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Abstract

Background: Though essential to the development and evaluation of national malaria control programmes,
precise enumeration of the clinical illness burden of malaria in endemic countries remains challenging where local
surveillance systems are incomplete. Strategies to infer annual incidence rates from parasite prevalence survey
compilations have proven effective in the specific case of Plasmodium falciparum, but have yet to be developed for
Plasmodium vivax. Moreover, defining the relationship between P. vivax prevalence and clinical incidence may also
allow levels of endemicity to be inferred for areas where the information balance is reversed, that is, incident case
numbers are more widely gathered than parasite surveys; both applications ultimately facilitating cartographic
estimates of P. vivax transmission intensity and its ensuring disease burden.

Methods: A search for active case detection surveys was conducted and the recorded incidence values were
matched to local, contemporary parasite rate measures and classified to geographic zones of differing relapse
phenotypes. A hierarchical Bayesian model was fitted to these data to quantify the relationship between prevalence
and incidence while accounting for variation among relapse zones.

Results: The model, fitted with 176 concurrently measured P. vivax incidence and prevalence records, was a linear
regression of the logarithm of incidence against the logarithm of age-standardized prevalence. Specific relationships
for the six relapse zones where data were available were drawn, as well as a pooled overall relationship. The slope
of the curves varied among relapse zones; zones with short predicted time to relapse had steeper slopes than those
observed to contain long-latency relapse phenotypes.

Conclusions: The fitted relationships, along with appropriate uncertainty metrics, allow for estimates of clinical
incidence of known confidence to be made from wherever P. vivax prevalence data are available. This is a prerequisite
for cartographic-based inferences about the global burden of morbidity due to P. vivax, which will be used to inform
control efforts.
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Background
Reliable estimates of clinical incidence of malaria have
been an enduring challenge for epidemiologists working
to measure the impact of the disease, define targets
for control, and evaluate progress towards elimination
[1-10]. Direct clinical incidence surveys are costly and
time-consuming; as a result, many published large-scale
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estimates of incidence rely on passive reporting of cases to
routine health information systems. These data are often
incomplete or inaccurate [11,12] and must be adjusted
using relationships between variables of unknown cer-
tainty [10]. Prevalence, or parasite rate (PR), on the other
hand, is a more easily measured and widely available mal-
aria metric [13]. A species-specific modelled relationship
between Plasmodium vivax PR (PvPR) and the rate of
clinical illness, similar to that developed for Plasmodium
falciparum [5,14], would be an important step towards
the generation of a continuous global map of P. vivax
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burden from which national and sub-national aggregate
estimates of annual incidence can be compiled with
known uncertainties.
Enumeration of the global disease burden attributable

to P. vivax malaria has been identified as a key knowledge
gap [15-17]. Large discrepancies exist in the currently
available burden estimates [18], which have been calcu-
lated using a variety of methods. Figures based on cases
reported to health systems estimate P. vivax incidence to
be 15.8 million cases per year [2,18]. However, estimates
derived from the ‘cartographic’ approach using mapped
endemicity classes and populations at risk suppose that
these values would be far greater: 132-391 million cases
annually [4,17]. The cartographic method bypasses some
of the challenges inherent in the surveillance-based ap-
proach, in which the numbers of cases reported are ad-
justed to account for incompleteness in reporting, usage
of health facilities, and diagnostic confirmation, and it is
difficult to quantify the precision of these adjustments.
The cartographic approach, on the other hand, estimates
cases through a geostatistical model of endemicity con-
strained by the input data, with strength borrowed impli-
citly from observations at neighbouring sites, such that
the resulting case estimates carry a formal uncertainty
metric testable via cross-validation. Both techniques have
their limitations and reconciling them is a long-term goal;
the first step towards which is a fuller implementation of
the cartographic approach for P. vivax.
A global map of P. vivax prevalence from which carto-

graphic incidence estimates may be generated has been
published for 2010 [19] and efforts to update this map
are underway. The 2010 map, shown in Figure 1, displays
the stable and unstable limits of transmission as defined
Figure 1 The spatial distribution of Plasmodium vivax endemicity in 2010 o
shown using the MBG point estimates of the annual mean PvPR (1 to 99 y
continuum of blue (low prevalence) to red (high prevalence). Areas within
a PvPR less than 1% were classed as unstable. Regions where Duffy negativity
for additional context. The location of study sites of the incidence records use
according to annual parasite incidence (API) data, as well
as the predicted PvPR (as a population average over the
one to 99 year-old age range) at a 5 × 5 km pixel scale
within the stable limits of P. vivax transmission (API ≥0.1
per 1,000 per annum) [20]. As this map illustrates, large
swaths of densely populated areas are exposed to stable
transmission, though it remains unclear how many clinical
infections arise from the 2.5 billion people who live within
the limits of P. vivax transmission [21] because the rela-
tionship between PvPR and incident morbidity has not yet
been reliably established for P. vivax.
It is necessary to model P. vivax separately from P.

