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Synthesis and detection the oxidization of Co
cores of Co@SiO2 core-shell nanoparticles by
in situ XRD and EXAFS
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Abstract

In this paper, the Co@SiO2 core-shell nanoparticles were prepared by the sol-gel method. The oxidization of Co core
nanoparticles was studied by the synchrotron radiation-based techniques including in situ X-ray diffraction (XRD)
and X-ray absorption fine structure (XAFS) up to 800°C in air and N2 protection conditions, respectively. It was found
that the oxidization of Co cores is undergoing three steps regardless of being in air or in N2 protection condition.
In the first step ranging from room temperature to 200°C, the Co cores were dominated by Co0 state as well as
small amount of Co2+ ions. When temperature was above 300°C, the interface between Co cores and SiO2 shells
was gradually oxidized into Co2+, and the CoO layer was observed. As the temperature increasing to 800°C, the Co
cores were oxidized to Co3O4 or Co3O4/CoO. Nevertheless, the oxidization kinetics of Co cores is different for the
Co@SiO2 in air and N2 gas conditions. Generally, the O2 in the air could get through the SiO2 shells easily onto the
Co core surface and induce the oxidization of the Co cores due to the mesoporous nature of the SiO2 shells.
However, in N2 gas condition, the O atoms can only be from the SiO2 shells, so the diffusion effect of O atoms in
the interface between Co core and SiO2 shell plays a key role.
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Background
In the past years, nanomaterials have been attracted ex-
tensive interests due to their unique properties and po-
tential applications in chemistry, physics, biology, and
catalysis. For example, magnetic nanoparticles have po-
tential applications in catalyst, resonance imaging, drug
targeting, and bio-conjugation. However, the magnetic
nanoparticles can be oxidized easily in atmosphere and
thus limiting the applications of these nanomaterials [1-3].
Recently, a series of supported cobalt or cobalt oxide

materials such as Co/Al2O3, Co/κ-Al2O3, Co/SiO2, and
Co/TiO2 have been studied for catalysis. The most fam-
ous application of the Co/SiO2 and Co/Al2O3 catalysts is
for the Fischer-Tropsch synthesis [4-8]. W. Ma and T.
Das investigated the influence of support type and cobalt
cluster size on the kinetics of Fischer-Tropsch synthesis
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of Co/SiO2 catalysts, and the kinetic results demon-
strated that the Fischer-Tropsch reaction exhibited some
structure sensitivity to the kinetic effect of water with re-
spect to support type and Co cluster size [5,6]. A. M.
Saib studied the surface oxidation behavior of the nano-
sized cobalt crystallites (4 to 5 nm) of Co/SiO2/Si(100)
model catalyst using in situ near-edge X-ray absorption
fine structure (NEXAFS) under model Fischer-Tropsch
synthesis conditions. No surface oxidation of cobalt was
observed under these model FTS conditions over a wide
temperature range, i.e., 150°C to 400°C [7]. The Co/SiO2

materials can be used as catalyst for hydrogen gener-
ation as well [9]. In general, it has been reported that
the Co3O4 particles were more readily reduced to metal-
lic cobalt in H2 than the Co2+ species. After reduction at
480°C in H2, the CO hydrogenation activity in ten atmo-
spheres of 3H2:1CO at 260°C with supported 5 wt% co-
balt decreased as the order of Co/SiO2 > Co/TiO2 > Co/
Al2O3 > Co/κ-Al2O3. Therefore, the determination of the
types of cobalt species present on each support and their
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reduction properties was to the key points to explain the
catalysts' CO hydrogenation activities [10].
Different strategies have been proposed for the prepar-

