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HIV-2 interaction with cell coreceptors: amino
acids within the V1/V2 region of viral envelope
are determinant for CCR8, CCR5 and CXCR4 usage
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Abstract

Background: Human immunodeficiency virus 1 and 2 (HIV-1 and HIV-2) use cellular receptors in distinct ways.
Besides a more promiscuous usage of coreceptors by HIV-2 and a more frequent detection of CD4-independent HIV-2
isolates, we have previously identified two HIV-2 isolates (HIV-2MIC97 and HIV-2MJC97) that do not use the two major HIV
coreceptors: CCR5 and CXCR4. All these features suggest that in HIV-2 the Env glycoprotein subunits may have a
different structural organization enabling distinct - although probably less efficient - interactions with cellular receptors.

Results: By infectivity assays using GHOST cell line expressing CD4 and CCR8 and blocking experiments using
CCR8-specific ligand, I-309, we show that efficient replication of HIV-2MIC97 and HIV-2MJC97 requires the presence of
CCR8 at plasma cell membrane. Additionally, we disclosed the determinants of chemokine receptor usage at the
molecular level, and deciphered the amino acids involved in the usage of CCR8 (R8 phenotype) and in the switch from
CCR8 to CCR5 or to CCR5/CXCR4 usage (R5 or R5X4 phenotype). The data obtained from site-directed mutagenesis
clearly indicates that the main genetic determinants of coreceptor tropism are located within the V1/V2 region of Env
surface glycoprotein of these two viruses.

Conclusions: We conclude that a viral population able to use CCR8 and unable to infect CCR5 or CXCR4-positive cells,
may exist in some HIV-2 infected individuals during an undefined time period, in the course of the asymptomatic stage
of infection. This suggests that in vivo alternate molecules might contribute to HIV infection of natural target cells, at
least under certain circumstances. Furthermore we provide direct and unequivocal evidence that the usage of CCR8
and the switch from R8 to R5 or R5X4 phenotype is determined by amino acids located in the base and tip of V1 and
V2 loops of HIV-2 Env surface glycoprotein.
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Background
Human Immunodeficiency Virus (HIV) envelope (Env)
glycoproteins are responsible for initial molecular inter-
actions between HIV and cellular receptors present in
plasma membrane. The sequential and specific interaction
of Env surface (SU) glycoprotein with CD4 and a member
of G-protein coupled receptors (GPCRs), enables the dis-
closure of a hydrophobic region (called fusion peptide) in
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Env transmembrane glycoprotein that leads to the fusion
of viral envelope with cell membrane [1,2].
The two major GPCRs (known as coreceptors) in-

volved in this complex entry mechanism are CCR5 and
CXCR4 [1-6]. However, several other GPCRs have been
implicated as coreceptors [7-21], revealing that HIV-1
and HIV-2 isolates can exploit alternate molecules
in vitro as co-factors for viral entry, raising the possibil-
ity that they might contribute to HIV infection of nat-
ural target cells in vivo. These alternate coreceptors
include: CCR2b, CCR3, CCR4, CCR6, CCR8, CCR9,
CCR10, CXCR2, CXCR5, CXCR6, CX3CR1, XCR1,
FPRL1, GPR1, GPR15, APJ, ChemR23, CXCR7/RDC1,
D6, BLTR and US28.
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The importance of CCR5 and CXCR4 as HIV corecep-
tors emanates from (i) the apparent selection of CCR5-
using (R5) variants during or soon after HIV-1 mucosal
transmission [22]; (ii) the almost exclusive presence of
R5 HIV-1 variants during chronic infection; and (iii) the
emergence and predominance of CXCR4-using (X4) var-
iants in some patients with advanced HIV-1 disease [23].
We and others have previously demonstrated that

in vitro, HIV-1 and HIV-2 use cellular receptors in dis-
tinct ways, including (i) more promiscuous usage of cor-
eceptors by HIV-2 [24-27]; (ii) more frequent detection
of CD4-independent HIV-2 isolates [28-31]; and (iii)
identification of CCR5/CXCR4-independent HIV-2 iso-
lates [7,32]. All these features suggest that in HIV-2 the
Env glycoprotein subunits may have a different struc-
tural organization enabling distinct (although probably
less efficient) interactions with cellular receptors.
In HIV-1, the molecular determinants governing corecep-

tor usage by a certain isolate are located mainly in the third
variable region (V3) of SU glycoprotein [33-37]. In HIV-1
subtype B, the presence of basic (positively charged) amino
acids at positions 11, 25 and/or 24 (referred to V3 region),
an overall charge of V3 region above +6 and the loss of an
N-linked glycosylation site within the V3 region are consist-
ently associated with CXCR4 usage [1,2,38-40]. Besides V3
region, also the variable regions 1 and 2 (V1/V2) have been
described as cooperating in coreceptor’s choice [1-6,41-43].
In HIV-2, structural and functional studies of envelope

glycoproteins regions are much more scarce and in some
aspects contradictory. Some studies had claimed an asso-
ciation between V3 loop sequence and CCR5 or CXCR4
usage [7-21,44-47], while others had found no genetic sig-
nature underlying coreceptor usage [22,27,48,49]. Particu-
larly, the C-terminal region of the V3 loop, a global net
charge above +6 and the presence of mutations in amino
acids 18 and 19 (numbers refer to V3 sequence), appear to
dictate the ability to use CXCR4 alone or in addition to
CCR5 [23,45,47].
During a screening of HIV-2 primary isolates regarding

coreceptor usage, we identified two strains obtained from
asymptomatic individuals (HIV-2MIC97 and HIV-2MJC97)
that enter target cells independently of CCR5 and CXCR4
coreceptors [7,24-27]. Here the virus-receptors interactions
and the SU Env glycoprotein characteristics of these two vi-
ruses were further studied in order to (i) decipher which
are the molecules used by these isolates to enter target cells;
and (ii) which are the molecular determinants underlying
the CCR5/CXCR4-independent entry. We provide direct
evidence that CCR8 is the cellular receptor engaged as cor-
eceptor by these specific strains. Furthermore, we also dem-
onstrate that the molecular determinants of this phenotype
are located in the V1/V2 region of SU Env glycoprotein,
providing valuable new insights into the basis of HIV-2 en-
velope interactions with cellular receptors.
Results
The interactions between cellular coreceptors and Env gly-
coproteins from two CCR5/CXCR4-independent HIV-2
strains were investigated. In the first part of this study we
identified the CCR8 molecule as the coreceptor used by
both strains for viral entry. In the second part, we ad-
dressed the determinants of chemokine receptor usage at
the molecular level, and deciphered the amino acids in-
volved in the usage of CCR8 and in the switch from CCR8
to CCR5 or to CCR5/CXCR4 usage.
HIV-2MIC97 and HIV-2MJC97 uses CCR8 to infect GHOST cell
lines and PBMC
Our previous results showed that both HIV-2MIC97 and
HIV-2MJC97 are unable to infect GHOST-CD4 cell lines
expressing several coreceptors including CCR5 and
CXCR4 [7,28-31]. The CCR5/CXCR4-independent pheno-
type was demonstrated either in ccr5 Δ32/Δ32 peripheral
blood mononuclear cells (PBMC) infection, and by testing
the in vitro resistance to CCR5 and CXCR4 targeted inhib-
itors [7,32].
Since both viruses required the presence of CD4 at

