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Abstract
In this paper, we investigate the Novikov equation with a weakly dissipative term.
A new blow-up criterion independent of the initial energy is established.
MSC: 37L05; 35Q58; 26A12

Keywords: dissipative; Novikov equation; blow-up

1 Introduction
Recently, Vladimir Novikov [] derived the following integrable partial differential equa-
tion

ut – uxxt + uux – uuxuxx – uuxxx = , t > ,x ∈R. (.)

In [], Hone andWang gave amatrix Lax pair for the Novikov equation and showed how it
was related by a reciprocal transformation to a negative flow in the Sawada-Kotera hierar-
chy. Infinite conserved quantities were found as well as a bi-Hamiltonian structure. Then
in [], Hone, Lundmark and Szmigielski calculated the explicit formulas for multipeakon
solutions of (.), using the matrix Lax pair found by Hone and Wang.
A detailed description of the corresponding strong solutions to (.) with initial data u

was given byNi and her collaborators in [, ]. In [], they proved that the Cauchy problem
of theNovikov equation is locally well posed in the Besov spaces Bs

,r with the critical index
s = /. Then, well-posedness in Hs with s > / was also established by applying Kato’s
semigroup theory. In [], they found sufficient conditions on the initial data to guarantee
the formulation of singularities in finite time. A global existence result was also established
in [].
In this paper, we consider the following weakly dissipative Novikov equation:

ut – uxxt + uux – uuxuxx – uuxxx + λ(u – uxx) = , t > ,x ∈R, (.)

where u(x) denotes the velocity field and y(x, t) = u – uxx.
In [], local well-posedness for weakly dissipative Novikov equation (.) by Kato’s the-

orem and some blow-up results were proved. The global existence of strong solutions to
the weakly dissipative equation was also presented.
Now, we recall some elementary results which will be used in the paper.
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Theorem . [] Given u ∈ Hs(R), s > 
 , there exist T and a unique solution u to (.)

such that

u(x, t) ∈ C
(
[,T);Hs(R)

) ∩C([,T);Hs–(R)
)
.

Theorem . [] Let u ∈ Hs with s > 
 , and let T be the maximal existence time of the

solution u(x, t) to (.) with the initial data u(x). Then the corresponding strong solution
to (.) blows up if and only if

lim
t→T

sup
≤τ≤t

∥∥ux(x)∥∥L∞ = +∞.

Theorem . [] Let u ∈ Hs with s > 
 , and let T be the maximal existence time of the

solution u(x, t) to (.) with u as the initial datum. Assume that there exists x ∈ R such
that y = ( – ∂

x )u(x),

y(x)≥  for x ∈ (–∞,x) and y(x)≤  for x ∈ (x,∞)

and

u(x)u′
(x) < –λ –

√



‖u‖H + λ. (.)

Then the corresponding solution to (.) with u(x) as initial data blows up in finite time.

For studies on related dissipative equations, we can refer to [–].

2 Blow-up phenomenon
Before going to themain results, we introduce some notations and do some preliminaries.
Letting� = (–∂

x )

 , the operator�– can be expressed by its associated Green’s function

G = 
e

–|x| as

�–f (x) =G ∗ f (x) =



∫
R

e–|x–y|f (y)dy. (.)

Due to (.), equation (.) is equivalent to the following one

ut + uux +G ∗ (
uuxuxx + ux + uux

)
+ λu = . (.)

Motivated by Mckean’s observation for the Camassa-Holm equation [], we can do the
similar particle trajectory as

⎧⎨
⎩

dq(x,t)
dt = u(q(x, t), t),  < t < T ,x ∈R,

q(x, t = ) = x, x ∈R,
(.)

where T is the life span of the solution. Differentiating the first equation in (.) with
respect to x, one has

dqt
dx

= qxt = uux(q, t)qx, t ∈ (,T).
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Hence

qx(x, t) = exp

{∫ t


uux(q, s)ds

}
and qx(x, ) = .

Then q(x, t) is a diffeomorphism of the line before blow-up. Since

d
dt

(
y(q)q



x
)
=

[
yt(q) + u(q, t)yx(q) + uux(q, t)y(q)

]
q



x = –λyq



x ,

it follows that

y
(
q(x, t), t

)
q



x (x, t) = y(x)e–λt . (.)

The first result reads as follows.

Theorem . Suppose that u ∈ H(R) and there exists x ∈ R such that u(x) > ,
y(x) = ( – ∂

x )u(x) = ,

y(x)≥  (�≡ ) for x ∈ (–∞,x) and y(x)≤  ( �≡ ) for x ∈ (x,∞) (.)

as well as

u(u – ux)(x) > λ and u(u + ux)(x) < –λ. (.)

Then the corresponding solution u(x, t) to equation (.) with u as the initial datum blows
up in finite time.

