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Abstract

Background: Accurately estimating the timing and mode of gene duplications along the evolutionary history of
species can provide invaluable information about underlying mechanisms by which the genomes of organisms
evolved and the genes with novel functions arose. Mechanistic models have previously been introduced that allow
for probabilistic inference of the evolutionary mechanism for duplicate gene retention based upon the average rate
of loss over time of the duplicate. However, there is currently no probabilistic model embedded in a birth-death
modeling framework that can take into account the effects of different evolutionary mechanisms of gene retention
when analyzing gene family data.

Results: In this study, we describe a generalized birth-death process for modeling the fates of gene duplication.
Use of mechanistic models in a phylogenetic framework requires an age-dependent birth-death process. Starting
with a single population corresponding to the lineage of a phylogenetic tree and with an assumption of a clock
that starts ticking for each duplicate at its birth, an age-dependent birth-death process is developed by extending
the results from the time-dependent birth-death process. The implementation of such models in a full phylogenetic
framework is expected to enable large scale probabilistic analysis of duplicates in comparative genomic studies.

Conclusions: We develop an age-dependent birth-death model for understanding the mechanisms of gene
retention, which allows a gene loss rate dependent on each duplication event. Simulation results indicate that
different mechanisms of gene retentions produce distinct likelihood functions, which can be used with genomic
data to quantitatively distinguish those mechanisms.
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Background
A gene family is a group of genes with similar sequences
that show evidence of descent from a common ancestor
[1–3]. This includes orthologs that originate through
speciation as well as duplicates (modeled here) that can
be found within a species or shared between species
from an older duplication event that predated speciation.
The large number of genes per family suggests that the
newly arisen gene duplicates are potentially major con-
tributors to evolutionary novelties [4–7]. Gene duplica-
tion can provide raw genetic material for evolutionary
forces to act on. Although a majority of duplicate genes
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may be silenced by degenerative mutations or lost due
to population dynamics, some duplicated genes are able
to evolve novel functions permanently preserved in the
population [8, 9]. Accurately estimating the timing and
mode of gene duplications along the evolutionary history
of species can provide invaluable information about under-
lying mechanisms by which the genomes of organisms
evolved and the genes with novel functions arose [10].
Several biological models have been proposed to de-

pict the mechanisms that lead to different evolutionary
fates of a gene duplicate [11–14]. Nonfunctionalization
refers to the process in which mutations occur on one of
the gene duplicates and produce a non-functional
protein [11, 15]. The neofunctionalization model [16]
assumes that duplication itself does not affect fitness.
Although a duplicate is most likely to be pseudogenized
by degenerative mutation (nonfunctionalization) or lost
due to population dynamics [9], the redundant copy may
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occasionally acquire a new beneficial function through
mutation that will be preferentially preserved in the
population. While this function may subsequently be op-
timized and accommodated within the genome structure
(assuming a coding sequence change) by an evolutionary
Stokes shift [17], the initial event leading to retention is
a single beneficial change. The waiting time for this single
change gives rise to a convexly decaying hazard function
when modeled together with non-functionalizing changes
and is referred to as the neofunctionalization model (see
[15, 18, 19] for a review). The duplication-degeneration-
complementation model [20] describes a so-called sub-
functionalization mechanism in which two gene copies
are partially damaged by degenerated mutations. Both
copies must be maintained in order to perform the
original function of the gene [21, 22]. This model, called
subfunctionalization, involves a waiting time for multiple
events to occur as deleterious substitutions accumulate in
both copies before the retaining mutation can occur. This
waiting time for multiple changes gives rise to a switch
from a convex to a concave (sigmoidal) hazard function
when modeled together with non-functionalizing muta-
tions (again, see [15, 18, 19] for a review and engaged dis-
cussion). In addition to the processes acting on individual
genes, large-scale gene duplication events (for example,
whole genome duplication) may have occurred and
produced multiple interacting genes together creating an
additional retention mechanism. Dosage balance pro-
motes the retention of duplicated interaction networks, as
loss of interaction stoichiometry can lead to declines in fit-
ness. This gives rise to very different retention dynamics
compared to neofunctionalization or subfunctionalization
(see [15, 18, 19] for a review). The mechanistic models de-
scribed for nonfunctionalization, subfunctionalization,
neofunctionalization, and dosage balance represent one of
many conceivable modeling frameworks for duplicate
gene retention (see [19] for an enhanced discussion). The
models here are used within a single population, reflecting
a lineage of a phylogenetic tree, but the ultimate aim is to
extend their use into an interspecific phylogenetic frame-
work with the population genetic assumptions that
accompany this. Simpler models have already been incor-
porated into a fuller phylogenetic framework of this
nature (see for example [23]).
Accurately reconstructing the evolution of gene families