falciparum because of the biological and epidemio-
logical differences that affect their observed prevalence of
infection and patterns of clinical incidence [22]. Vivax
malaria circulates in the blood at much lower parasite
densities than P. falciparum, making it less likely to be
detected by diagnostic techniques commonly used to mea-
sure prevalent infections: light microscopy and rapid diag-
nostic tests (RDTs) [22]. Nevertheless, low blood-parasite
densities are still able to elicit symptomatic disease [23].
Cartographic estimates of PvPR are an approximate order
of magnitude lower than those for P. falciparum [19,24].
Although prevalence values exceeding those shown on the
scale in Figure 1 are observed, particularly among children
(see associated dataset [25]), the community prevalence of
P. vivax is consistently low relative to P. falciparum, as
illustrated in Figure 2. A possible explanation for this ef-
fect is natural immunity, which is acquired more rapidly
against P. vivax than P. falciparum, such that infection
prevalence peaks in young children, with PvPR in adults
significantly lower [22]. Prevalence of P. vivax starts to de-
cline after the second year of age, whereas P. falciparum
verlaid by ACD study sites. The spatial distribution of P. vivax [19] is
ear-olds) within the spatial limits of stable transmission, displayed on a
the stable limits that were predicted with high certainty (>0.9) to have
gene frequency is predicted to exceed 90% [42] are shown in hatching
d in the final analysis are shown as purple points.



Figure 2 Comparison of Plasmodium falciparum and Plasmodium vivax prevalence. Prevalence values, obtained from the mapped P. falciparum
and P. vivax endemicity surfaces [19,24]. Data for P. falciparum has been standardized to the 1 to 99 years age range to reflect P. vivax data [36].
The shaded areas correspond to each species and show a smoothed approximation of the frequency distribution (a kernel density plot) of
parasite prevalence within each geographic region. The black central bar represents the interquartile range and the white circles indicate the
median values.
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prevalence continues to rise until later in life in all but the
most intense transmission settings [26,27].
The most significant biological difference between P.

vivax and P. falciparum is the ability of P. vivax to form
liver stages capable of causing relapsing infections weeks
to months after the initial inoculation [28]. Hence, in
contrast to P. falciparum, which has only sporozoite-
induced infections, blood-stage parasitaemia in P. vivax
can arise from either mosquito-borne sporozoites or liver-
borne hypnozoites. This has significant consequences for
measuring the force of infection of blood-stage P. vivax.
However, for the purpose of estimating the burden of
clinical disease, the origin of the infection is not of utmost
significance. A primary mosquito-borne infection and a
relapsing hypnozoite-borne infection are both capable of
causing symptomatic illness as well as onward transmis-
sion, and incidence from both are correlated with parasite
prevalence. Hence, this study did not attempt to differenti-
ate the incidence of relapse from the incidence of new in-
fections, but rather examined the relationship between
prevalent parasitaemia and incidence of clinical disease
by geographic regions stratified by differing relapse pat-
terns [28].
Issues inherent in estimating the burden of P. vivax

malaria are addressed here by defining the relationship
between published symptomatic P. vivax incidence rates
derived from active case detection (ACD), matched with
age-standardized measures of infection prevalence.

Methods
Data assembly
The aim of the data assembly was to build a comprehen-
sive database of reports of clinical (symptomatic) inci-
dence of P. vivax measured by ACD since 1 January, 1985,
to be consistent with the PvPR data used to develop global
endemicity maps. A formal literature search was con-
ducted in PubMed [29] on 27 November, 2013 using the
search terms: ((malaria[MeSH Terms]) AND (“Incidence”
[Mesh] OR “Epidemiology” [Mesh] OR “epidemiology”
[Subheading])) AND (“1985/01/01”[Date - Publication] :
“3000”[Date - Publication]). This returned 11,272
references.
Abstracts of all references returned were reviewed to

determine if clinical incidence data could potentially be
included in the paper. Reviews, case studies, and reports
on imported malaria, animal studies, vector-only studies,
and technical analyses (such as genetic mapping or
transmission models) were excluded at this stage. Stud-
ies that did not explicitly report P. vivax incidence data
collection in the abstract were not excluded in case it
was reported in the main body.
The full texts of the 898 selected references, plus 78