cell membrane [7,33-37] together with an unknown cor-
eceptor present in IL-2-activated PBMC, our first goal
was to identify this elusive molecule. We initially
characterize chemokine receptors usage, by infectivity
assays using GHOST-CD4 and U87-CD4 cell lines ex-
pressing several chemokine receptors (CCR1, CCR2b,
CCR3, CCR5, CXCR4, GPR15 and CXCR6). To further
extend these results, we analyzed HIV-2MIC97 and HIV-
2MJC97 utilization of a panel of other potential coreceptors.
For this, GHOST-CD4/Hi5, GHOST-CD4/CCR8 and
GHOST-CD4/CX3CR1 cell lines were infected with 100
TCID50 of each virus. As controls, GHOST-CD4/CCR5
and GHOST-CD4/CXCR4 cell lines and PBMC were in-
cluded as well as HIV-2ROD (able to use both CXCR4 and
CCR5 coreceptors; biotype R5X4) and HIV-1Ba-L (able to
use CCR5 coreceptor; biotype R5) viral strains. The results
(Figure 1) show that only PBMCs and GHOST-CD4/CCR8
cells are able to support efficiently the replication of HIV-
2MIC97 and HIV-2MJC97 (p < 0.001), indicating that these
strains require the presence of CCR8 to enter host cells.
Viral replication was assessed by measuring RT activity in
culture supernatants of infected cells; however, since
GHOST cell line carries HIV-2 long terminal repeat (LTR)-
driven green fluorescent protein (GFP), we also assessed
coreceptor usage by analyzing GFP expression in GHOST-
CD4/CCR8, GHOST-CD4/Hi5, GHOST-CD4/CX3CR1,
GHOST-CD4/CCR5 and GHOST-CD4/CXCR4 infected
cells by fluorescent microscopy (Table 1). This analysis was
done in triplicate at days 1, 3, 6, 9 and 12 post-infection
and confirms the exclusive usage of CCR8 as coreceptor by
HIV-2MIC97 and HIV-2MJC97.



Figure 1 HIV-2 MIC97 and HIV-2MJC97 use CCR8 as coreceptor to infect GHOST-CD4 cells and PBMC. PBMC and GHOST-CD4 cell lines
expressing different coreceptors were exposed to 100 TCID50 of each virus; viral replication was quantified by RT activity in culture supernatants
during a 12-day period after infection and the highest value of RT activity observed during this time period was used. Results are expressed as
the mean of three independent experiments performed in duplicate. Error bars represent the standard error of the mean. A star (*) indicates
statistical significant difference (p < 0.001) between the means of peak RT activity measured in culture supernatants of GHOST-CD4/CCR8
inoculated with HIV-2MIC97 and HIV-2MJC97, compared with GHOST-CD4/CCR5, GHOST-CD4/CXCR4, GHOST-CD4/CX3CR1, and GHOST-CD4/Hi5
inoculated with the same viruses.
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The robust usage of CCR8 revealed by GHOST cells
assay, prompted us to further confirm the role of this al-
ternate coreceptor in HIV-2MIC97 and HIV-2MJC97 entry.
In order to assure the specificity of CCR8 usage, we
incubated 1 × 106 GHOST-CD4/CCR8 cells and PHA-
activated CD8-depleted PBMCs with blocking concen-
trations (100 ng/ml) [50,51] of the CCR8 natural ligand,
I-309, prior to the addition of 100 TCID50 of each viral
strain. As shown in Figure 2, I-309 inhibited the infec-
tion of HIV-2MIC97 and HIV-2MJC-97 replication. The
replication of both viruses was significantly reduced (p <
0.05) for a concentration of 100 ng/ml in both GHOST-
CD4/CCR8 cell line and CD8-depleted PBMCs, further
confirming that CCR8 coreceptor was essential for viral
entry including in primary cells. As controls, we also
tested the ability of I-309 to inhibit the replication of
Table 1 Green fluorescence protein (GFP) expression on GHO

Viruses GFP expression in GHOST cells*

GHOST-CD4/CCR5 GHOST-CD4/CXCR4 GHOST-C

HIV-2MIC97 - - +

HIV-2MJC97 - - +

HIV-2ROD + + -

HIV-1Ba-L + - -

Mock infected - - -

GHOST cells express either CD4 alone (GHOST-CD4) or CD4 together with different
*LTR-driven GFP expression was analized in GHOST cells by fluorescent microscopy
cells; − absence of GFP-expressing cells.
HIV-2ROD and HIV-1Ba-L. In both cases the viral replica-
tion was not affected by the addition of I-309 (Figure 2).

Generation of CCR5-using and CCR5/CXCR4-using variants
of HIV-2MIC97 and HIV-2MJC97

The identification of CCR8 as the coreceptor that, to-
gether with CD4, enables cell entry by these two strains
raised several important questions. One is related to the
fact that a population of CCR5-independent variants could
maintain a persistent HIV infection in vivo. If so, what will
be the evolution of this population within the infected pa-
tient regarding coreceptor usage? In addition, if this evolu-
tion eventually occurs what will be the differences in Env
glycoproteins sequences between those isolates? To an-
swer these questions we made efforts to obtain sequential
blood samples of the same patients from which we
ST cell lines exposed to different HIV isolates

D4/CCR8 GHOST-CD4/Hi5 GHOST-CD4/CX3CR1 GHOST-CD4

- - -

- - -

+ - -

+ - -

- - -

coreceptors.
at days 1, 3, 6, 9 and 12 days after infection; + presence of GFP-expressing



Figure 2 Specific inhibition of HIV-2MIC97 and HIV-2MJC97 by I-309. GHOST-CD4/CCR8 cell line and CD8-depleted PBMCs were inoculated with
100 TCID50 of HIV-2MIC97 and HIV-2MJC97 either in the presence or absence of CCR8 ligand, I-309. HIV-2ROD and HIV-1Ba-L were also included as controls.
The data are expressed as the mean of three independent experiments performed in duplicate. Error bars represent the standard error of the mean.
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isolated HIV-2MIC97 and HIV-2MJC97. Unfortunately both
patients had left medical outpatient clinic follow-up and
therefore it was unfeasible to obtain further samples to
help answer these questions.
In order to study the evolution of coreceptor usage (i.e.