requires informative datasets, powerful mathematical
models, and efficient computational algorithms. Advanced
biotechnologies provide a vast amount of genetic data for
understanding the evolution of gene families [24, 25].
Meanwhile, probabilistic models, describing the process of
gene family evolution, significantly enhance our ability to
extract useful information from genetic data [26–29]. The
birth-death (BD) model [30], which has been broadly
applied in analyzing species phylogenies [25, 29, 31, 32],
could also be adopted in phylogenetic analysis of gene
families [33]. In 1975, Thompson [34] introduced a phylo-
genetic model based on the birth-death process to under-
stand the evolution of human populations. Under the
generalized birth-death model, Nee et al. [35] derived a
reconstructed evolutionary process [36] to estimate birth
and death rates in a interspecific phylogenetic framework.
Rannala and Yang [37] developed a birth-death phylo-
genetic model for estimating phylogenetic trees from mo-
lecular sequence data. Aldous and Popovic [38] proposed
a continuous-time critical branching process condi-
tioned on the number of species in the present, with
the assumption that the birth and death rates are
identical in macroevolution, which was later relaxed
by Gernhard [39, 40] to allow uncorrelated birth and
death rates. With the assumption of constant birth
and death rates, Stadler [41] derived the probability
density function of a phylogenetic tree under the
birth-death model. Recently, time-dependent BD
processes have attracted more attention as a mode of
performing hypothesis-driven research [42–45].
Rabosky [42] distinguished rate-variable models of di-
versification from rate-constant models by fitting BD
models using likelihood methods. Hohna [44, 46] and
Hallinan [45] studied the reconstructed process with
time-dependent rates in a more general setting by
relaxing the assumptions about the number of species
and the time of the process. The BD model was first
adopted in [47] and further extended by other
researchers to reconcile gene and species trees
(Arvestad et al. [48], Akerborg et al. [23], Rasmussen
and Kellis [49] and Sjostrand et al. [50]). Recently,
Boussau et al. [51] established a BD phylogenetic
model for co-estimating gene and species trees
without the need of estimation of divergence times in
species trees and duplication and loss rates.
The current computational methods for analyzing

gene family data (including gene duplication and loss)
suffer a variety of weakness that need to be addressed.
There is no probabilistic model embedded in a birth-
death phylogenetic modeling framework that can take
into account the effects of different evolutionary mecha-
nisms of gene retention when analyzing gene family
data. It is desirable to build a stochastic model as a good
approximation to the real biological process of gene
duplication and loss. Such probabilistic models can both
add biological realism to improve the fit of the model to
the data as well as enable mechanistic inference that is
currently not possible. In this study, we integrate several
evolutionary mechanisms of gene retention into the age-
dependent BD model [42–45], in which the loss rate is a
function of the ages of gene copies. Moreover, we derive
the probability density function of gene duplication
times for each mechanism. The conditional density
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function of a duplication time given the previous dupli-
cation time is derived from the reconstructed process
under the generalized birth-death model [35, 52]. The
conditional density function can be utilized to calculate
the joint density of duplication times, and to efficiently
simulate duplication times under the generalized BD
model. The simulation results suggest that the max-
imum likelihood approach can accurately estimate the
parameters in the generalized BD model for different
mechanisms of gene retention, and the proposed gene-
retention model can be used to detect the underlying
mechanism that drives the evolutionary process of dupli-
cates within a gene family.