publications flagged from previous studies [14,30], were
then checked for the following criteria: (i) they contained
longitudinal survey data involving ACD of symptomatic
cases (typically defined by presence or recent history of
fever); (ii) they were conducted in the general commu-
nity (i.e., not patient sub-groups); (iii) malaria was diag-
nosed using microscopy or RDTs; and, (iv) results were
presented in such a way that the number of cases and
person-time observed could be determined. Due to diag-
nostic limitations, cases could not be distinguished as
hypnozoite-borne and sporozoite-borne infections. There
were no restrictions placed on age of the study population.
For the initial data extraction, no limit was placed on the
length or regularity of ACD, as long as the case detection
methods were specifically reported. Studies that used pas-
sive case detection (PCD) only or were cross-sectional
surveys were excluded.
Studies were geopositioned to a region (Africa, Americas

or Central and Southeast (CSE) Asia), country and place
name, and mapped to a specific latitude and longitude
using location information from the source and gazetteers
such as Encarta [31] and Google Maps [32], as described
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previously [33]. The studies were also classified to a geo-
graphic zone of relapse phenotype as defined by Battle
et al. [28]. Patterns in the timing of the first relapse event
are thought to vary geographically among the zones illus-
trated in Additional file 1: Figure S1. The size and age
range of a study cohort was extracted, and a single study
reporting on multiple age ranges was disaggregated into
separate records. Likewise, if a study contained different
treatment or intervention arms, these were entered as sep-
arate records, and any control methods in place separate
from the study were noted accordingly. Details regarding
the time and length of the survey were recorded, along
with type (ACD only or ACD+ PCD) and frequency of
detection. The number of cases and the person-years
observed were recorded to determine incidence, as well as
the diagnostic method, case definition, and any parasite
density threshold applied to that definition.
If the number of person-years observed was not re-

ported, it was estimated by multiplying the population of
the study cohort by the length of the study. As this
method of estimation may over-estimate person-time due
to study members being lost to follow-up (and therefore
under-estimate incidence), it was recorded whether person-
time was explicitly reported in the study or if it had to
be estimated.

Matching incidence to prevalence
Where possible, PvPR data were extracted from the
same publication as the incidence data to provide a
temporally matched measure of prevalence in the same
community. If PvPR data were not reported, the Malaria
Atlas Project (MAP) database [33,34] was searched for a
prevalence study conducted in the same community in
the same time period as the incidence study. For the re-
cords without a matched PvPR value, a predicted preva-
lence was extracted from the P. vivax MAP endemicity
surface using ArcGIS [35]. The methodology used to
generate this surface is described in detail elsewhere
[19,20], but briefly: the predicted PvPR values represent
an annualized mean prevalence in all ages (1-99 years)
drawn from a species-specific model-based geostatistical
(MBG) framework using 9,970 PvPR surveys collected
from 1985 to 2010 plus a suite of environmental covari-
ates to estimate the prevalence in every 5 × 5 km square
within the limits of stable transmission.
To facilitate modelling of the prevalence – incidence

relationship, each inferred prevalence was standardized
to a common age range of 0 to 85 years using the age-
standardization model developed by Smith et al. initially
for P. falciparum [36] and later updated for P. vivax
[19]. The age-standardization was implemented using a
freely available software package developed by the au-
thors for the R statistical programming environment
[37,38]. The full dataset used in this study and further
details regarding its assembly are available in a dedicated
publication [25]. A schematic of the data assembly stages
is shown in Figure 3.

Model development
A Bayesian hierarchical model was developed to describe
the relationship between the population prevalence and
clinical incidence of vivax malaria. The model included a
composite likelihood function to account for various
aspects of the data: (i) the inherent randomness of the
standard sampling distributions for both the parasite
positive count (binomial) and the clinical case count
(Poisson) at each site; (ii) a potential over-dispersion
(extra-Poissonian variance) in the incidence observations
attributable to site and study-specific random effects;
(iii) a dependence of observed clinical incidence on the
frequency of ACD [39]; and (iv) the impact of variation
in the range of ages targeted by each study design given the
importance of exposure-based, and hence age-dependent,
immunity to clinical illness. While the asynchronous sam-
pling of incidence and prevalence in different transmission
seasons evinced by some surveys was not modelled ex-
plicitly, its contribution to the observational variance was
effectively allowed for by these study- and site-specific
random effects terms.
To account for (iii), in the absence of a single widely