ation of Co/oxide core-shell nanoparticles. X. J. Yin and
X. Lu have synthesized the Co/SiO2 core-shell nanopar-
ticles using the novel aqueous solution method and
improved sol-gel method combining with hydrogen
reduction, and they also found that the saturation
magnetization and coercivity varies with the SiO2 con-
tent. The size and the saturation magnetization value of
samples decreased with the increase of the SiO2 content
[11,12]. In order to protect the oxidation of magnetic
nanoparticles, an inert shell onto the magnetic core
nanoparticles could be an elegant approach. V. Salgueiriño-
Maceira et al. reported a sol-gel method to synthesize the
Co nanoparticles which are coated with a protective silica
layer and then using the standard Stŏber (by adding the
tetraethoxysilane (TEOS) into aqueous/ethanolic solution)
method to obtain the Co@SiO2 core-shell nanoparticles.
They have also reported the first synthesis of unique
silica-coated chains of 32-nm cobalt nanoparticles resem-
bling nanoscale pearl necklaces in colloidal suspension
under magnetic stirring. This phenomenon was attributed
to the magnetic dipole-dipole interaction between neigh-
bor particles [13,14]. Up to now, there are many magnetic
core-shell materials which have been made including
Fe2O3@SiO2/Ag, Fe3O4@SiO2, Fe3O4@SnO2, Co@SiO2,
Pt@CoO, FePt@SiO2, Fe3O4@Au, Fe2O3-CdSe@SiO2, and
Fe3O4/γ-Fe2O3@SiO2 [15-23]. For example, the Fe3O4@
SiO2 is a common magnetic core-shell nanoparticle. The
core particle Fe3O4 can be used in resonance imaging,
whereas the shell layer is mesoporous SiO2, which can
provide enough space for additive and can be used for
loading particles to adsorb or isolate protein and antibody.
Moreover, through the surface modification of the shell
layer by adsorbing noble metal nanoparticles, the core-
shell system can be used for catalyst, luminescence im-
aging, and photodynamic therapy [24].
However, the stability and thermal properties of Co@SiO2

under high temperature have not been completely studied.
In this paper, the in situ extended X-ray absorption fine
structure (EXAFS) and X-ray diffraction (XRD) techniques
are used to probe the properties of Co@SiO2 core-shell
nanoparticles with temperature up to 800°C.

Methods
Chemical reagents
Cobalt chloride hexahydrate (CoCl2 · 6H2O), sodium
borohydride (NaBH4), sodium citrate dehydrate, and
anhydrous ethanol were purchased from Sinopharm
Chemical Reagent Beijing Co., Ltd., China. TEOS and
3-aminopropyltriethoxysilane (APS) were purchased from
Sigma-Aldrich, St. Louis, MO, USA. All reagents were
used as received. Deionized water was distilled by a Milli-Q
water purification system (Millipore Corp., Bedford, MA,
USA).

Preparation of Co@SiO2 core-shell nanoparticles
Co@SiO2 core-shell nanoparticles were prepared by V.
Salgueiriño-Maceira's method [13,14]. Firstly, citrate sta-
bilized Co nanoparticles were prepared from the con-
ventional NaBH4 reduction of CoCl2 · 6H2O. In a typical
procedure, under vigorous stirring and N2 protection,
0.2 mL of 0.4 M CoCl2 solution was added quickly into
200 mL water which contains 4 × 10−3 M NaBH4 and
4 × 10−4 M sodium citrate. The solution turned brown
or black immediately after mixing. Secondly, 800 mL
ethanol with 14.4 μL APS and 169 μL TEOS was added
into the above solution after 1 min and then kept stir-
ring at least 24 h to complete the reaction. Finally, the
Co@SiO2 core-shell nanoparticles were separated by
centrifugation and dried in air for further investigation.

Transmission electron microscopy
Bright-field transmission electron microscopy (TEM)
observation was performed on a JEM 1230 electron
microscope (JEOL Ltd., Akishima-shi, Japan) operated at
80 kV. The specimens were prepared by dropping the
Co@SiO2 solution onto a carbon-coated TEM grid. After
the specimens were dried in air, they were used for the
TEM observation.

Ultraviolet-visible absorption spectroscopy
During the preparation of Co@SiO2 nanoparticles, the
color of the solution changing from colorless to brown
was observed, indicating that the Co2+ ions have been
reduced to Co nanoparticles. Moreover, in the period of
silica-coating procedure, the surround mediate of Co
nanoparticles changed which could inflect the absorp-
tion cross section. So we used the Nicolet Evolution 300
spectrophotometer (Thermal Fisher Scientific, Waltham,
MA, USA) to invest the ultraviolet-visible (UV-vis) ab-
sorption spectroscopy of the reaction solution. The
wavelength range is 190 ~ 1,100 nm.