Methods
Modeling the loss rate
For simplicity, we consider the process of gene duplica-
tion/loss in a single population. For a single population,
we assume that a gene copy may duplicate or die at time
t. The homogeneous birth-death model assumes that the
rate of loss (hazard) of a duplicated gene is constant
through time [11, 53]. This expectation is consistent
with the nonfunctionalization process, but does not take
into account any of the processes of neofunctionalization
and subfunctionalization, which can affect the loss rate
of gene duplicates. The birth-death model for the fates of
gene retention (nonfunctionalization, subfunctionaliza-
tion, neofunctionalization, and dosage balance) includes a
time-dependent loss rate and a constant duplication rate
λ. The time-dependent loss rates will be extended to age-
dependent loss rates in the age-dependent birth-death
model (see section 2.3). The process starts at time 0, and
the number of gene copies at time 0 is 2. The process of
gene duplication and loss occurs under the following
postulates [54]: (1) the probability that a duplication will
occur during an infinitesimal interval (t, t +Δt] is ntλΔt +
o(Δt), while the probability that no duplication will occur
is 1- ntλΔt + o(Δt), and (2) the probability that a gene
duplicate will be lost during an infinitesimal interval
(t, t + Δt] is ntμtΔt + o(Δt), while the probability that
no loss will occur is 1- ntμt Δt + o(Δt), in which the
loss rate μt is a function of time t.
We introduce three formulas for the loss rate μt based

on the processes of nonfunctionalization, neofunctionali-
zation, and subfunctionalization, with assumptions about
these processes made in the introduction and also de-
scribed in [45]. For nonfunctionalization, the loss rate μt
is constant over time t, i.e., μt = μ. The neofunctionaliza-
tion hazard rate (instantaneous rate of duplicate copy
loss) declines with time [55]. Averaging across the prob-
ability of hitting a neofunctionalizing substitution, the
nonfunctionalization probability for duplicate genes
declines, leading to the overall decline of duplicate loss
over long evolutionary time periods [19]. This convexly
declining loss rate has been described with a Weibull
hazard function to characterize the average process (the
process for a single gene with a known neofunctionaliza-
tion event would be a discrete jump in the hazard rate)
[18]. We use an exponential function to model the loss
rate of neofunctionlization, i.e., μt = αe− tα for 0 < α < 1.
Further, the subfunctionalization loss rate behavior
has been characterized to be concavely (sigmoidally)
declining based upon theoretical expectations of a
waiting time for complementary mutations [18, 20].
Konrad [15] introduced an extended exponential haz-
ard function to describe the instantaneous rate of
loss. We adopt a generalized logistic function for the
loss rate μt of subfunctionalization, i.e., μt ¼ αeγ−t

1þeγ−t , in
which the scale parameter 0 < α < 1 and known loca-
tion parameter γ > 0.

The time-dependent birth-death model
We are interested in the probability distribution of
duplication times of the reconstructed lineages (the
lineages that have survived to the present time),
because the phylogeny reconstructed from the
sequences of contemporary species does not include
the extinct lineages [35]. The pure birth process of
the reconstructed lineages can be derived from a
generalized birth-death process [34, 36]. We use the
following notations which are defined closely to Nee
et al. [35] throughout this paper. Let t2 = 0 be the
first duplication time at the root of the tree, and T
be the present time (we are looking forward in time,
i.e., T > 0). Let nT be the number of lineages at the
present time T. Let ni be the number of
reconstructed lineages alive at ti that survive to the
present. We use {ti | i = 2, …, nT} to denote the
duplication times of nT lineages at the tips of a
phylogenetic tree, and t2 < t3 < t4 <… < T. Let P(τ, T)
be the probability that one lineage at time τ leaves
multiple descendants at the present time T, i.e., P(τ,
T) = P(nT >0 | nτ =1) [34–36, 44],

P τ;Tð Þ ¼ 1þ
Z T

τ
μte

ρ τ;tð Þdt
� �−1

: ð1Þ

In Eq. (1), ρ(τ,T) = ∫τ
T(μs − λ)ds. Since the integral

∫τ
Tμte

ρ(τ,t) in Eq. (1) is analytically intractable, it is
approximated by a Monte Carlo method. We define uij
as the probability P(nj > 1 | ni = 1) that one lineage at
time ti leaves multiple descendant reconstructed
lineages at a later time tj. This probability has been

derived under the time-dependent BD model, i.e., uij ¼ P

nj > 1jni ¼ 1
� � ¼ 1−P ti; tj

� �
eρ ti;tjð Þ (see Eq. (8) in [45]).