accepted parametric model of the effect of ACD occur-
rence, a non-parametric approach was used to infer this
relationship. A modular statistical distribution was defined
over the space of monotonically decreasing functions eval-
uated at the seven unique regularities of detection used in
the ACD studies in the database: daily, every other day,
every third day, five times per week, weekly, fortnightly,
and monthly. The generative model for this distribution
(denoted in Figure 4 as non-parametric gamma) was
defined with respect to the joint order statistic of seven
random variables; each gamma-distributed with a shape
parameter of two and a rate parameter of one.
To account for (iv) a pair of scale coefficients were

introduced to the likelihood function and fit simultan-
eously with all other random effects: the first acting to
scale down the expected incidence for studies excluding
children below 5 years of age, the second acting to scale
up that for studies excluding older children and adults
above 15 years of age. The age standardization of con-
temporary prevalence estimates described above was
propagated to the input data as an adjustment of the nu-
merator (observed parasite positives) in the binomial
likelihood.
The fitted model for the prevalence – incidence rela-

tionship adopted here was a linear regression of the
logarithm of the incidence rate against the logarithm of
prevalence with zone-specific clustering effects. Note: as
standard terminology in the statistical literature, the term



Figure 3 Schematic overview of the literature search procedure, results, and data exclusions to obtain clinical incidence records of use for model
implementation. References from previous analyses* include those used by Patil et al. [14] and Griffin et al. [30].
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Figure 4 The mathematical form of the model summarized in standard hierarchical Bayesian notation.

Table 1 Data records by MAP region

Region All P. vivax data Data used in model

Africa+ 10 0

America 67 43

CSE Asia 311 133

Total 388 176
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‘linear’ here denotes linearity in the coefficients, not ne-
cessarily the explanatory variables on which they act. Up
to six unique intercepts and slopes were allowed to repre-
sent the six geographically bounded relapse phenotype
zones represented in the dataset. Since variation in the
epidemiology of P. vivax is not strictly defined by the geo-
graphic divisions proposed, the model was allowed to fit
multiple zones with a common prevalence – incidence re-
lationship by labelling these six possible slope-intercept
pairs in order of increasing slope and treating label assign-
ment for each zone as a categorical variable with propor-
tions assigned a Dirichlet prior. Hence, multiple zones
may share the same intercept and slope, and thereby share
power for their inference, where this ‘clustering’ scenario
is consistent with the observed data.
The mathematical form of this model is summarized

in standard hierarchical Bayesian notation in Figure 4.
Posterior simulation for this model was achieved via
rejection Gibbs sampling with the JAGS (Just Another
Gibbs Sampler) software package [40], with data entry and
graphical summary achieved via the R statistical comput-
ing environment [37].

Results
Data assembly
Plasmodium vivax clinical incidence data were identified
in 99 publications. Following checks that the studies met
the inclusion criteria described above, these data were
abstracted into 388 reports of incidence. The majority of
the data came from CSE Asia (80%, 311/388), as shown
in Table 1, with ten records from Africa and 67 from the
Americas. Data originated from 18 countries in total: ten
from CSE Asia, five from the Americas and three from
Africa. The incidence measures observed ranged from
zero to 1.6 per person year observed. The highest inci-
dence values observed were in CSE Asia in Papua New
Guinea (PNG). Summary statistics of the incidence
observed by MAP region are shown in Table 2, and the
violin plots in Figure 5.

Matching incidence to prevalence
Slightly less than half of the records (46%, 180/388) had
a prevalence value available from the same reference. An
additional 31 prevalence values were added to records
using entries in the MAP database that were collected in
the same site during the same year. This provided a space-
time matched PR for approximately half (54%, n = 211)
of the incidence records. A PvPR value for each of the
remaining 177 incidence records was obtained from the
MAP P. vivax endemicity surface [19]. The MAP-based
PvPR values represent all-age estimates, and 123 (69%)
of the incidence records without concurrent PvPR were
also measured in all ages. Of the incidence records with
a concurrent PvPR estimate, 154 (73%) of PvPR surveys



Table 2 Incidence summary statistics

All data - incidence per 1,000 person-years observed

Zone Zone name N Minimum Mean Median Maximum IQR

2 Central America 3 72.07 103.93 80.00 159.71 43.82 (76.04, 119.86)

3 South America 64 0.00 227.47 161.52 977.31 281.06 (40.33, 321.39)

7 Sub-Saharan Africa 10 0.00 4.99 3.75 22.19 1.45 (2.48, 3.93)

8 Monsoon Asia 265 0.00 42.49 20.24 412.87 49.29 (8.05, 57.34)

10 Southeast Asia 24 0.00 291.56 290.87 710.50 497.62 (28.17, 525.79)

11 N. Europe and Asia 4 20.32 33.30 35.05 42.78 6.61 (30.87, 37.48)

12 Melanesia 18 56.81 709.63 758.19 1586.07 368.75 (531.25, 900.00)

All Total 388 0 118.8 29.82 1586.07 99.38 (9.82, 109.20)

