7% ki

PINK1 1% LLL] PINK1 7% nmin

COL16A1 4% CELEL TR T COL16A1 1% CRLRLLL]

Genetic alteration  ® Missense mutation ¥ Truncating mutation

Fig. 7 Mutations identified in the ZMELR1 vemurafenib resistant melanoma. a. A subset of the mutations putatively called by the RNA-seq is
shown, along with their variant allele frequencies. Only 3 of the 27 tested mutations were shown to have bona-fide mutations in the underlying
DNA, as demonstrated by Sanger sequencing of genomic DNA from the ZMEL1 and ZMEL-R1 lines. b. Analysis of these mutations in the TCGA
and vemurafenib-resistant melanoma samples shows an enrichment of these in the drug resistant human tumors

and a C > A substitution in PINK1. Not unexpectedly,
since we initially identified these mutations in the
mRNA, we find that the rate of validation is lower
than what we found in the whole genome DNA-
sequencing of the ZMEL1 cells described above (i.e.
11% in the mRNA/Strelka pipeline vs. 38% in the
DNA/MuTect + Shimmer pipeline).

We compared the mutations in these genes to those
known to be mutated in human melanomas (Fig. 7b). We
first looked for evidence of these mutations in all patients
within the TCGA cohort of 346 patients, and found muta-
tions in all 3 of these genes: BUB1B (2% of patients), PINK1
(1% of patients) and COL16A1 (4% of patients). We then
determined whether the frequency of the mutations in-
creased in a population that have similarly become resistant
to BRAF inhibitors. Van Allen performed exome sequen-
cing on 48 human patients who had developed clinical re-
sistance to BRAF inhibition [26], including both pre and
post treatment biopsies. Of the 78 available sequenced
tumor samples, we found increases in the mutation fre-
quency of all 3 of these genes: BUB1B increased from 2 to
7% of patients, PINK1 from 1 to 7% of patients, and
COL16A1 from 4 to 11% of patients. This data suggests
that core mechanisms of drug resistance are highly con-
served across species, highlighting the utility of zebrafish
models for identifying the mechanisms of such resistance.

Discussion

The patterns of genetic evolution in melanoma are increas-
ingly well-defined via large scale efforts such as The Cancer
Genome Atlas. To date, over 400 patient tumors have been
sequenced, primarily using whole-exome approaches [27].
A smaller number of patients have been sequenced using

whole-genome approaches [19]. The majority of these
cases are samples derived from cutaneous, UV-
associated melanoma and as a result have very high
mutation burdens. An extreme of this is desmoplastic
melanoma, a histologically unique subtype occurring in
chronically sun damaged skin which harbors 62 muta-
tions/Mb [28]. These high mutation rates induced by
UV complicates the analysis of true somatic evolution
to a certain degree because of the very high rate of
somatic mosaicism recently found to exist within nor-
mal human skin. Unexpectedly, several common cancer
associated genes are found to be mutated in seemingly
normal skin as well [3], calling into question the precise
manner in which these mutations contribute to melan-
oma pathogenesis. Other types of melanomas are also
being increasingly sequenced, most notably acral and
mucosal melanomas [29, 30], which occur on non-sun
exposed areas and have a much lower mutation rate.

Animal models such as the zebrafish and mouse are
increasingly utilized to functionally dissect the mutations
identified from human genomic studies such as the
TCGA. For example, the zebrafish miniCoopR system, a
mosaic genetic overexpression system, was used to de-
termine which of the genes amplified on human
chromosome 1q21 were likely “drivers” [11]. In that
study, all of the genes amplified in that human region
were overexpressed in concert with BRAFY®°F and it
was found that only a single gene, SETDBI, contributed
to melanoma pathogenesis. Aside from these functional
validation models, relatively less attention has been paid
to using these models to understand fundamental mech-
anisms of mutation accumulation and genetic evolution
after tumor initiation [8].



Kansler et al. BMC Genomics (2017) 18:136

In the current study, we aimed to understand how
much further genetic evolution occurs after initiating a
melanoma with just two genetic lesions: BRAFY®%F
overexpression and p53 inactivation. We had strong
reasons to think that these two lesions alone are not
adequate to give rise to clinically detectable tumors.
We recently showed that after initiation with BRAF and
p53, the melanocytes undergo epigenetic reprogram-
ming to a neural crest-like state via reorganization of
H3K27Ac mediated-transcription [31]. However, des-
pite the fact that BRAF and p53 are present from the
time of birth, tumors rarely appear prior to 4—6 months
of age. These data strongly hinted that there were fur-
ther genetic and perhaps epigenetic events occurring
during this tumor latency period between birth and
6 months. Since zebrafish in the lab are shielded from
UV irradiation, these changes would have to occur in
the absence of this known skin mutagen.