from CCR8 to CCR5 and/or CXCR4) and thus the HIV-2
envelope glycoproteins determinants that are important in
CCR5/CXCR4-independent replication, alternatively we
performed an in vitro replication adaptation of HIV-
2MIC97 and HIV-2MJC97 to CCR5- or CXCR4-expressing
cell lines. The starting viruses for this study was obtained
by transfection of 293 T cells with the pROD/MIC-SB and
pROD/MJC-SB plasmids [52]. These plasmids contain an
infectious HIV-2ROD provirus into which the env gene de-
rived from both HIV-2MIC97 and HIV-2MJC97 isolates, was
cloned [52]. The cells used in this experiment were the
GHOST-CD4 cell lines individually expressing CCR8,
CCR5 or CXCR4. An initial stock of each virus (ROD/
MIC-SB and ROD/MJC-SB) was prepared by passing the
virus-containing supernatants from transfected 293 T cells
in GHOST-CD4/CCR8 cells. Each virus was then used
to infect a 90:10 mixture of GHOST-CD4/CCR8:
GHOST-CD4/CCR5 and GHOST-CD4/CCR8:GHOST-
CD4/CXCR4. At day 12 after infection, culture superna-
tants were used to infect either a pure population of
GHOST-CD4/CCR5 or GHOST-CD4/CXCR4 cells, and
a 80:20 mixture of GHOST-CD4/CCR8:GHOST-CD4/
CCR5 and GHOST-CD4/CCR8:GHOST-CD4/CXCR4.
Virus-containing supernatant from these latter cultures
was again used to infect pure GHOST-CD4/CCR5 or
GHOST-CD4/CXCR4 cells and a 70:30 mixture of
GHOST-CD4/CCR8:GHOST-CD4/CCR5 and GHOST-
CD4/CCR8:GHOST-CD4/CXCR4. This procedure was re-
peated using cell mixtures with increasing proportions of
GHOST-CD4/CCR5 or GHOST-CD4/CXCR4 cells, until
a ratio 10:90 of GHOST-CD4/CCR8:GHOST-CD4/CCR5
or GHOST-CD4/CCR8:GHOST-CD4/CXCR4 cells. In
each step of this adaptation study, the viral supernatants
of each inoculated culture (either mixtures or pure popu-
lations) were monitored by reverse transcriptase activity in
order to detect viral replication. The results reveal that
viral progeny was detected in all culture supernatants;
however, we could not detect in any occasion the product-
ive infection of pure GHOST-CD4/CCR5 or GHOST-
CD4/CXCR4 cells (data not shown). Thus, this serial
passage of R8 viruses in a cell population with increasing
proportions of CCR5-positive or CXCR4-positive cells did
not allowed the in vitro selection of mutants with the abil-
ity to use either of these coreceptors.

Construction of V1/V2 mutants by site-directed mutagenesis
Due to inability to generate coreceptor switch mutants
in vitro, we decided to create and test a panel of isogenic
viruses derived from HIV-2MJC97 differing only in spe-
cific amino acids residues, enabling the analysis of the
impact of different Env glycoproteins mutations in core-
ceptor usage by HIV-2MJC97.
Previously, we described that env-chimeric viruses de-

rived from HIV-2ROD with the SU glycoprotein from ei-
ther HIV-2MIC97 or HIV-2MJC97 were unable to infect
CD4/CCR5 or CD4/CXCR4 expressing cells, indicating
that the C1-C4 region of SU glycoprotein was the only
determinant of CCR5/CXCR4-independent phenotype
[52]. We also found by comparative env gene sequence
analysis, that HIV-2MIC97 and HIV-2MJC97 show remark-
able differences in primary amino acid sequence, par-
ticularly in the V1/V2 region of each SU glycoproteins
[49]. Not surprisingly, but worth noting, despite the
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differences observed in V1/V2 region we could not iden-
tify any discrete sequence signatures that could be hypo-
thetically assigned to the phenotype presented by these
two strains [49]. To gain deeper insights into the poten-
tial role of V1/V2 domain of Env glycoprotein with re-
gard to coreceptor usage we constructed a variety of
different recombinant viruses, all derived from an env-
chimeric virus (ROD/MJC-SA) described earlier [52]
that contains the C1-C4 region of HIV-2MJC97 env gene
inserted into the HIV-2ROD backbone by homologous
substitution using an infectious molecular clone derived
from pROD10 [28]. Multi-site directed mutagenesis of
the V1/V2 domain of ROD/MJC-SA env was performed
targeting the base and the tip of V1 and V2 loops. The
details of mutations introduced in each recombinant
virus are presented in Table 2 and Figure 3. The first set of
mutated viruses (MJC97mt1 to MJC97mt7) was obtained
by sequential mutagenesis starting from the V1/V2 env re-
gion of wild type ROD/MJC-SA (MJC97wt). The second
set of mutants (MJC97mt5′ to MJC97mt7′) was derived
from the V1/V2 of MJC97mt4. Following each mutagen-
esis step, the C1-C4 coding region was sequenced to con-
firm that only the desired changes were introduced.
The rationale for the selected mutagenesis was based in

the env sequence analysis and in the discrepancies ob-
served between the V1/V2 coding sequences of HIV-
2MJC97 (GenBank Accession No. EU021092) and those
from R5-tropic HIV-2ALI (GenBank Accession No.
AF082339) [28,30] and R5/X4 HIV-2ROD strains (GenBank
Accession No. M15390) [53]. Using this approach we were
able to construct a total of 10 different recombinant
Table 2 Details of site-directed mutagenesis on selected
amino acids in V1/V2 regions of HIV-2MJC97 envelope
glycoprotein

Mutations

Mutants
identification

Mutated amino acids* Amino acids positions**

MJC97mt1 N,I 98,99

MJC97mt2 T_T 104_106

MJC97mt3 N 147

MJC97mt4 N 160

MJC97mt5 P_D,Q 114_116,117

MJC97mt6 E,Q,E 118,119,120

MJC97mt7 T,N_ _S 172,173_ _176

MJC97mt5′ P,G,S 113,114,115

MJC97mt6′ L,K,P 117,118,119

MJC97mt7′ F_T 173_175

*Mutated amino acids are referred by single letter code separated by commas
(,) if contiguous, or by an underscore (_), if separated by a non-mutated amino
acid. See Figure 3 for further details.
**Numbers denote the position of mutated amino acids referred to envelope
glycoprotein sequence of HIV-2MJC97 (GenBank accession number: EU021092).
coding sequences (Figure 3) containing combined muta-
tions in the V1/V2 region, all included in the genetic back-
bone of the R5/X4-tropic HIV-2ROD strain [52]. The
mutated recombinant coding sequences were used to re-
constitute replication-competent viruses by transfection in
293 T cells, and further expanded in IL2-stimulated
PBMC. Although all chimeric viruses were able to repli-
cate in PBMC, the replication efficiency was importantly
reduced in some mutated viruses, namely MJC97mt6 and
MJC97mt6′ (Figure 4), indicating that the modification of
certain V1/V2 motifs indeed strongly affect the replication
fitness of recombinant viruses.