Data with concurrent PvPR values used in analysis - incidence per 1,000 person-years observed

Region Minimum Mean Median Maximum IQR

2 Central America 3 72.07 103.93 80.00 159.71 43.82 (76.04, 119.86)

3 South America 40 0.00 236.51 138.47 977.31 329.76 (22.16, 351.92)

8 Monsoon Asia 100 0.00 26.51 18.58 194.59 27.56 (7.36, 34.92)

10 Southeast Asia 18 4.48 250.68 89.77 692.31 472.71 (25.92, 498.63)

11 N. Europe and Asia 4 20.32 33.30 35.05 42.78 6.61 (30.87, 37.48)

12 Melanesia 11 56.81 674.07 658.76 1586.07 492.43(400.00, 892.43)

All Total 176 0 139.10 29.10 1586.07 87.18 (11.74, 98.92)

Figure 5 Violin plot of incidence (per 1,000 person-years observed). A) all data (n = 388) by region and B) data used in the analysis (n= 176) by region are shown
with incidence on the logarithmic scale. The grey areas correspond to a smoothed approximation of the frequency distribution (a kernel density plot) of the
incidence observed in each geographic region. The black central bar represents the interquartile range and the white circles indicate the median values.
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were conducted in the same age group as the ACD co-
hort. The 110 PvPR values that were not age-matched
to the incidence data were age-standardized to the same
age-range as the incidence data [36,38]. The PvPR esti-
mates for all records ranged from zero to just over 30%.
The highest estimates were again observed in PNG.
PvPR data summary statistics are shown in Table 3.
The prevalence values extracted from the P. vivax

endemicity map had a similar range to the PvPR esti-
mates measured alongside incidence (from close to zero
to ~25%), but less variation (Additional file 2: Figure S2).
This was because multiple incidence records that came
from the same or nearby locations were matched to a
PvPR from the same or similar pixels in the predicted
PvPR map. Statistically, incidence records with only PvPR
values derived from the map were excluded because their
uncertainties (in part due to the mismatch between the
scale of MAP pixels and the scale of PvPR variation within
a pixel) were so large that the inclusion of these points did
not add to the model fits. That is, only concurrently mea-
sured PvPR values – reported from the same reference or
another paper from the MAP database – were used. This
also facilitated development of the statistical model as the
selected studies all presented counts of the number exam-
ined and positive, and thus the same type of uncertainty
was manifest for both the incidence and PvPR estimates
used in the analysis, whereas this would not be true for
excluded PvPR surveys that did not report the numera-
tors or denominators (n = 35). Following all exclusions
(Figure 3), 176 records from 75 sources remained to be
Table 3 Parasite rate (%) summary statistics

All data - using concurrent PvPR or MAP-based PvPR from the P. vivax

Zone Zone name N Minimum

2 Central America 3 1.1.6

3 South America 64 0.00

7 Sub-Saharan Africa 10 0.47

8 Monsoon Asia 265 0.00

10 Southeast Asia 24 0.00

11 N. Europe and Asia 4 0.45

12 Melanesia 18 2.92

All Total 388 0.00

Data with age-matched concurrent PvPR used in the analysis

Region Minimum

2 Central America 3 1.16

3 South America 40 0.00

8 Monsoon Asia 100 0.00

10 Southeast Asia 18 0.79

11 N. Europe and Asia 4 0.71

12 Melanesia 11 8.25

All Total 176 0.00
used in the analysis. The temporal distribution and study
size, based on person-time observed, of these records are
shown in Figure 6.
The approximation of person-time in the majority of

the selected records (76%, 133/176) was determined not
to be an exclusion criterion. As illustrated in Additional
file 3: Figure S3, there was a comparable level of noise in
both those records with exact and approximate reported
person-time. The data are plotted on both standard and
logarithmic scales to also demonstrate that using the
logarithm of incidence against the logarithm of preva-
lence better represents the distribution of the data. Note,
however, that only 151 points appear in those panels
using logarithmic scales because 25 records had a value
of zero (four incidence and 21 prevalence) and could not
be readily plotted on these axes.
A specific parasite density threshold in the case defin-