Remark . Due to the effect of the weakly dissipative term, we add condition (.) by
comparing it with the blow-up result of the Novikov equation []. But unlike condition
(.), here it does not depend on the initial energy at all.

Proof Due to equation (.) and initial condition (.), we have

⎧⎪⎪⎨
⎪⎪⎩
y(q(x, t), t) = ,

y(ξ , t)≥  (�≡ ), for ξ ∈ (–∞, (q(x, t), t)),

y(ξ , t)≤  (�≡ ), for ξ ∈ ((q(x, t), t),∞)

for all t ≥ . Since u(x, t) =G ∗ y(x, t), one can write u(x, t) and ux(x, t) as

u(x, t) =


e–x

∫ x

–∞
eξy(ξ , t)dξ +



ex

∫ ∞

x
e–ξy(ξ , t)dξ ,

ux(x, t) = –


e–x

∫ x

–∞
eξy(ξ , t)dξ +



ex

∫ ∞

x
e–ξy(ξ , t)dξ .

Consequently, we can obtain

ux(x, t) – u(x, t) = –
∫ x

–∞
eξy(ξ , t)dξ

∫ ∞

x
e–ξy(ξ , t)dξ
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for all t > . Rewrite (.) as

ut + uux + ∂xG ∗
(
u +



uux

)
+G ∗

(


ux

)
+ λu = .

By differentiating the above equation, we get

utx + uuxx +


uux – u +G ∗

(
u +



uux

)
+ ∂xG ∗

(


ux

)
+ λux = .

Use the above equation and differentiate uux(q(x, t), t) with respect to t:

d
dt

uux =
(
ut + uxu

)
ux + u

(
uxt + uxxu

)

= –
[
∂xG ∗

(
u +



uux

)
+G ∗

(


ux

)
+ λu

]
ux

– u
[


uux – u +G ∗

(
u +



uux

)
+ ∂xG ∗

(


ux

)
+ λux

]

= u –


uux – λuxu –

[
∂xG ∗

(
u +



uux

)
+G ∗

(


ux

)]
ux

– u
[
G ∗

(
u +



uux

)
+ ∂xG ∗

(


ux

)]

= u –


uux – λuxu – (u – ux)



e–q

∫ q

–∞
eξ

(
u +



uux –



ux

)
dξ

– (u + ux)


eq

∫ ∞

q
e–ξ

(
u +



uux +



ux

)
dξ

≤ u –


uux – λuxu –



(u – ux)u –



(u + ux)u

=


u –



uux – λuux, (.)

where q is the diffeomorphism defined in (.) and we also apply the following inequalities
in []:

∫ q(x,t)

–∞
eξ

(
u +



uux –



ux

)
(ξ , t)dξ ≥ eq(x,t)u

(
q(x, t), t

)

and
∫ ∞

q(x,t)
e–ξ

(
u +



uux +



ux

)
(ξ , t)dξ ≤ e–q(x,t)u

(
q(x, t), t

)
.

Owing to condition (.), we can derive

(
uux(x) + λ

) – (
u(x) + λ

) = [
u(ux – u)

][
u(ux + u) + λ

]
> 

and

(
uux(x) + λ

) – (
u(x) – λ

) = [
u(ux – u) + λ

][
u(ux + u)

]
> .
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Claim uux(q(x, t), t) <  is decreasing and

⎧⎨
⎩
(u(q(x, t), t) + λ) < (uux(q(x, t), t) + λ),

(u(q(x, t), t) – λ) < (uux(q(x, t), t) + λ)

for all t ≥ .

Proof Suppose not, there exists t such that (u(q(x, t), t) + λ) < (uux(q(x, t), t) + λ)

and (u(q(x, t), t) – λ) < (uux(q(x, t), t) + λ) on [, t). Then we have (u(q(x, t), t) +
λ) = (uux(q(x, t), t) + λ) or (u(q(x, t), t) – λ) = (uux(q(x, t), t) + λ). Let

I(t) := u(u – ux)
(
q(x, t), t

)

and

II(t) := u(u + ux)
(
q(x, t), t

)
.

Firstly, differentiating I(t), we have

dI(t)
dt

= –u
(
q(x, t), t

)(
e–q(x,t)

∫ q(x,t)

–∞
eξy(ξ , t)dξ

)

+
(
e–q(x,t)

∫ q(x,t)

–∞
eξy(ξ , t)dξ

)(
e–q(x,t)

∫ q(x,t)

–∞
eξyt(ξ , t)dξ

)

+



∫ q(x,t)

–∞
eξyt(ξ , t)dξ

∫ ∞

q(x,t)
e–ξy(ξ , t)dξ

+



∫ q(x,t)

–∞
eξy(ξ , t)dξ

∫ ∞

q(x,t)
e–ξyt(ξ , t)dξ

≤ 

u

(
ux – u

)
– λu + λuux

=


(uux + λ) –



(
u + λ

) > . (.)