Coreceptor usage by mutated recombinant viruses
To gain greater definition into the nature of the relation-
ship between V1/V2 and cellular receptors engagement
in HIV-2, an initial stock of mutated viruses (MJC97mt2,
MJC97mt4, MJC97mt6, MJC97mt7, MJC97mt6′ and
MJC97mt7′) was prepared by passing each viral-containing
supernatants from transfected 293 T cells in IL2-stimulated
PBMC. Each replication-competent virus stocks were used
to analyze coreceptor usage patterns on GHOST-CD4 cells
expressing different coreceptors (CCR5, CXCR4 and
CCR8). The objective was to assess the potential implica-
tions of the sequential mutations introduced in the V1/V2
regions on coreceptor choice. Viral stocks from MJC97mt2,
MJC97mt4, MJC97mt6, MJC97mt7, MJC97mt6′ and
MJC97mt7′ were inoculated in GHOST cells and PBMC,
and viral replication was followed-up for 12 days by meas-
uring RT activity in culture supernatants of infected cells.
The mean of peak RT activity of three independent experi-
ments performed in duplicate was calculated. As controls,
GHOST cells and PBMC were also inoculated with HIV-
2MIC97, HIV-2MJC97, R5 strain HIV-2ALI and the R5/X4
strain HIV-2ROD, obtained after transfection of 293 T cells
with pROD10, an infectious molecular clone of HIV-2ROD

[54]. As shown in Figure 4 (panel A), MJC97mt7 clearly
show a switch in coreceptor usage from CCR8 to CCR5/
CXCR4 (p < 0.001), while MJC97mt7′ changed from CCR8
to CCR5 usage (p < 0.001). Noteworthy, all the other mu-
tants maintained their ability to use CCR8, similarly to the
wild-type (MJC97wt), although some of them noticeable
with less efficiency (e.g. MJC97mt6 and MJC97mt6′).
To further assess the viral replication efficiency of

MJC97mt7 and MJC97mt7′ we infected PBMCs and
GHOST-CD4 cell lines individually expressing CCR8,
CCR5 and CXCR4. Besides the mutants that effectively
changed from R8 to R5X4 (MJC97mt7) and from R8 to
R5 (MJC97mt7′), we also included MJC97wt, HIV-2ROD

and HIV-2ALI (as controls). The results summarized in
Figure 4 (panels B to E), indicates that the coreceptor
switch from CCR8 (MJC97wt) to CCR5 (MJC97mt7′) or
to CCR5/CXCR4 (MJC97mt7) was not followed by an
increase in replication kinetics, regardless the mutated



Figure 3 Amino acid residues changed in V1/V2 region of env glycoprotein by site-directed mutagenesis. Amino acids are denoted by
single-letter code. (A) For a better localization of mutated amino acids, the sequence alignment between HIV-2ROD (GenBank accession number:
M15390) and HIV-2MJC97 (GenBank accession number: EU021092) was included. The red boxes indicate the conserved regions between HIV-2ROD
and HIV-2MJC97 amino acids sequences. (B) The first set of mutants (MJC97mt1 to MJC97mt7) was obtained by sequential mutagenesis starting in
the non-mutated recombinant virus, MJC97wt. The second set of mutants (MJC97mt5′ to MJC97mt7′) was derived from the V1/V2 of MJC97mt4.
For each sequential mutant, underlined red letters represents the newly changed amino acids residues, while the non-underlined red letters
denote mutations that were previously added. Amino acids residues (in panel A and B) were numbered according to HIV-2ROD (GenBank
accession number: M15390) or HIV-2MJC97 sequence (GenBank accession number: EU021092).
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virus considered, suggesting that different regions be-
sides V1/V2 influence replication kinetics. This is in ac-
cordance with our previous observation pointing to the
transmembrane domain of Env glycoproteins as major
determinant for the lower replication rate observed in
both HIV-2MIC97 and HIV-2MJC97 [52]. Additionally, we
also notice that the levels of RT activity in GHOST cell
lines and PBMCs were not significantly different. Con-
sidering the described higher cellular densities of CD4
and coreceptor molecules in GHOST cells [55,56] and
since the concentration of receptors on cell surface has a
direct impact in viral entry events [57] it was surprising
this similarity in viral replication. However, we do not
access viral entry efficiency but instead we used de novo
viral production as marker of efficient infection. The
production of viral particles de novo is the result of
many other factors besides viral entry through the inter-
action with cell receptors. Accordingly, replication effi-
ciency is the result of the overall contribution of several
events besides viral entry step. A possible explanation
for the similar levels of RT activity in GHOST cell lines
and PBMCs is that the minor cell receptors expression
in PBMC is compensated by more efficient intracellular
events during the entire replication cycle compared to
GHOST cell lines.
Based on previous reports addressing antibody binding

and cysteine loops mapping of HIV-2 SU glycoprotein
[58,59], we located the mutations of MJC97mt7 and
MJC97mt7′ either on the tip or base of V1 and V2 loops
(Figure 5).
Interestingly, although MJC97mt6 and MJC97mt6′ still

maintained the ability to infect GHOST-CD4/CCR8 cells,
they also show the ability to infect GHOST-CD4/CCR5
(MJC97mt6′) or GHOST-CD4/CCR5 and GHOST-CD4/
CXCR4 cells (MJC97mt6). This transitional state from R8
to R5X4 or R8 to R5 phenotype was acquired after muta-
tional change of the tip of V1 region (Figures 3 and 5).
Noteworthy, both MJC97mt6 and MJC97mt6′ show a de-
creased replication in GHOST-CD4/CCR8 compared to
MJC97wt (p < 0.001 in both cases).
These results suggest that amino acid residues in the

crown of V1 loop are a critical determinant for the switch
from CCR8 to CCR5 or CCR5/CXCR4 usage and thus for
Env-coreceptor interactions. The mutated amino acids



Figure 4 Effect of sequential mutations in V1/V2 region of HIV-2MJC97 env glycoprotein on coreceptor usage. Stocks of each mutated
virus (the details of these mutants are described in Figure 3) were used to infect PHA-activated PBMCs and GHOST-CD4 cell lines individually
expressing CCR8, CCR5, and CXCR4 coreceptors. (A) Viral replication was followed-up for 12 days by assessing RT activity in culture supernatants
of infected cells. The highest value of RT activity observed during this time period was used. A star (*) indicates statistical significant difference
(p < 0.001) between the means of peak RT activity measured in culture supernatants of GHOST-CD4/CCR8, GHOST-CD4/CCR5 and GHOST-CD4/CXCR4
inoculated with MJC97mt7 compared to the same cells inoculated with MJC97wt. Conversely, a double star (**) denotes statistical significant difference
(p < 0.001) between the means of peak RT activity measured in culture supernatants of GHOST-CD4/CCR8, GHOST-CD4/CCR5 and GHOST-CD4/CXCR4
inoculated with MJC97mt7′ compared to the same cells inoculated with MJC97wt. The strains HIV-2ALI (R5), HIV-2ROD (R5X4) and HIV-2MJC97 (R8) were
used as controls. Replication kinetics of MJC97wt was compared to mutant viruses that switch from CCR8 usage to CCR5/CXCR4 (MJC97mt7) or to
CCR5 (MJC97mt7′); HIV-2ROD and HIV-2ALI strains were also included as controls. The replication kinetics, assessed by RT activity in culture
supernatants, was followed up during 21 days and was performed in PHA-activated PBMCs (B), GHOST-CD4/CCR8 (C), GHOST-CD4/CCR5
(D) and GHOST-CD4/CXCR4 (E). In all experiments, results are expressed as the mean of three independent experiments performed in duplicate.
Error bars represent the standard error of the mean.
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encompass the motif ISTTDYSL (amino acids residues
113 to 120 according to HIV-2MJC97 sequence, GenBank
Accession No. EU021092; Figures 3 and 5) present in
MJC97wt (R8 phenotype) that was changed to PGSTLKPL
(the mutated amino acids correspond to the italicized let-
ters) present in MJC97mt6′ (R8R5 phenotype) and
MJC97mt7′ (R5 phenotype) or to IPTDQEQE present in
MJC97mt6 (R8R5X4) and MJC97mt7 (R5X4 phenotype).
To further address the suggested critical role of the V1
crown as molecular determinant for viral coreceptor-
tropism switch, we constructed four additional mutants
(Figure 6). In two of these mutants only the motif ISTT-
DYSL was changed: MJC97mtV1 carrying the sequon
IPTDQEQE; and MJC97mtV1′ carrying the sequon