Given the number nT of lineages at the present time T
and the number n0 of lineages at time 0, the probability
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density function of the duplication times t = {ti | i = n0 +
1, …, nT} is given by [45]

f tjnT ; n0;Tð Þ ¼
YnT

i¼n0þ1
i−1ð ÞλP ti;Tð Þ 1−ηti−1;ti

� �i−1
nT−1
n0−1

� 	
1−η0;T
� �n0

ηnT−n00;T

:

ð2Þ

In (2), ηij ¼ 1− 1−uiT
1−ujT

. The conditional probability distri-

bution of duplication time ti (i > 2), given its previous
duplication time ti-1, T and nT, is given by [45]

f tijti−1; nT ;Tð Þ ¼ f tijti−1ð ÞP nT jnti ;Tð Þ
P nT jnti−1 ;Tð Þ : ð3Þ

In Eq. (3), f tijti−1ð Þ ¼ i−1ð ÞλP ti;Tð Þ 1−ηti−1;ti

� �i−1
(see Eq. (19) and (23) in [45]). With the conditional
densities f(ti|ti − 1, nT,T) of duplication times, the
duplication events between times 0 and T can be
simulated recursively in forward direction. The
conditional density in (3) differs from the density of
duplication times derived by Hohna [44], in which
the duplication events are treated as a random sam-
ple from a common probability distribution.

The age-dependent birth-death model
The time-dependent birth-death model described in
the previous section starts with a single population
corresponding to the lineage of a phylogenetic tree
and assumes a molecular clock that starts ticking for
all duplicates at the root. Thus, in the time-
dependent birth-death model, the loss rate μt of a
gene copy is a function of time t. However, the loss
rate μt should be a function of the ages of gene cop-
ies. In this section, the time-dependent birth-death
process is extended to the age-dependent process,
where the clock for each duplicate starts ticking at its
birth. When the loss rate is constant (i.e., nonfuncito-
nalization), the age-dependent model is identical with
the time-dependent model. Thus, we only describe
the age-dependent model for neofunctionalizaiton and
subfunctionalization. In the age-dependent model, the
expressions for the loss rates of neofunctionalization
and subfunctionalization remain unchanged (see
section Modeling the loss rate), except that time t is

replaced with the age t’ of the gene copy, i.e., μt0 ¼ α

e−t
0
α for neofunctionalization and μt0 ¼ αeγ−t

0

1þeγ−t
0 for sub-

functionalization. Moreover, it is assumed that the
number of gene copies increases or decreases by 1 or
remains the same during an infinitesimal interval (t, t +Δt]
with probabilities described in (4a-c)

P ntþΔt ¼ nt þ 1ð Þ ¼ ntλΔt þ ο Δtð Þ ð4aÞ

P ntþΔt ¼ nt−1ð Þ ¼
Xnt
i¼1

μt0i
Δt þ ο Δtð Þ ð4bÞ

P ntþΔt ¼ ntð Þ ¼ 1− ntλþ
Xnt
i¼1

μt0i

 !
Δt þ ο Δtð Þ ð4cÞ

In (4b), μt0i
is the loss rate of gene copy i at the age

of ti
' for i = 1, 2, …, nt. Let ti

0 be the duplication time
of gene copy i. The age ti

' of gene copy i is a random
variable, because it is a function of the random dupli-
cation time ti