Extended X-ray absorption fine structure measurements
Transmission EXAFS measurements of Co K edge
(7,709 eV) were performed at the beamline 4B9A of
Beijing Synchrotron Radiation Facility (BSRF). The stor-
age ring was operated at 2.5 GeV with current about
200 mA. The EXAFS signals in the energy range from
7,589 to 8,709 eV were collected with two ionization
chambers filled with 100% N2 gas. The incident X-ray
was monochromatized with a double-crystal Si (111)
monochromator to an energy resolution (ΔE/E) of 2 ×
10−4. In order to take in situ EXAFS measurements,
the Co@SiO2 should mix with BN powder and was
pressed into a pill of 10 mm in diameter and 1 mm in



Figure 2 UV-vis spectra of solution during synthesis time.

Figure 1 TEM image of the as-prepared Co@SiO2 core-shell nanoparticles.
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thickness (d). By adjusting the ratio of Co@SiO2 and
BN in the mixture, the absorption thickness (Δμ · d)
was optimized to one, where Δμ is the difference of Co
absorption coefficients after and before the Co K ab-
sorption edge (7,709 eV). Then, the pill was placed on
the sample holder which can be inserted into the heating
furnace. The temperature uncertainty can be controlled
within ±0.1°C with an 818 temperature controller. During
heating the sample, the heating rate was set to 10°C/min.
The room temperature EXAFS spectrum was first col-
lected, and subsequently, the high-temperature EXAFS
spectra were orderly collected in the temperature range
from 100°C to 800°C with a temperature interval of 100°C.
Before EXAFS measurements at each target temperature,
the sample was heat preserved at least 30 min to ensure
the sample reaching a thermal equilibrium. In order to in-
vest the influence of reaction atmosphere's to Co oxida-
tion process, we made the EXAFS measurements under
air and N2 conditions.

X-ray diffraction measurements
In situ XRD of the Co@SiO2 core-shell nanoparticles
was measured at the beamline 4B9A-XRD of BSRF using
an image plate. The diffraction signals were collected
after the EXAFS measurements at each target tempera-
ture. As same as the EXAFS, the temperature range is
25°C ~ 800°C.
Results and discussion
The TEM image of the Co@SiO2 core-shell nanoparti-
cles is shown in Figure 1. Most of the Co@SiO2 nano-
particles with ~50 nm diameter contain multiple Co
cores, but the Co cores are separated from each other.
According to the TEM image, the average diameter of
Co cores is evaluated to be about 20 nm. The obtained
Co@SiO2 core-shell nanoparticles are different from the
previous work [13,14] which may be due to the different
reaction conditions, such as the rate of protect N2 gas
and stirring rate.



Figure 3 XRD patterns of Co@SiO2 nanoparticles with temperature (multiplication sign) β-SiO2, (black diamond) Co3O4. (a) Air condition
and (b) N2 gas protection condition.
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Figure 2 shows the UV-vis spectroscopy during the
reaction process. The initial CoCl2 solution exhibits a
high absorption peak at 510 nm (blue line), which is
disappeared immediately after the addition of NaBH4

solution. In the meantime, there are two weak absorp-
tion peaks at 230 and 280 nm which belong to the Co
nanoparticles (yellow line). Based on these results, it
reveals that the Co nanoparticles are synthesized im-
mediately after the addition of NaBH4 solution. The
UV-vis spectroscopy of Co@SiO2 core-shell nanoparti-
cles after the addition of APS and TEOS (red line) was
measured as well (cf. Figure 2). No significant change
from the Co nanoparticles was observed, except the
higher intensities of the absorption peaks. This is be-
cause that the SiO2 shell could change the dielectric
constant around Co cores and thus increases the ab-
sorption intensities.
Figure 4 Phase-uncorrected Fourier transform spectra of Co K-edge E
protection condition.
In order to invest the structure changes during the
heating process, combining in situ XRD and EXAFS
techniques were performed. Figure 3 shows the results
of the in situ XRD measurements. Figure 3a,b represents
the measurements in air and N2 atmosphere, respect-
ively. In addition, the sample in Figure 3b is the mixture
of Co@SiO2 and BN powders. No diffraction peaks were
observed in spite of being in air or N2 atmosphere when
the temperature was below 800°C, indicating that the
Co@SiO2 core-shell nanoparticles are maintained amor-
phously. However, when the temperature is above 800°C,
SiO2 and Co3O4 crystals were clearly observed (Figure 3).
It is worth noting that the SiO2 shells could not protect
the Co cores from oxidizing to Co3O4, which can be
demonstrated in the following EXAFS analysis.
To characterize the structure change of Co cores of

the nanoparticles, in situ EXAFS technique was used to
XAFS signals with temperature. (a) Air condition and (b) N2 gas