Figure 5 Location of amino acids residues involved in coreceptor usage. Schematic representation of the envelope SU glycoprotein of
HIV-2MJC97 putative secondary structure spanning from C1 to V3 regions. The amino acid sequence of HIV-2MJC97 (MJC97wt; R8) are represented in
black; the mutated amino acids present in MJC97mt7 (R5X4; panel A) and MJC97mt7′ (R5; panel B) are represented in red. Amino acids are
denoted by single-letter code. The underlined amino acids represent potential glycosylation sites linked to asparagine (N) as defined using the
LANL N-glycosite program (http://www.hiv.lanl.gov/content/sequence/GLYCOSITE/glycosite.html). Amino acids residues were numbered according
to HIV-2MJC97 sequence (GenBank accession number: EU021092). This schematic representation was based on previous data regarding epitope
and cysteine loops mapping [58,59].
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PGSTLKPL (the mutated amino acids correspond to the
italicized letters). In the other two mutants we combined
the referred mutations in the tip of V1 region with
additional mutations located at the base of the V2 region,
where the sequon PTNET (MJC97wt) was replaced in
MJC97mtV1 by TNNES (originating MJC97mtV1V2); and

http://www.hiv.lanl.gov/content/sequence/GLYCOSITE/glycosite.html


Figure 6 Amino acid sequences of mutants targeting the tip of V1 region and the base of V2 loop. (A) For a better localization of
mutated amino acids, the sequence alignment between HIV-2ROD (GenBank accession number: M15390) and HIV-2MJC97 (GenBank accession
number: EU021092) was included. The red boxes indicate the conserved regions between HIV-2ROD and HIV-2MJC97 amino acids sequences.
(B) The tip of V1 of MJC97wt has the sequon ISTTDYSL (amino acids residues 113–120) that was changed to IPTDQEQE (MJC97mtV1) or PGSTLKPL
(MJC97mtV1′). The MJC97mtV1V2 was obtained by replacing the sequon PTNET (amino acids residues 172–176) in the base of V2 loop of
MJC97mtV1 by TNNES; MJC97V1V2′ was originated by changing the referred sequon of MJC97mtV1′ by PFNTT. Amino acids residues (in panel A
and B) were numbered according to HIV-2ROD (GenBank accession number: M15390) or HIV-2MJC97 sequence (GenBank accession
number: EU021092).
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in MJC97mtV1′ was replaced by PFNTT (originating
MJC97mtV1V2′). As shown in Figure 7 mutating the tip
of V1 region alone or combined with mutations at the
base of V2 region, did not confer the ability to efficiently
use CCR5 (MJC97mtV1′ or MJC97mtV1V2′) or CCR5
and CXCR4 (MJC97mtV1 or MJC97mtV1V2). Together
these results clearly indicate that although coreceptor
switch is dependent on mutations in ISTTDYSL sequon it
requires additional changes in other regions of V1/V2.
Conversely, they also emphasize that changes in a single
amino acid - even if it is relevant - can have phenotypic
consequences that are context dependent, relying on the
simultaneous presence of additional mutation that may be
required to stabilize the interaction with a given corecep-
tor. The need for cooperating mutations and the viral fit-
ness disadvantage of intermediate mutants - as shown in
MJC97mt6 and MJC97mt6′ - when compared with the
initial viruses (p < 0.001), could help explain the unsuc-
cessful in vitro adaptation experiments.
In conclusion, our data clearly show that the main gen-

etic determinants of coreceptor tropism are located within
the V1/V2 region of SU glycoprotein and include the
crown of V1 loop and discrete amino acids present in: (i)
the tip of V2; (ii) the base of V1; and (iii) the base of V2.
This emphasizes the plasticity with which SU glycopro-
teins can interact with coreceptors and the variety of mo-
lecular determinants that can influence this interaction.

Discussion
HIV entry into susceptible cells requires the presence of
CD4 and a chemokine receptor (coreceptor), usually
CCR5 or CXCR4. However, other alternate coreceptors
have been described and may play an effective role in
HIV-1 and HIV-2 entry.
We previously showed that two HIV-2 primary isolates

could infect susceptible cells by a CCR5/CXCR4-inde-
pendent pathway [7]. Herein, we extend the study of this
model aiming the disclosure of: (i) the alternate core-
ceptor used by these HIV-2 isolates (HIV-2MIC97 and
HIV-2MJC97) and (ii) the amino acids residues responsible
for the CCR5/CXCR4-independent entry.
In the first part of the study we identified CCR8 as the

coreceptor used by HIV-2MIC97 and HIV-2MJC97 to infect
host cells. The restrict use of CCR8 by HIV-2MIC97 and
HIV-2MJC97 indicates that a viral population present in
HIV-2 infected individuals during asymptomatic stage
could use other coreceptors besides or instead CCR5
and CXCR4. Although these two chemokine receptors
are considered as the major coreceptors for HIV entry into
host cells, the possibility that alternative molecules could
have physiological relevance in vivo as cofactors for HIV
infection remains open. In fact, a growing body of evi-
dence indicates that both HIV-1 and HIV-2 isolates can
use distinct coreceptors in vitro together with or alterna-
tively to CCR5 and CXCR4 [7-11,14,16,17,19,20,32,60,61].
In particular, CCR8 usage was referred in earlier reports
either in indicator cell lines (e.g. GHOST, U87 or NP2
cells) or in primary lymphocytes [9,14,17,19,29,51,62-66].
More recently, we studied the relevance of CCR8 as an ef-
fective coreceptor for HIV-1 and HIV-2 primary isolates
[8] and interestingly we found that CCR8 could be fre-
quently used (in addition to CCR5, CXCR4, or both), by



Figure 7 Coreceptor usage of mutants targeting the tip of V1 region and the base of V2 loop. Recombinant viruses with mutations
targeting the tip of V1 region (MJC97mtV1 and MJC97mtV1′) or with additional mutations in the base of V2 loop (MJC97mtV1V2 and
MJC97mtV1V2′). The details of these two sets of mutants are described in Figure 6. Viral replication was followed-up for 12 days by assessing RT
activity in culture supernatants of infected cells. The highest value of RT activity observed during this time period was used. Results are expressed
as the mean of three independent experiments performed in duplicate. Error bars represent the standard error of the mean. A star (*) indicates statistical
significant difference (p< 0.001) between the means of peak RT activity measured in culture supernatants of GHOST-CD4/CCR8, GHOST-CD4/CCR5 and
GHOST-CD4/CXCR4 inoculated with MJC97mt6 and MJC97mtV1 or MJC97mt7 and MJC97mtV1V2. A double star (**) indicates statistical significant
difference (p< 0.001) between the means of peak RT activity measured in culture supernatants of GHOST-CD4/CCR8 and GHOST-CD4/CCR5 inoculated
with MJC97mt6′ and MJC97mtV1′ or MJC97mt7′ and MJC97mtV1V2′.