ition used in ACD studies was also set aside as an exclu-
sion criterion. The majority of studies specified a case of
P. vivax as a symptomatic episode at any detectable level
of parasitaemia (≥1 asexual stage parasite per μl of blood),
but nine of the 176 records included in the analysis speci-
fied a parasite density cut-off. Seven records were from
studies applying a parasite density threshold of 500 par-
sites/μl to limit their Type II error rate (false attribution of
vivax causality to a background fever) and an additional
two applied a cut-off 1,000 parasites/μl. These studies
were expected to return lower incidence estimates,
but in fact were not observed to be outliers here, as
seen in Additional file 4: Figure S4. That the application
endemicity map

Mean Median Maximum IQR

1.28 1.27 1.40 0.12 (1.22, 1.34)

2.51 1.80 7.65 3.41 (0.89, 3.36)

0.66 0.45 1.67 0.00 (2.48, 3.93)

2.98 2.68 30.88 1.48 (1.26, 3.90)

3.39 3.43 6.98 3.47 (1.33, 4.42)

1.50 1.73 2.09 0.53 (2.11 2.94)

11.81 10.92 28.41 6.93 (9.82, 16.61)

3.25 2.61 30.88 2.35 (1.27, 3.62)

Mean Median Maximum IQR

1.27 1.27 1.40 0.12 (1.22, 1.34)

1.41 0.89 7.52 1.94 (0.00, 1.94)

2.92 2.14 12.59 2.98 (0.90, 3.88)

2.98 2.14 6.98 3.09 (1.33, 4.42)

2.35 2.71 3.27 0.83 (2.11, 2.94)

14.52 14.77 28.41 6.04 (8.25, 15.95)

3.27 1.87 28.41 3.05 (0.84, 3.89)



Figure 6 Temporal distribution of records used in the analysis. The size of the point reflects the number of person-years observed included in
the 176 records that had an age-matched concurrent PvPR measure with the incidence record.
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of the cut-off did not result in lower estimates suggests
that vivax-targeting ACD studies are less sensitive to case
definition than is the experience for falciparum [41].
Model development
The posterior for the non-parametric fitted function
modelling the impact of ACD regularity on the rate of
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detected clinical incidence cases is illustrated in Additional
file 5: Figure S5. In the subsequent Figures 7 and 8 the
(point-wise) mean of this function was used to correct all
observed incidence counts to a benchmark of fortnightly
ACD. It was estimated that daily ACD studies report
on average 12.2 (2.7,42) times (median and 95% credible
interval, CrI) the number of fevers identified in studies
with fortnightly ACD, whereas the scaling from fortnightly
to monthly ACD is less marked at 0.81 (0.34,0.99). Some
degree of variation in the dependence of observed inci-
dence on ACD regularity among the geographic zones
was expected, such that frequency of ACD would have a
greater effect in areas with high risk of recurrence. The
model of a shared effect was deemed sufficient, however,
because a re-fit of the model allowing each zone to be
assigned to one of two separate relationships failed to iden-
tify any significant difference in the resulting prevalence-
incidence relationship.
The broad posterior credible intervals for the pair of scal-

ing coefficients used here to account for age-dependence
of the clinical incidence rate (namely, -0.28 [-0.83,0.27] for
c1 and 0.08 [-0.40,0.66] for c2) suggest that these terms do
not play a crucial role in these fits, a conclusion supported
by visual inspection of the zone-specific prevalence – inci-
dence relationships inferred upon exclusion of these terms
from the model. However, the consequent inference that
exposure-based immunity is unimportant for vivax mal-
aria should be taken with caution: rather the present data-
set is underpowered to investigate this effect since over
75% of the studies included here effectively report an all-
ages incidence estimate.
The geographic origin of the studies was, however, of