Figure 5 Fitting results of Co K-edge k3-weighted EXAFS spectra. (a) to (h) figures show the fitting results of Co K edge k3-weighted EXAFS
spectra of Co@SiO2 nanoparticles in air condition.
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probe the local atomic structures of Co in the Co@SiO2

nanoparticles. In situ EXAFS spectra of the Co K edge
were fitted with the following EXAFS function [25-27]:

χ kð Þ ¼
X
j

N jS02Fj kð Þ
kRj

2 e−2k
2σ j2e−2Rj=λ kð Þ sin 2kRj þ ϕj

l kð Þ
h i

where j refers to the jth coordination shell, Nj is the co-
ordination number of the jth shell, S0

2 is the amplitude
reduction factor, Fj(k) is the element-specific backscat-
tering amplitude, Rj is the average distance between the
absorbing atom and the backscattering atoms in the jth
shell, λ(k) is the mean free-path length of photoelectron,
σj
2 is the Debye-Waller factor, and ϕj

l(k) is the phase
shift experienced by the photoelectron in the scattering
process.
The post-edge background was removed by using a

derivative method [28,29]. For the Co@SiO2 core-shell
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nanoparticles in air condition, the Fourier transforms
were performed in the k range of 2.67 to 14.49 Å�1, and
the first Co-Co and Co-O shells were isolated by Fourier
filter with R range of about 1.10 to 2.70 Å . Figure 4
shows the Fourier-transformed k3-weighted EXAFS spectra
of Co@SiO2 samples in air and N2 conditions. The ampli-
tudes and phase shifts of Co-Co and Co-O atom pairs were
extracted from theory spectra of CoO which was calculated
by FEFF 8.0 [26]. For fitting the EXAFS spectra, we consider
the peak around 1.5 Å to Co-O bonds and the peak around
2.4 Å to Co-Co bonds respectively. Therefore, the Co-O
and Co-Co scattering paths were used to fit the spectra. The
amplitude and phase shift of Co-O atom pair were calcu-
lated with FEFF 8.0 code, and the amplitude and phase shift
of Co-Co were attracted from Co-foil EXAFS measurement.
From the Figure 4a, two peaks were observed during the
heating process, and Co-O and Co-Co bonds could fit the
spectra very well which were shown in Figure 5. It means
that in air condition, the Co core nanoparticles were par-
tially oxidized even at room temperature and then were
gradually oxidized to Co3O4 with the temperature rising to
800°C. However, only one peak was indicated in the N2 gas
condition when the temperature was below 400°C
(Figure 4b). With further increase in temperature, the sec-
ond peak appeared. Consequently, in N2

gas protection con-
dition, the Co core nanoparticles could be oxidized to
CoxOy when the temperature was above 400°C, and below
that temperature, the Co core nanoparticles are dominated
Figure 6 Schematic illustration of oxidization of Co cores of Co@SiO2
by Co0 state. Unfortunately, the EXAFS spectra of Co@SiO2

nanoparticles could not be fitted well by Co-O and Co-Co
scattering paths. Nevertheless, they showed the same trend
as in the air condition.
Comparing the measurements in Figure 4a,b, we can

make a conclusion that the Co@SiO2 core-shell nano-
particles can be oxidized to Co3O4, in spite of the
protection of SiO2 shell. In other words, the SiO2 shell
cannot protect the Co nanoparticles from being oxidized
to Co3O4, but they could exhibit different behaviors
in the air and N2 gas conditions. For the nanoparticles
in air condition, the O2 in air can get onto the Co cores
easily because the SiO2 shell is in mesoporous state.
So even at room temperature, the Co core nanoparticles
could be oxidized to CoO which were demonstrated
by EXAFS and XANES measurements. In the first
step, only the surface atoms of Co cores were oxidized
by O2. As the temperature increases up to 300°C, the or-
ganic ligands leave off the Co core surface, and the Co
surface were oxidized to CoO. With further increase
in temperature, the CoO layer increased, which was
reflected from the k space of XAFS spectra (Figure 5),
and Figure 5a to h shows the fitting results of Co K edge
k3-weighted EXAFS spectra of Co@SiO2 nanoparticles in
air condition. Finally, the Co core nanoparticles were ox-
idized thoroughly to Co3O4 when temperature reaches
800°C. Figure 6 gives the diagrammatic sketch of this
procedure.
nanoparticles in air condition.