Santos-Costa et al. Retrovirology 2014, 11:99 Page 10 of 17
http://www.retrovirology.com/content/11/1/99
HIV-1 and HIV-2 primary isolates. Noteworthy, the cellu-
lar and tissue distribution of CCR8 includes cells that are
major targets for HIV infection, e.g. monocytes, thymo-
cytes and CD4+ memory T-cells [67-71]. Thus, CCR8
usage does not necessarily implies a change in HIV cell
tropism compared to CCR5 or CXCR4 usage. As a result
of this expression pattern, and based on the significant
proportion of HIV strains able to use CCR8 to enter target
cells [8,9,14,17,51], we may considerer it as a potential al-
ternative HIV coreceptor in vivo contributing to infection
of natural target cells, at least under certain circumstances.
This may be even more likely in HIV-2 since in this model
the usage of cell receptors seems to be much more com-
plex, as suggested by the identification of HIV-2 strains
characterized by: (i) a CCR5/CXCR4-independent entry;
(ii) a broader coreceptor usage compared to HIV-1; and
(iii) a CD4-independent infection of host cells (reviewed
in [72-74]).
The restricted use of CCR8 by HIV-2MIC97 and

HIV-2MJC97 is an apparent paradox based on the general
assumption that HIV-2 isolates have a broad profile of
coreceptor usage [24-26,75]. However, as a consequence
of technical hindrance concerning in vitro HIV-2 isolation
from asymptomatic aviremic patients, the majority of
HIV-2 data regarding coreceptors usage has been derived
from viruses obtained from patients in advanced disease
stages, where more pathogenic variants with broader core-
ceptor usage could be present, leading to a bias in the viral
population that was preferentially isolated. In contrast,
HIV-2MIC97 and HIV-2MJC97 were isolated from two
asymptomatic patients with undetectable viremia and
normal T-CD4+ cell counts (1078 and 896 cells/mm3,
respectively). Interestingly, another example of a CCR5/
CXCR4-independent HIV-2 isolate was also obtained
from an asymptomatic individual [32]. As referred,
HIV-2 and HIV-1 infections are strikingly different
during this period. At this early stage, HIV-2 infection
resembles a natural long-term non-progressive infection
as observed in those rare HIV-1 “elite controllers” [76,77].
The reasons for this milder and less virulent infection are
multi-factorial encompassing distinct mechanisms triggered
by virus-host interactions, namely during cellular receptor’s
engagement.
The data presented here reveal that in humans a persist-

ent lentiviral infection could be maintained by variants that
do not use CCR5 or CXCR4 coreceptors. Similar observa-
tions have been reported in simian immunodeficiency virus
(SIV) model, where some isolates have been described that
do not use CCR5 to infect simian primary lymphocytes
[78,79]; instead, these isolates use alternative coreceptors
such as CXCR6, GPR15 and CCR2b [78,80,81]. Corecep-
tors usage other than CCR5 and CXCR4 has been consid-
ered of limited importance for HIV infection in vitro and
in vivo. Particularly, the use of CCR5 coreceptor seems to
be a hallmark in HIV-1 pathogenesis and in human trans-
mission (reviewed in [82]). The predominance of R5 strains
throughout the asymptomatic stage and in some patients
with more advanced disease, suggest that these variants
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may be more adapted to escape immune surveillance
mechanisms or that they could infect long-lived cell reser-
voirs, providing long-lasting R5 viruses production. Add-
itionally, it has been suggested that soon after sexual
transmission only R5 viruses (or occasionally dual tropic vi-
ruses, R5X4) are transmitted, regardless the overall com-
position of initial inoculum (reviewed in [22,83]). However,
a recent observation revealed that a transmitted/founder
HIV-1 was unable to use either CCR5 or CXCR4 to infect
CD4+ cell lines and peripheral blood mononuclear cells
[13]. Instead, alternate coreceptors (i.e. GPR15, APJ and
FPRL-1) were efficiently used, emphasizing the notion that
“rare” or “minor” coreceptors could be used in vivo in some
circumstances or in some cell types, including at the time
or soon after transmission to a new host. In HIV-2 no data
exists regarding transmitted/founder viruses or the charac-
teristics of viral dynamics during acute infection. It is con-
ceivable that the same mechanisms proposed for HIV-1
could also be relevant in HIV-2 transmission. Unfortunately
we could not obtain data regarding route and date of trans-
mission nor sequential blood samples of the patients from
which we isolated HIV-2MIC97 and HIV-2MJC97 in order to
ascertain what would be the evolution of this viral popula-
tion in vivo. Nevertheless, our present data, together with
previous reports [7,32] raise the possibility that, in vivo,
CCR5 usage ability, required for an efficient in vivo infec-
tion, could be acquired, from an initial population of
CCR5/CXCR4-independent viruses, in addition or in alter-
native to the initial receptors used.
In the second part of this study we mapped HIV-2 enve-

lope glycoproteins determinants of CCR8 coreceptor
usage, and the amino acids residues involved in coreceptor
switch from R8 to R5 or R8 to R5X4. Our data provided
the basis for some important conclusions, namely that: (i)
the V1/V2 region contains the molecular determinants of
coreceptor usage (e.g. CCR8, CCR5 and CCR5/CXCR4);
(ii) several mutations are needed to convert a R8 isolate
into a R5 or R5X4 variant; (iii) the replication kinetics is
not affected by the mutations introduced in V1/V2 region.
In HIV-1, the V3 region of the envelope SU glycopro-

tein has been directly implicated as the major molecular
determinant of coreceptor usage [33-37]. One of the
major sequence signatures related to CXCR4 usage
(alone or in addition to CCR5) seems to be a higher
positive net charge of the V3 region. According to this
“rule” a net charge equal to or higher than +6 is associ-
ated with CXCR4 usage [42,84-86]. The ability to use
the CXCR4 is also related with loss of a putative N-
linked glycosylation (PNG) site within the V3 region
[40]. Additionally to V3 region, structural studies of SU
bound to cellular receptors (CD4 and chemokine recep-
tor) revealed that V1/V2 region of SU glycoprotein is
also involved in coreceptor binding, by directly cooper-
ate with the V3 region [40-43,87].
In the HIV-2 model, some studies had claimed an as-
sociation between different coreceptor usage and specific
sequence motifs within V3 region [44-47,88]. All the
proposed sequence motifs acting as determinants of cor-
eceptor usage are located in the C-terminal half of the
V3 region (aa-18 and aa-36 of V3 loop sequence) and ap-
parently, a global V3 net charge above +6 and the substi-
tution of valine or isoleucine at position 19 are associated
with CXCR4 usage alone or in addition to CCR5 [45,47].
However, other reports have failed to intersect the V3
amino acid sequence with coreceptor engagement, sug-
gesting that no singular genetic signature could be pro-
posed to explain different coreceptor usage [27,48,49].
Our data is the first to disclose the role of V1/V2 re-

gion in coreceptor engagement during initial HIV-2
interaction with host cell. In fact, using a panel of iso-
genic mutant viruses we demonstrate that the switch
from R8 to R5 or R8 to R5X4 phenotype is determined
by amino acids located in the base and tip of V1 and V2
loops. Interestingly, two of the mutations introduced
two PNG sites both in the V2 loop. These two additional
PNG sites are present in both R5 and R5X4 HIV-2MJC97