0, i.e., ti
' = t − ti

0. Therefore, (4b) and (4c)
are integrated over all possible values of μt0i

with re-

spect to the probability density function f(t ') of the
age t ' of a gene copy. The age-dependent loss rate μt0i

in (4b) and (4c) is replaced with its expectation E

μt0i

� �
. Since all ti

' s have the same probability distri-

bution, the loss rates of nt gene copies have the same
expected values. Let t0 be the most recent duplication
time of a gene copy that survives to time t. Since t0

is the most recent duplication time, it indicates that
no duplication or loss events have occurred between
t0 and t on the gene copy. It has been shown that
the number of duplication or loss events follows the
Poisson distribution with mean ∫0

t (λ + μx)dx. The prob-
ability of no duplication or loss events occurring within

the time interval [0, t] is equal to e
−

Z t

0
λþ μx
� �

dx
. Thus,

the probability density of duplication time t0 is propor-

tional to Dt0e
−

Z t

0
λþ μx
� �

dx
for 0 < t0 < t, in which Dt0 is

the duplication rate at time t0 and e
−

Z t

0
λþ μx
� �

dx
is the

probability that t0 is the most recent duplication time of
the gene copy. Given that duplication occurs on a specific
lineage, Dt0 is equal to the duplication rate λ. Thus, the
probably density of the most recent duplication time t0 is

f t0
� � ¼ e

−

Z t

t0
λþμxð Þdx

Z t

0
e
−

Z t

t0
λþμxð Þdx

0
B@

1
CAdt0

ð5Þ



Table 1 The values of parameters used in simulating duplication
times under nonfunctionalization, neofunctionalization, and
subfunctionalization are shown

λ μ α

Nonfunctionalization 0.2 0.8

Neofunctionalization 0.2 0.8

Subfunctionalization 0.2 0.8
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Because the gene age t’ is equal to t – t0, the probability
density of age t’ for 0 < t0 < t is given by

f t0ð Þ ¼ e
−

Z t

t−t0
λþμxð Þdx

Z t

0
e
−

Z t

t−t0
λþμxð Þdx

0
B@

1
CAdt0

ð6Þ

Since the denominator in (6) is intractable, it is
approximated by Monte Carlo simulation. It follows that

the mean loss rate at time t is ϕt ¼ E μt0i

� �
¼Z t

0
μt0 f t0ð Þdt0 . Thus, the postulates in (4b) and (4c) be-

come P(nt +Δt = nt − 1) = nϕtΔt + ο(Δt) and P(nt +Δt = nt) =
1 − nt(λ + ϕt)Δt + ο(Δt). The loss rate in Eq. (1) is replaced
by the mean loss rate ϕt accordingly and P(τ,T) is modi-
fied as

P τ;Tð Þ ¼ 1þ
Z T

τ
ϕte

ρ τ;tð Þdt
� �−1

ð7Þ

Finally, the joint and conditional probability density of
duplication times (in Eq. 2–3) for the age dependent
model remain unchanged, except that the loss rate μt in
Eq. (2–3) is replaced with the mean loss rate ϕt.

Results
Simulation for the time-dependent model
To evaluate the performance of the time-dependent
birth-death model on simulated data where the true
values of parameters are known, we generated duplica-
tion times of gene copies using the rejection-sampling
algorithm with the conditional probability density func-
tion of duplication times in Eq. (3). We found the max-
imum likelihood score for the conditional probability
distribution using an optimization function optim in R.
The maximum score was used as the upper bound in
the rejection-sampling algorithm. Specifically, duplica-
tion times were simulated from Eq. (3) with a fixed
current time T = 10 and a fixed number of gene copies
nT = 32 at time T. The first duplication time is set to 0,
i.e., t2 = 0; the second one is simulated conditional on
the first one and so on so that additional 30 duplication
times are generated sequentially. Duplication events
were generated under each of 3 duplication mechanisms
(nonfunctionalization, neofunctionalization, and subfunc-
tionalization) with different parameterizations specified in
Table 1. We set a constant duplication rate λ = 0.2 for all
simulations (Table 1). The loss rates were determined by
the equations described previously for nonfunctionaliza-
tion, neofunctionalization, and subfunctionalization models
with parameters shown in Table 1. The values of parame-
ters were selected such that three mechanisms have the
same initial deletion rate.
For each mechanism, simulation was repeated 100