importance in the prevalence – incidence model. Figure 9
illustrates the distribution of the matched incidence and
prevalence records shaded by the mean time to first relapse
in each geographic zone. A significant degree of clustering
between zones was identified through the fitted model.
In particular, zones 8 and 11 (Monsoon Asia, and northern
Figure 7 The zone-specific prevalence-incidence relationships shown as po
zone 3 is South America, zone 8 is Monsoon Asia (India), zone 10 is Southeast
95% CrIs are shown in light grey and the 68% CrIs are shown in dark grey. Th
visit (see Figure 8) and the colours of the zones correspond to those shown i
Asia and Europe) were found to share a common relation-
ship in 50% of the posterior samples. These zones are
characterized by long-latency relapse phenotypes (zone
11) or a combination of short and long latency (zone 8).
At least three of the four remaining zones (2 - Central
America, 3 - South America, 10 - Southeast Asia, and 12 -
Melanesia) share a common relationship at a comparable
rate. The zone-specific PvPR and clinical incidence rela-
tionships thus recovered are illustrated as point-wise 68
and 95% CrIs in Figure 7 and their parameter estimates
are summarized in Table 4. In the Table, α is the natural
logarithm of incidence per person-year observed at a
prevalence of 2.5%; in the model this is the intercept of
the (logarithm of) prevalence – (logarithm of) incidence
curve, such that the exponent of α is the intercept in cases
per person year. Accordingly, β in Table 4 is the slope of
the curve, such that if the prevalence were to increase
from 2.5 to 7%, the incidence would increase by a factor
of exp(β). By weighting the posterior for each zone by the
proportion of observations from that zone in the dataset,
a pooled relationship was produced for the entire dataset,
as illustrated in Figure 8. For reference, the corresponding
aggregate parameter estimates of the pooled relationship
are α = -3.0 (-3.5,-2.4) and β = 0.71 (0.41,1.10). In other
words, based on the pooled relationship a prevalence of
2.5% would correspond to an incidence of 49.8 cases per
1,000 person years (see Table 4).
The results benefit from the model structure by pro-

ducing associated measures of uncertainty. As shown in
Figures 7 and 8, the point-wise CrIs are narrowest
around the axis of the regression model at 2.5% preva-
lence. Zone-specific relationships informed by few data
points (zones 2, 11 and 12) have wider CrIs. Based on
these wide uncertainty bands, the predicted incidence
can change by a factor of 100. While this appears to be a
large range, it is representative of the data; Figure 8 illus-
trates the wide range of incidence measures that were
observed in communities with nearly the same PvPR.
int-wise 68% and 95% credible intervals. Zone 2 is Central America,
Asia, zone 11 is northern Asia and Europe and Zone 12 is Melanesia. The
e size of the point corresponds to the time period between each ACD
n Figure 9.



Figure 8 Pooled prevalence-incidence relationship for the entire dataset. To produce a pooled fit, the posterior of each zone was weighted by
the number of observations from that zone. An errors-in-variables fit was used to allow for uncertainty in the independent variable as well as the
dependent variable (ordinary linear regression would assume no uncertainty in the former). Point-wise 95% CrIs are shown in light grey and 68% CrIs are
shown in dark grey. The colours of the zones match those shown in Figure 9.

Figure 9 Scatter plot of data used in analysis coloured by relapse zones. Panel A plots the data used in the analysis by the relapse zones on log
scales. The points are coloured by the mean time to relapse predicted in each zone shown in panel B.
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Table 4 Parameter estimates by zone

Zone Name α Median [95% CrI] exp(α)*1000 (cases per 1000 person years at 2.5%PvPR) β Median [95% CrI]

2 Central America -2.4 [-3.8,-1.4] 90.7 0.68 [0.13,1.53]

3 South America -2.4 [-3.4,-1.7] 90.7 0.85 [0.29,1.51]

8 Monsoon Asia -3.9 [-4.4,-3.3] 20.2 0.49 [0.30,0.70]

10 Southeast Asia -3.1 [-4.1,-2.1] 45.0 0.71 [0.24,1.49]

11 N. Europe and Asia -3.8 [-4.6,-2.3] 22.4 0.51 [0.18,1.25]

12 Melanesia -2.4 [-3.4,-1.1] 90.7 0.91 [0.17,1.55]

All Pooled relationship -3.0 [-3.5, -2.4] 49.8 0.71 [0.41,1.10]
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Discussion
This study provides a fundamental component for calcula-
tion of the P. vivax clinical burden. The result of the work
presented here is a model of the relationship between inci-
dence of symptomatic vivax malaria and prevalence of
detectable blood-stage P. vivax infection. This relationship
will allow for the burden of P. vivax to be estimated using
an updated map of P. vivax endemicity. Estimates of
burden from maps of prevalence allow for measures
of incidence to be made with associated measures of
uncertainty.
Two key aspects of the analysis presented are the

spatial and temporal components of the data. All inci-
dence data were matched to PvPR data that were mea-
sured in the same community at the same time. However,
there were subtle differences in how PvPR was measured
among the various studies. In many studies, PvPR was
measured at the start of the ACD observation period as a
baseline measure of endemicity. In other studies, there
was more than one cross-sectional survey done during the
incidence follow-up period. In those records, the PvPR
value is a pooled estimate, which was deemed acceptable
because none of the studies administered a radical cure
following the initial prevalence survey. This would have
contributed to the noise observed in the data, but it is
accounted for in the resulting models within the study-
specific random effects as well as the uncertainty reflected
in the CrIs.
Modelling the relationship between prevalence and