mutants but absent in the original R8 non-mutated virus.
However, these two additional PNG sites did not alter the
coreceptor usage (see MJC97mt4 in Figure 4A). There is
scant information about the contribution of N-linked gly-
cosylation in HIV-2 tropism and infectivity. However, as
observed in HIV-1 [89], the influence of discrete PNG
sites is probably context dependent and the same muta-
tions could have different effects in tropism, depending on
the overall Env structure and the molecular mechanism
modulating binding to cellular receptors.
The way V1/V2 interacts with coreceptors, as well as

the spatial organization of different Env structures and the
conformational changes that they must undergo during
receptor/coreceptor binding, are essentially unknown in
HIV-2. Thus, any suggestions withdrawn from our results
lack the direct supportive data already available for HIV-1
regarding Env glycoproteins structure in the trimeric na-
tive form [90,91]. From these and other previous reports
[92-97], several conclusions were made possible, the most
important being that in HIV-1 the V1/V2 region, although
not essential for viral entry is crucial to escape antibody-
mediated neutralization [43,98-103]. This protective role
of V1/V2 region derives from the remarkable antigenic
variability observed in this region, the presence of several
PNG sites and the length variation of V1/V2 region. Due
to structural interactions and rearrangements within the
HIV-1 oligomeric Env glycoprotein, V1/V2 is also known
to play a major role in conformational masking, creating a
shield that protects other neutralization-sensitive domains
either in the same SU glycoprotein, or in an adjacent SU
subunit in the context of the trimeric Env spike complex
[99-102].
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In HIV-2, uncertainty prevails on which structural in-
teractions and conformational dynamics must exist be-
tween different domains of trimeric Env glycoproteins.
In addition, HIV-2 Env glycoproteins interactions with
cell receptors seems to be much more complex and ap-
parently less clear-cut than in HIV-1 (reviewed in
[72-74]), and as supported by the present study, V1/V2
region could also directly and exclusively determine the
coreceptor usage. To what extend the mechanisms de-
scribed for HIV-1 are also dictating the tertiary and quater-
nary structure of HIV-2 envelope glycoproteins is not
understood and neither are the precise contribution of V1/
V2 and V3 regions in antibody-mediated neutralization
in vivo [104-110]. However and worth noting, the V1/V2
region of HIV-2 has long been described as a target for
neutralizing MAbs in vitro, and the influence of the overall
conformation of this region (namely the amino acid com-
position at the base of the V2 loop) may affect the sensitiv-
ity to neutralization [59]; if we assume that this region also
elicits host-neutralizing antibodies in vivo (as the RV144
vaccine trials against HIV-1 suggested [111]), and is simul-
taneously determinant for coreceptor engagement, this
could constitute a major hindrance to HIV-2 effective repli-
cation and may help explain the low viremia and the higher
and broader neutralizing capacity observed in sera from
HIV-2 infected individuals [104,105,107]. Further studies
using HIV-2 isolates obtained from asymptomatic individ-
uals may provide further insights into factors associated
with slow disease progression observed in HIV-2 infection.

Conclusions
In this article we clearly identify CCR8 as the exclusive cor-
eceptor used by two primary isolates obtained from asymp-
tomatic HIV-2 patients, instead of the widely referred
CCR5 and CXCR4. In addition, we delved into the molecu-
lar interactions between surface envelope glycoprotein and
this coreceptor and disclosed the amino acids residues that
dictate the CCR8 usage. By site-directed mutagenesis we
found that residues in the tip and base of V1/V2 region of
surface glycoprotein are both necessary and sufficient to
switch from CCR8 to CCR5 or to CCR5/CXCR4 usage.
Our study adds important new clues to the way HIV-2

envelope interacts with host-cells, and provides new in-
sights into the molecular and structural dynamics under-
lying HIV-2 interaction with host cell coreceptors with
direct implications in HIV-2 pathogenesis.

Methods
Cells and viruses
Peripheral blood mononuclear cells (PBMCs), from
HIV-uninfected donors, homozygous for wild-type ccr5
gene, were isolated, phytohemaglutinin (PHA)-stimu-
lated and cultured as described [8]. PBMCs used in all
experiments reported here were obtained from one
single pool of different buffy-coats to avoid inter-
individual variations in HIV infection susceptibility.
CD8-depleted PBMCs were obtained from PBMCs after
removal of CD8+ cells, using magnetic beads coated
with anti-CD8 antibody as described [8].
Human osteosarcoma cell lines GHOST expressing CD4

and different coreceptors (GHOST-CD4/Hi5, GHOST-
CD4/CCR8, GHOST-CD4/CX3CR1, GHOST-CD4/CCR5
and GHOST-CD4/CXCR4) were obtained through the
National Institute of Health (NIH) AIDS Research and
Reference Reagent Program, Division of AIDS, NIAID,
NIH. These GHOST cell lines were maintained as de-
scribed earlier [8].
HIV-2MIC97 and HIV-2MJC97 primary isolates were ob-

tained from PBMCs of infected patients by co-cultivation
with PHA-stimulated PBMC. The isolation and initial
characterization of HIV-2MIC97 and HIV-2MJC97 was previ-
ously reported [7,49,52]. Primary HIV-2ALI isolate [28,30]
was obtained from an early symptomatic patient (stage B2
according to CDC classification system for HIV infection).
Two well-characterized laboratory strains, HIV-2ROD

[112] and HIV-1Ba-L [113], both isolated from AIDS pa-
tients, were used in some experiments as controls. HIV-
1Ba-L was obtained through the NIH AIDS Research and
Reference Reagent Program, Division of AIDS, NIAID,
NIH. Primary HIV-2 viruses were only short-passaged in
PHA-stimulated PBMCs cultured in RPMI medium as de-
scribed [7]. The 50% tissue culture infectious dose
(TCID50) was determined by standard end-point dilution
method (serial 10-fold dilutions in quadruplicate), using
PBMC as target cells. Viral replication was monitored in
culture supernatants by reverse transcriptase (RT) activity
using an enzyme-linked immunosorbent assay (Lenti-RT
kit, Cavidi).

Infectivity assays
Infectivity assays in PBMCs and GHOST cell lines were
performed as described [7]. Briefly, cells were seeded into
24-well plates on the day prior to infection, at 1.5 × 105

cells/well. To assess chemokine usage, PBMCs and GHOST
cell lines were inoculated with equal amounts of each virus
(100 TCID50 in a final volume of 100 μl/well) and incubated
for 3 h/37°C in the presence of 3 μg/ml of Polybrene. Cells
were then washed and cultured in appropriate culture
medium (500 μl/well). Viral replication was monitored in
culture supernatants by RT activity by an enzyme-linked
immunosorbent assay (Lenti-RT kit, Cavidi) during 12-day
period after infection. Additionally, in some experiments,
viral infection in GHOST cells was also monitored by LTR-
driven GFP expression as described [7].