Our data supports a model in which a melanoma that
is initiated with the combination of BRAF and p53 can
lead to further accumulation of thousands of mutations.
Many of these mutations bear the common C>T pat-
tern seen in most cancers (non-dipyrimidine dimer types
that occur independent of UV), but also other less com-
mon mutations such as the T > C/A > G pattern. When
compared to a recently published compendium of muta-
tion spectrum across human tumors, we find that the
zebrafish tumors are closest, but not exactly so, to muta-
tional signature 21 [18], which is poorly understood and
likely due to as yet unexplained factors in DNA repair.

In human patients with melanoma, the genetic hetero-
geneity present at baseline can make the identification of
drug resistance mutations difficult. The zebrafish offers
an advantage in this regard, since we are starting with a
relatively clean genetic background. This can allow us to
rapidly filter down all of the potential new resistance
mechanisms to those conserved across millions of years
of vertebrate evolution. In the zebrafish melanoma, we
found relatively little genetic evolution occurs after the
establishment of drug resistance, with only 3 new muta-
tions identified. In contrast, we found a very significant
alteration in gene expression, with over 800 genes differ-
entially expressed between the parental versus drug re-
sistant tumor. It is possible that the gene expression
changes we see are either directly related to the genetic
mutations (PINK1, BUB1B and COL16A1) or may be
due to a supervening set of epigenetic alterations. The
gene expression signature is dominated by alterations
in cAMP/PKA signaling, and recent data has sug-
gested a potential link between PINK1 and PKA sig-
naling [32, 33]. Moreover, PINK1 is known to be
induced by the PTEN pathway [34], which has previ-
ously been shown to be involved in melanoma pro-
gression and BRAF inhibitor resistance [35].
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One limitation of our study is that identifying high
confidence mutations in zebrafish tumors was surpris-
ingly difficult, similar to what we have previously ob-
served using exome approaches. We previously observed
in an exome sequencing study a high rate of false posi-
tives with the available mutation callers at this time [8],
but as we were using newer pipelines, we expected an
improvement in performance we did not see. It is pos-
sible that we would need to sequence to a much higher
depth to confidently call mutations in zebrafish tumors.
It is also possible that utilizing new technologies with
longer read lengths such as PacBio or Oxford nanopore
would improve performance because we would be able
to more confidently map mutations to the zebrafish ref-
erence genome.

Conclusions

Complementing human cancer genomics with animals
models can significantly augment our ability to “functio-
nalize” the cancer genome. This can be done by testing
candidate human mutations in fish or mouse models,
but also by using these models to investigate underlying
mutational mechanisms. The data highlighted here point
the way forward for using zebrafish as a model for un-
derstanding mechanisms of genetic evolution in melan-
oma, but could easily be expanded to the wide range of
other cancer models in the zebrafish. When coupled
with the capacity for screens in the fish, one interesting
future direction would then be to screen for factors that
decrease the rate of genetic evolution, which would have
direct relevance to human tumors.

Methods

Generation of transgenic zebrafish melanomas

The zebrafish melanomas were generated using the previ-
ously described miniCoopR system. Fish with the following
genotype were incrossed: mitfa-BRAFV600E;p53-/-;mitfa-/-.
These embryos were injected at the 1-cell stage with a DNA
plasmid (containing the mitfa-MITF minigene along with an
mitfa-EGFP sequence, surrounded by Tol2 transposon sites)
along with Tol2 transposase mRNA.

Isolation of the ZMEL1 and ZMELR1 melanoma lines

The ZMEL1 line was isolated as previously described. In
brief, from the above transgenic group of animals, we
isolated a fish with an obvious melanoma. This was then
used to grow a stable zebrafish melanoma cell line which
we refer to as ZMEL1. The ZMELR1 drug resistant line
was derived by prolonged exposure of ZMEL1 to the
BRAF inhibitor PLX4720 at a concentration of 10 pM.
The drug was directly added to the cell culture media
and the culture maintained for a period of ~4 months.
Although most cells initially died after exposure to the
drug, the culture eventually repopulated the culture flask
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and was then expanded for further studies. Due to better
solubility, we switched the cells to the derivative drug
PLX4032 (vemurafenib) at a concentration of 1 pM,
which is essentially equivalent to the 10 uM concentra-
tion of PLX4720. The ZMELRI1 line is continuously
maintained in PLX4032 1 uM since removal of the drug
tends to lead to growth slowdown, as has been previ-
ously described for other drug resistant melanoma lines.

Whole-genome sequencing of the ZMEL1 line

Genomic DNA was isolated from normal muscle tissue
from the original transgenic animal that gave rise to the
melanoma used to make the ZMEL1 line. After a short
period of culture, DNA was also then isolated from the
ZMELL1 line. Approximately 1 pug of DNA for both the
ZMEL1 and normal tissue was then subject to Illumina
sequencing (HiSeq2000) using 100 bp PE sequencing to
a depth of 39X.