incidence specifically for P. vivax presented new chal-
lenges not encountered in similar work for P. falciparum
(Ewan Cameron, personal communication, 2015) [14].
There were far less incidence data available for P. vivax
relative to P. falciparum [25]. The majority of the pub-
lished P. vivax incidence data was from CSE Asia. This
signals the need for improved active surveillance cover-
age in the Americas and implementation of RDTs that
test for non-falciparum species in areas previously
thought to be non-endemic for P. vivax, such as East
Africa.
There were not age-stratified data available that would

have allowed for age-specific burden modelling as done
recently for P. falciparum (Ewan Cameron, personal
communication, 2015). Age-dependent immunity causes
high incidence of infection in very young children in
high transmission settings with lower incidence in older
children and adults [22]. Over 75% of the studies used in
the analysis were conducted in whole populations, but
the differing age groups in the remainder of the dataset
was dealt with through a statistical correction designed
to scale down the expected incidence in populations that
did not include young children (under five years) and
scale up the incidence in populations that did not in-
clude children and adults over 15 years of age. Further
work involving this model will be improved as P. vivax
transmission models are developed and the dependence
of infection on age in different transmission settings can
be explicitly derived.
Aside from issues of data availability, biological fea-

tures of P. vivax, including its ability to cause relapsing
infections following an initial mosquito-borne infection,
were by necessity treated somewhat pragmatically in this
modelling exercise. That is, relapse was not explicitly
incorporated into the model since clinical cases due to re-
lapse are captured by both the incidence and prevalence
data. Rather, zone-specific relationships were developed to
account for varying geographic patterns of relapse [28].
The slope of the prevalence-incidence relationship curve
was steeper in regions where relapse is observed to occur
rapidly following the primary infection. Zones with long
latency relapse phenotypes, and therefore reduced annual
relapse incidence (Figure 9 and Table 4), such as Monsoon
Asia and northern Europe and Asia, show shallower
slopes. These regions, as shown in Figure 7, reach an inci-
dence of one case per 100 people per year at around 1%
prevalence, whereas the other regions shown reach a simi-
lar incidence level at even lower prevalence values.

Conclusion
The modelling outputs presented here inform the un-
derstanding of the nature of prevalence and incidence
relationships, but more importantly, the zone-specific
relationships will facilitate global predictions of clinical
burden to be made that account for regional differences
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in P. vivax epidemiology. Because of its ability to relapse,
P. vivax will be the final hurdle as regions move towards
elimination in much of the malaria-endemic world.
Burden estimates of known accuracy will enable assessments
to be made of the impact of P. vivaxmalaria on health systems
and economies within and among endemic regions, which will
be essential to strategic planning for the control and ultimate
elimination of P. vivax. The extremes of current estimates –
15.8 million versus 391 million clinical cases [17,18] –
emphasize the need for a validated approach to measuring the
burden imposed by this important and threatening parasite.

Additional files

Additional file 1: Geographic zones of relapse phenotype.
Description: Relapse patterns of strains of P. vivax are proposed to
differ among the nine ecological zones shown above [28].

Additional file 2: Incidence records plotted versus the predicted
MAP-based PvPR values and observed concurrent PvPR values.
Description: Incidence points versus MAP PvPR values are shown in
black and those points using concurrently measured PvPR values are
shown in blue.

Additional file 3: Approximate and exact person-time shown in
plots of incidence per 1,000 person-years versus parasite rate.
Description: The incidence records with concurrent PvPR estimates are
plotted below on linear (A) and log scales (B) below. The blue points
are those with approximated person time and those in grey had exact
person-time reported.

Additional file 4: Case parasite density threshold shown in scatter
plots of incidence per 1,000 person-years versus parasite rate.
Description: The incidence records are plotted below on linear (A)
and log scales (B) below. The grey points are studies that used any
parasitaemia in the case definition. Blue points are studies that defined
a case as ≥500 parasites/μl of blood and red points, 1000 parasites/μl.

Additional file 5: The posterior for the non-parametric fitted
function giving the impact of ACD frequency on the rate of
detected clinical incidence cases. Description: A non-parametric
statistical distribution the frequency of ACD was fit under a monotonicity
restriction, which forces the posterior to preserve a strict ordering of the
observed incidence scaling with respect to ACD frequency.
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