Susceptibility to CCR8 blockade
The chemokine I-309, specific for CCR8 [68,71], was pur-
chased from R&D Systems (Minneapolis, MN). HIV-2MIC97
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and HIV-2MJC97 sensitivity to I-309 was based on the inhib-
ition of viral production as described [7,8]. Briefly,
GHOST-CD4/CCR8 cells were seeded at 1.5 × 105 cells
per well in 24-well plates and allowed to adhere overnight.
Cells were incubated for 1 h at 37°C with blocking con-
centrations (100 ng/ml) of I-309 [51]. Viruses were then
added as described in infectivity assays and incubated for
4 h in an inhibitor-containing medium. Cells were washed
with PBS to remove unadsorbed viral particles and cul-
tured in an appropriate medium either containing the
referred concentration of I-309. Alternatively, these inhib-
ition assays were also performed using CD8-depleted
PBMCs as target cells, in order to avoid any uncon-
trolled inhibition exerted by soluble factors eventually
secreted by CD8+ T-cells. Virus production was assessed
by RT activity in culture supernatants as described in
infectivity assays. Viral production in the absence of
inhibitor was used as control.

In vitro adaptation experiments
The starting viruses for this study was obtained by trans-
fection of 293 T cells with the pROD/MIC-SB and pROD/
MJC-SB plasmids [52]. These plasmids contain an infec-
tious HIV-2ROD provirus into which the env gene derived
from both HIV-2MIC97 and HIV-2MJC97 isolates, was
Table 3 Primers used in site-directed mutagenesis of V1V2 re

Primers Mutated residues* Orientation

V1V2 Mut1 K98N, S99I +

V1V2 Mut1-R -

V1V2 Mut2 N104T, S106T +

V1V2 Mut2-R -

V1V2 Mut3 M147N +

V1V2 Mut3-R -

V1V2 Mut4 Q160N +

V1V2 Mut4-R -

V1V2 Mut5 S114P, T116D, D117Q +

V1V2 Mut5-R -

V1V2 Mut6 Y118E, S119Q, L120E +

V1V2 Mut6-R -

V1V2 Mut7 P172T, T173N, T176S +

V1V2 Mut7-R -

V1V2 Mut5′ I113P, S114G, T115S +

V1V2 Mut5′-R -

V1V2 Mut6′ D117L, Y118K, S119P +

V1V2 Mut6′-R -

V1V2 Mut7′ T173F, E175T +

V1V2 Mut7′-R -

*and ***Numbers of amino acid residues or nucleotides are referred to HIV-2MJC97 s
sequence are represented in boldface.
cloned [52]. The cells used in this experiment were the
GHOST-CD4 cell lines individually expressing CCR8,
CCR5 or CXCR4. An initial stock of each virus (ROD/
MIC-SB and ROD/MJC-SB) was prepared by passing the
virus-containing supernatants from transfected 293 T cells
in GHOST-CD4/CCR8 cells. Each virus was then used to
infect a 90:10 (%) mixture of GHOST-CD4/CCR8:
GHOST-CD4/CCR5 and GHOST-CD4/CCR8:GHOST-
CD4/CXCR4 in the presence of 3 μg/ml of Polybrene.
The infection of the 90:10 GHOST cells mixture was
done by spinoculation in order to further enhance the
efficiency of virus binding to target cell [114]. At day
12 after infection, culture supernatants were used to in-
fect either a pure population of GHOST-CD4/CCR5
(or GHOST-CD4/CXCR4) cells, or an 80:20 mixture of
GHOST-CD4/CCR8:GHOST-CD4/CCR5 and GHOST-
CD4/CCR8:GHOST-CD4/CXCR4 in the same condi-
tions referred for initial 90:10 cell mixtures. Virus-
containing supernatant from these latter cultures was
again used to infect pure GHOST-CD4/CCR5 (or
GHOST-CD4/CXCR4) or a 70:30 mixture of GHOST-
CD4/CCR8:GHOST-CD4/CCR5 and GHOST-CD4/CCR8:
GHOST-CD4/CXCR4. This procedure was repeated using
cell mixtures with increasing proportions of GHOST-CD4/
CCR5 or GHOST-CD4/CXCR4 cells, until a ratio 10:90
gion of HIV-2MJC97 surface envelope glycoprotein

Sequence (5′ to 3′)** Location***

GAGTTGTAACAACATAAGTGAAA 282–304

TTTCACTTATGTTGTTACAACTC

AAACCACAACAACCACAAGTAACAAC 302–327

GTTGTTACTTGTGGTTGTTGTGGTTT

GTCAGTTCAACATGACAGGG 431–450

CCCTGTCATGTTGAACTGAC

AAATCATATAACGAAACAT 469–487

ATGTTTCGTTATATGATTT

ATCTATCCCCACAGACCAGTACAGC 333–357

GCTGTACTGGTCTGTGGGGATAGAT

GACCAGGAGCAAGAGATAAATGAGAGTTCTCC 346–377

GGAGAACTCTCATTTATCTCTTGCTCCTGGTC

GTATGTGAAACAAATAATGAAAGCACAAGCA 505–535

TGCTTGTGCTTTCATTATTTGTTTCACATAC

ACAACATCTCCAGGGAGCACA 328–351

TGTGCTCCCTGGAGATGTTGT

ACACTCAAACCCTTGATAAATGAGA 346–370

TCTCATTTATCAAGGGTTTGAGTGT

TGTGAACCATTTAATACCACAACAAGC 508–534

GCTTGTTGTGGTATTAAATGGTTCACA

equence (GenBank accession number: EU021092). **Mutations in the primer
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of GHOST-CD4/CCR8:GHOST-CD4/CCR5 or GHOST-
CD4/CCR8:GHOST-CD4/CXCR4 cells. At day 12 after in-
fection, viral replication in each cell mixture was assessed
by RT activity in culture supernatants.

Multi-site directed mutagenesis in the V1/V2 region of
HIV-2MJC97

Site-directed mutagenesis was used to alter specific
amino acid residues within V1/V2 region of HIV-2MJC97

SU envelope glycoprotein. Sequential mutations were in-
troduced into plasmid pROD/MJC-SA which contains a
HIV-2MJC97 env fragment spanning from C1 to C4 re-
gion, inserted into genetic backbone of an infectious mo-
lecular clone of HIV-2ROD strain [52]. Sequential codon
changes were made using a QuickChange II XL site-
directed mutagenesis kit, (Stratagene) and mutagenic
primers listed in Table 3, according to manufacturer’s
protocol. The presence of the desired mutations was con-
firmed by sequencing the C1-C4 region of each mutant.
Virus particles were produced by transfecting 293 T

cells with purified DNA from each mutated constructs,
using FuGENE6 transfection reagent (Roche) according
to manufacturer’s instructions and as described [52].
Viral stocks of mutated viruses were prepared by passa-
ging each viral-containing supernatants from transfected
293 T cells in IL2-stimulated PBMCs. The TCID50 of
each viral stock was determined in PBMCs.
To assess replication competence and coreceptors usage

of wild type or mutated viruses, PBMCs and GHOST cell
lines were inoculated with titrated viral stocks according
to the protocol described in “Infectivity assays” section.

Statistical analysis
Statistical analysis was performed using Epi info version
6.04 (CDC, Atlanta, USA) and SPSS software version 10
(SPSS Inc, Chicago, USA). The univariate analysis was tested
using χ2 and 2-tailed Fisher’s exact test in case of small sam-
ple size. Statistical significance was assumed when p < 0.05.
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