Secondly, by the same argument, we get

dII(t)
dt

= u
(
q(x, t), t

)(
eq(x,t)

∫ ∞

q(x,t)
e–ξy(ξ , t)dξ

)

+
(
eq(x,t)

∫ ∞

q(x,t)
e–ξy(ξ , t)dξ

)(
eq(x,t)

∫ ∞

q(x,t)
e–ξyt(ξ , t)dξ

)

+



∫ q(x,t)

–∞
eξyt(ξ , t)dξ

∫ ∞

q(x,t)
e–ξy(ξ , t)dξ

+



∫ q(x,t)

–∞
eξy(ξ , t)dξ

∫ ∞

q(x,t)
e–ξyt(ξ , t)dξ

≤ –


u

(
ux – u

)
– λu – λuux

= –


(uux + λ) +



(
u – λ

) < . (.)
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Hence, following from (.), (.) and the continuity property of ODEs, we deduce

(
uux

(
q(x, t), t

)
+ λ

) – (
u

(
q(x, t), t

)
+ λ

) = –I(t)
(
II(t) + λ

)
> –I()

(
II() + λ

)
> 

and

(
uux

(
q(x, t), t

)
+ λ

) – (
u

(
q(x, t), t

)
– λ

) = –
(
I(t) – λ

)
II(t)

> –
(
I() – λ

)
II() > ,

for all t > , which implies that t can be extended to the infinity. This is a contradiction.
Thus the claim is true. �

Using (.) and (.) again and uux(q(x, t), t) = –I(t) + II(t), we have the following in-
equality for [(uux + λ) – (u + λ) – (u – λ)](q(x, t), t):

d
dt

[
(uux + λ) –

(
u + λ

) – (
u – λ

)](q(x, t), t)

= –
d
dt

[
I(t)

(
II(t) + λ

)]
–

d
dt

[(
I(t) – λ

)
II(t)

]

≥ –
[


(uux + λ) –



(
u + λ

)](
q(x, t), t

)(
II(t) + λ

)

+
[


(uux + λ) –



(
u – λ

)](
q(x, t), t

)
I(t)

–
[


(uux + λ) –



(
u + λ

)](
q(x, t), t

)
II(t)

+
[


(uux + λ) –



(
u – λ

)](
q(x, t), t

)(
I(t) – λ

)

≥ –


(uux + λ)

[
(uux + λ) –

(
u + λ

) – (
u – λ

)](q(x, t), t). (.)

Recalling (.), we get

∂t
[
uux

(
q(x, t), t

)] ≤
[


u –



uux – λuux

](
q(x, t), t

)

= –



[
(uux + λ) –

(
u + λ

) – (
u – λ

)](q(x, t), t). (.)

Substituting (.) into (.) yields

d
dt

[
(uux + λ) –

(
u + λ

) – (
u – λ

)](q(x, t), t)

≥ 


[
(uux + λ) –

(
u + λ

) – (
u – λ

)](q(x, t), t)

×
∫ t



[
(uux + λ) –

(
u + λ

) – (
u – λ

)](q(x, τ ), τ)
dτ

–
[
(uux + λ) –

(
u + λ

) – (
u – λ

)](q(x, t), t)(uux(x) + λ
)
. (.)
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Before completing the proof, we need the following technical lemma.

Lemma . [] Suppose that �(t) is twice continuously differential satisfying

⎧⎨
⎩

� ′′(t) ≥ C�
′(t)�(t), t > ,C > ,

�(t) > , � ′(t) > .
(.)

Then ψ(t) blows up in finite time.Moreover, the blow-up time can be estimated in terms of
the initial datum as

T ≤max

{


C�()
,
�()
� ′()

}
.

Letting �(t) :=
∫ t
 [(uux +λ)

 – (u +λ) – (u –λ)](q(x, τ ), τ )dτ –uux(x)–λ,
then (.) is an equation of type (.) with C = 

 . The proof is complete by applying
Lemma .. �

Similarly, if we change the signs of u(x) and y(x) in Theorem ., it still holds. More
precisely, we have the following blow-up criterion.

Theorem . Suppose that u ∈ H(R) and there exists x ∈ R such that u(x) < ,
y(x) = ( – ∂

x )u(x) = ,

y(x)≤  (�≡ ) for x ∈ (–∞,x) and y(x)≥  ( �≡ ) for x ∈ (x,∞)

as well as

u(u – ux)(x) > λ and u(u + ux)(x) < –λ.

Then the corresponding solution u(x, t) to equation (.) with u as the initial datum blows
up in finite time.

Remark . We know that ‖u‖L∞ ≤ 
‖u‖H = 

e
–λt‖u‖H , which implies ux(q(x, t), t)

goes to –∞ in finite time for the case in Theorem .. However, for the case in Theo-
rem ., ux(q(x, t), t) goes to +∞ in finite time.
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