times. The mean of simulated duplication times for each
of three mechanisms are shown in Fig. 1a. Duplication
times simulated under different mechanisms show
distinct patterns. Given the present time T and the
number of gene copies nT, the overall duplication times
for nonfunctionalization tend to be larger than those for
neofunctionalization and subfunctionalization, and
duplication times for neofunctionalization appear to be
smaller than subfunctionalization. The curves of dupli-
cation times for nonfunctionalization, neofunctionaliza-
tion, and subfunctionalization are well separated
(Fig. 1a), even though three mechanisms have the same
duplication rate and the same starting deletion rate.
These results indicate that duplication times can be used
to distinguish different mechanisms of gene retention,
and to make inference about the underlying mechanism
that generated the observed duplication times given the
assumptions of the duplication models and their rela-
tionship to the underlying biology. These results are
consistent with the caveat that the time-dependent
process uses a tree-dependent clock rather than the
more biological situation of a duplication-event specific
process. The extension to the age-dependent birth-death
model will be discussed below. The joint probability
density function in Eq. (2) can be used to obtain the
maximum likelihood estimates (MLE) of parameters in
the time-dependent model, when duplication times are
given as input data. To visualize the divergence of the
probability density functions of three mechanisms, we
plotted the density curves of the first duplication time
for nonfunctionalization, neofunctionalization, and sub-
functionalization (Fig. 1b) with the values of parameters in
Table 1. Since each mechanism has a unique density
curve, this result indicates that it is possible to distinguish
three mechanisms using the time-dependent birth-death
model. Moreover, we employed the Akaike Information
Criterion (AIC) [56] to evaluate the relative quality of the
time-dependent models for nonfunctionalization, neo-
functionalization, and subfunctionalization. The data sets
simulated from the time-dependent model were used as
input data to calculate AIC for nonfunctionalization,



Fig. 1 Simulation results of the time-dependent model: (a) the means of duplication times simulated with 100 replicates for nonfunctionalization,
neofunctionalization, and subfuncitonalization are shown; (b) the probability density curves of duplication times for nonfunctionalization,
neofunctionalization, and subfunctionalization under the model are shown; (c) the percentage of samples identifying the true mechanism
with AIC
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neofunctionalization, and subfunctionalization. For each
simulated data set, the mechanism with the lowest AIC
score was selected and compared with the true mechan-
ism from which the data sets were generated. We reported
the percentage of the simulated data sets successfully
identifying the true mechanism (Fig. 1c). The overall aver-
age of the percentages of samples recovering the true
mechanism is about 80 % (Fig. 1c). In addition, subfunc-
tionalization appears to be more difficult than neofunctio-
nalization to distinguish from nonfunctionalization in this
modeling framework (Fig. 1c).
To examine the performance of maximum likelihood

estimation, we use the simulated duplication times as
data to estimate model parameters. The sample size (the
number of duplication times) ranges from 20 to 100.
The maximum likelihood estimates of parameters were
obtained using Metropolis-Hastings Markov Chain Monte
Carlo algorithm. The standard errors of the maximum
likelihood estimates are displayed in Fig. 2. For nonfunc-
tionalization, the standard errors of the estimates of μ and
λ decrease as the number of duplication times increases
from 20 to 100. Similarly, the standard errors of the esti-
mates of parameters for subfunctionalization and neo-
functionalization decrease as the number of duplications
grows. However, the estimation of parameter α for neo-
functionalization does not improve well with the increased
number of gene copies (Fig. 2), because duplication times
in the simulated data are highly correlated and the auto-
correlation between two adjacent duplication times in-
creases as the number of duplication times increases. As a
result, when the number of highly correlated duplication
times reaches a certain number, adding even more
duplication times does not contribute more information
for accurately estimating model parameters, especially for
neofunctionalization where the loss rate quickly declines
to a very low level. Similar results about biases and param-
eter estimates under constant and time-dependent birth-
death processes have been obtained in [57]. Nevertheless,
these results suggest that maximum likelihood methods
can accurately estimate parameters in the time-dependent
birth-death model when the sample size is large.