Figure 7 Schematic illustration of oxidization of Co cores of Co@SiO2 nanoparticles in N2 protection.
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Figure 7 gives the diagrammatic sketch of the oxidation
procedure in the N2 gas protection condition. The oxidiza-
tion of Co core is much different from that in air condi-
tion. No exotic O atoms come into the Co@SiO2 during
the heating process. Thus, the O atoms could only be from
the SiO2 shells. At low temperature, there is no or seldom
Co-O bond existing in the system and the Co-Co bond is
dominant. When the temperature was above 300°C, the
diffusion effect of O at the Co core surface becomes obvi-
ous, and a Co-O band layer will be formed at the interface
between Co cores and SiO2 shells, which is demonstrated
by XAFS in k space (cf. Figure 8b). With further increase
Figure 8 EXAFS k3χ(k) function of Co K edge of Co@SiO2 nanoparticle
in temperature, a lot of O atoms in SiO2 shell could diffuse
into the Co cores and resulting in the increase of the
Co-O layer. In the Figure 4b, a peak around 1.5 Å ap-
peared corresponding to the Co-O bond. The m-SiO2 shell
makes phase transition to β-SiO2 around 600°C; it is well
known that the O becomes active during the phase transi-
tion process, so the diffusion of O into Co core is much
faster, and leading further oxidization of the Co core. Ac-
cording to Figures 4b and 8b, the Co nanoparticles are
likely oxidized to CoO/Co3O4 composite because the O
and Si are in stoichiometric equal (Si:O = 1:2) in SiO2

shell.
s in air (a) and in N2 gas condition (b).
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For fitting the EXAFS spectra of Co@SiO2 in N2 gas
protection, the signal around 1.5 Å was also considered
to be from the CoSi2, but no reasonable fitting parame-
ters can be obtained. However, the formation of CoSi2
during the heating and annealing process could not be
excluded, accounting into the trace amount of which
cannot be identified by XAFS technique.
In order to describe the oxidization process precisely,

the Co K-edge k3-weighted Fourier transformed function
was studied as shown in Figure 8. We can observe that
in the range of k ¼ 3:0e6:0 Å

�1
, the oxidization proced-

ure can be divided into three steps in spite of being in
air and N2 gas conditions. From room temperature to
200°C, the Co core is mostly in Co0 and may exist some
amount of Co2+. As the temperature increases to 600°C,
the Co core is oxidized to Co2+ gradually. When tem-
perature is higher than 800°C, the Co core is trans-
formed into Co3O4 thoroughly (in air) or partially (in N2

gas, CoO/Co3O4 complex).
Conclusions
In summary, the Co@SiO2 core-shell nanoparticles were
prepared, and in situ XRD and EXAFS techniques were
used to detect the oxidization process of the Co core
with temperature increases to 800°C in both air and N2

gas conditions. We find that there are three steps during
the heating program control temperature procedure in
spite of being in air or in N2 gas protection. In the first
step from room temperature to 200°C, the Co cores are
mainly in Co0 state as well as some amount of Co2+ ions.
When temperature is above 300°C, the interface between
Co core and SiO2 shell is gradually oxidized into Co2+,
and the CoO layer appears. With temperature increases
to 800°C, the Co cores are oxidized to Co3O4 or Co3O4/
CoO. Nevertheless, the oxidization kinetics of Co cores
is strongly influenced by gas condition. In the air condi-
tion, the O2 in the air could get through easily onto the
surface of the Co cores and induces the oxidization of
the Co cores due to mesoporous nature of SiO2 shells.
In the case of N2 gas condition, the O atoms could only
come from the SiO2 shells, so the diffusion effect of O
atoms at the interface between Co core and SiO2 shell is
the main factor. Our current work could provide some
hints to study the stability property of core-shell nano-
particles at high temperature.
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