Because of the generally high rate of single nucleotide
polymorphisms in the zebrafish genome, we aligned the
DNA reads to the zebrafish genome using the GSNAP
aligner [14], which is generally more SNP tolerant than
other aligners such as BWA. All reads were mapped to
the Zv9 version of the zebrafish genome. After align-
ment, mutations were called by comparing the ZMEL1
DNA to the normal DNA from that fish, using the
MuTect [15] and Shimmer [16] pipelines with default
settings.

MiSeq validation of ZMEL1 mutations

We divided the quality scores for both MuTect and
Shimmer into quartiles. From each quartile, we then se-
lected 48 candidate mutations for validation, resulting in
192 potential mutations from each caller, or 384 in total.
Of these, 128 were mutations found in common between
the two pipelines. We designed PCR primers to each of
these loci, amplified them with high-fidelity polymerase
(Kapa) and then pooled these products into a single
MiSeq run.

We used three cutoffs for this analysis:

SOMATIC (validated): > = 5% tumor allele frequency
and < 2% normal allele frequency

GERMLINE (not-validated): > = 5% tumor allele
frequency and > = 2% normal allele frequency

FAIL (not validated): <5% tumor allele frequency

RNA-sequencing of the ZMELR1 and ZMEL1 line

Total RNA was isolated from both cell lines maintained
in their standard culture conditions. Cells were 60—70%
confluent at the time of RNA isolation. mRNA was pre-
pared using the TruSEq RNA v2 kit, and 50 bp paired-
end sequencing performed on the Illumina HiSeq2500,
with ~20x10° reads per sample.
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Bioinformatics analysis was performed to systematic-
ally study differential expression and mutational changes
in RNA-Seq profiles between control ZMEL1 cells
(maintained in DMSO) and drug-resistant cell line
ZMELR1 (maintained in PLX4032 1 pM). RNAseq sam-
ples were aligned to the Zebrafish genome (Version Zv9)
using TopHat2 (v2.0.12) aligner [36]. With Ensembl zeb-
rafish (Zv9, Ensembl release 79) as reference, aligned
reads were then quantified for gene expression in terms
of raw read counts and FPKM using HTSeq-counts [37]
and Cufflinks [38], respectively. A count based differen-
tial expression was performed using the limma package
in R [39]. Significantly differentially expressed genes
were selected based on a cut-off of log fold change
(logFC) >1 and False Discovery Rate (FDR) < 0.05.

For the mutation analysis, the RNASeq triplicates from
control and ZMELR1 were merged to obtain one file per
sample group, for high overall coverage and realigned to
7Zv9 using TopHat2. Mutation calls to obtain Single
Nucleotide Variants (SNV) were then performed using
Strelka comparing the control and ZMELR1 [40]. Based
on Strelka’s thresholds, a predicted SNV was filtered in if
the frequency of the variant allele in the ZMELR1 was sig-
nificantly different from the reference allele in the control.
The VCF output file from strelka, with the SNV candi-
dates was the annotated with gene names and their pre-
dicted effects using SnpEff [41] with the Zv9 database.

Ingenuity Pathway analysis of the ZMELR1 gene signature
From the differential expression analysis, the 852 zebra-
fish genes with FDR < 0.05 were selected for downstream
analysis. In order to facilitate this, we mapped all of the
zebrafish IDs to the human ortholog using the DIOPT
tool (http://www flyrnai.org/cgi-bin/DRSC_orthologs.pl),
which resulted in 674 unique human IDs. These IDs,
along with FDR and log2-fold change were then input
into Ingenuity Pathway Analysis (http://www.ingenuity.-
com/products/ipa) using the default parameters (Direct
and Indirect Relationships, no FDR or fold-change cut-
off, all species consideredand all available data sources).

Sanger validation of ZMELR1 mutations

From the Shimmer analysis, we identified 52 potential
point mutations that were present in the ZMELR1 line
but not in the ZMEL1 line itself. These were stratified
based on variant allele frequency, ranging from 100%
down to 3.4%. We chose to validate 28 genes with a
range of variant allele fractions. To do this, we isolated
genomic DNA from both the ZMEL1 and ZMELRI line,
and then designed PCR primers around the putative mu-
tation, similar to what we did for the validation of the
ZMEL1 mutations. These loci were amplified with high
fidelity polymerase, and then individually sequenced
using Sanger sequencing.
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Additional file 2: Table S2. ZMEL1 validation primers for MiSeq run.
This file contains all of the PCR primer sequences used to validate the
subset of 384 called mutations that were validated in the ZMEL1 line via
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