Simulation for the age-dependent birth-death model
The simulation for the age-dependent model was con-
ducted with the same parameterization and simulation
procedure used for the time-dependent model. We
generated duplication times from the age-dependent
models for nonfunctionalization, neofunctionalization,
and subfunctionalization. The mean duplication times
given the current time T and gene copy number nT for
the age-dependent models (Fig. 3a) appear to be less
dispersed among nonfunctionalization, neofunctionaliza-
tion, and subfunctionalization than those for the time-
dependent models (Fig. 1a). In addition, the density
curve for subfunctionalization becomes closer to the
nonfunctionalization curve under the age-dependent
model (Fig. 3b), compared to the curves for the time-
dependent model (Fig. 1b). This is consistent with our
expectation, because the age of a gene copy is less than
the absolute time t and the beginning portion of the con-
cavely declining loss rate of subfunctionalization is similar
to the constant rate of nonfunctionalization. In Fig. 3b,
the density curve for neofunctionalization is well sepa-
rated from the density curves for nonfunctionalization



Fig. 3 Simulation results of the age-dependent model: (a) the means of duplication times simulated with 30 replicates for nonfunctionalization,
neofunctionalization, and subfuncitonalization are shown; (b) the probability density curves of duplication times for nonfunctionalization,
neofunctionalization, and subfunctionalization under the model are shown; (c) the percentage of samples identifying the true mechanism with AIC

Fig. 2 The standard errors of the maximum likelihood estimates of parameters in the age-dependent models for nonfunctionalization,
neofunctionliazation, and subfunctionalization

Zhao et al. BMC Evolutionary Biology  (2015) 15:275 Page 7 of 11
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and subfunctionalization. In contrast, the loss rate of sub-
functionalization is assumed to be a backwards-S-shaped
logistic function of time, which is an intermediate state
between the loss rates of nonfunctionalization and neo-
functionalization. If the loss curve of subfunctionalization
moves to the right, it becomes closer to nonfunctionaliza-
tion (Fig. 3b). Conversely, when the loss rate curve moves
to the left, it gets closer to neofunctionalization (Fig. 3d).
Although subfunctionalization is an intermediate state be-
tween nonfunctionalization and neofunctionalization, it is
expected to be more similar to neofunctionalization,
which can be tested in real data analysis. The ultimate
similarity comes with increasing time, as both neofunctio-
nalization and subfunctionalization culminate in reduced
hazard rates, unlike nonfunctionalization. With a fixed
duplication rate, these processes are expected to result in
an increased number of copies. Conditional on the num-
ber of copies, subfunctionalization and neofunctionaliza-
tion would be consistent with a reduced duplication rate
and older duplication times. The overall percentage of
samples identifying the true mechanism increases as the
number of gene copies grows (Fig. 3c). The percent-
ages of nonfunctionalization and neofunctionalization
are significantly higher than the overall percentage.
Although the performance of subfunctionalization is
below average, the percentage of samples successfully
identifying the true subfunctionalization increases to
60 % when the number of gene copies reaches 100.
Moreover, the standard errors of the estimates of
parameters in the age-dependent model appear to de-
crease as the number of gene copies grows, suggest-
ing that maximum likelihood methods can accurately
estimate parameters in the age-dependent model,
when the sample size is large (Fig. 4).

Discussion
Summary of the gene family evolution model
We have derived the probability density function for the
age-dependent birth-death model, in which the loss rate
is a function of the ages of gene copies. In addition, the
conditional density function and a joint density function
of duplication times with age-dependent loss rate have
been developed in above age-dependent model, given
the current time T and the number of gene copies at
the time T. The conditional density function is used
to efficiently simulate duplication times, and the
simulation results suggest that maximum likelihood
methods can accurately estimate model parameters in
both time-dependent and age-dependent models. In
addition, the relative quality of various birth-death
models was assessed with AIC. Both time-dependent
and age-dependent models can distinguish the three
mechanisms (nonfunctionalization, neofunctionaliza-
tion, and subfunctionalization) with high probabilities
when the sample size is large. These results indicate that
the probabilistic models derived from the birth-death
process with a time-dependent and age-dependent loss
rates are useful for understanding the duplication and loss
mechanisms of gene families that evolve over time in a
single population with caveats discussed.

Limitations and future study
As duplication times are often not observable, it is desir-
able to generalize the current model to DNA sequence
data. We are currently working along this line to
build a generalized model that includes two stochastic
processes. The birth and death process is used to de-
rive the probability distribution of a gene family tree,
while the mutation process is used to derive the
probability distribution of DNA sequence data given
the gene family tree. With this generalized model, we
can estimate model parameters (duplication and loss
rates) from DNA sequence data.
One of the limits of the current model is that it

considers gene family evolution in a single population.
This model cannot be applied as currently imple-
mented to understand the evolutionary process of
gene families from multiple species. To overcome this
limit, the current model will be extended in the context of
species trees, in which duplication process occurs along
the lineages of species trees. This generalization will cer-
tainly involve intensive computation, but such a model is
quite useful for understanding gene family evolution in
the context of the evolution of species. Another limitation
of the current age-dependent model is that the likelihood
is conditioned on observed extant duplicate copies and
does not consider the full generative process including du-
plicates that were lost before the present. Future work will
examine this in the context of Approximate Bayesian
Computation [58]. Further, the current model exists in the
classes of interspecific models that treat all observations
from a single individual from a species as fixed relative to
observations from single individuals from other species.
Recently, a correction for the effects of population
dynamics has been introduced and can be considered
in modeling efforts [9]. Missing data and genome as-
sembly error are also not specifically addressed in the
modeling framework and their impact on inference
also needs to be addressed.
The gene loss models and their interpretations (the

relationship between the best fit curve shape and the
underlying biology) make assumptions about the
relationship between the accumulation of synonymous
changes and of non-synonymous changes whereas there
is information in the evolution of dN/dS vs. dS that can
be taken advantage of in alternative formulations of the
likelihood (see [18]). Lastly, the models can be used to
make predictions about functional evolution in the



Fig. 4 The standard errors of maximum likelihood estimates of parameters in the age-dependent models for neofunctionliazation and
subfunctionalization
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absence of actual functional data. While such data does
not currently exist in large scale, the future may bring
data on the expression levels of protein duplicates
compared to an ancestral state as well as binding and
enzyme specificities (and enzyme kinetics), all of which
can be integrated into a phylogenetic framework. How-
ever, even with future comparative proteomic data, one
still needs models that treat signals associated with
selective pressures (like the models presented here), as
neutral changes in expression and functional properties
would not lead to changes in retention profiles (the gene
loss hazard/survival model) and meaningful lineage-
specific biology (see [59] for a discussion of the interplay
between molecular phenotypes and biological function
in an evolutionary context).
The model as currently developed also assumes that

all duplicates in a gene family evolve under the same
process. A future opportunity is in examination of
large gene family databases like Ensembl [60],
HOGENOM [61], or TAED [62], a mixture model of
duplicate processes can be applied across all gene
families and duplication events to enable a posteriori
probabilistic identification of duplication retention
mechanisms for individual gene duplication events.
The work presented in this manuscript, with a birth-
death model in a phylogenetic context, brings this
scale of modeling one step closer.

Conclusions
We develop a generalized birth-death model for
probabilistic inference of the evolutionary mechanism
for duplicate gene retention based upon the average
rate of loss over time of the duplicate. The time-
dependent birth-death model assumes a molecular
clock that starts ticking for all duplicates at the root.
The time-dependent model is then extended to the
age-dependent model, which allows the gene loss rate
dependent of duplication events. Simulation results
indicate that the mechanisms of gene retentions (nonfun-
citonalization, neofunctionalization, and subfunctionaliza-
tion) produce distinct likelihood functions, which can be
used with comparative genomic data to quantitatively
distinguish those mechanisms.

Availability of supporting data
This study of a theoretical nature has not generated any
novel supporting data.
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