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Abstract
We study oscillatory behavior of a class of fourth-order neutral differential equations
with a p-Laplacian like operator using the Riccati transformation and integral
averaging technique. A Kamenev-type oscillation criterion is presented assuming that
the noncanonical case is satisfied. This new theorem complements and improves a
number of results reported in the literature. An illustrative example is provided.
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1 Introduction
In this paper, we are concerned with oscillation of a class of fourth-order neutral differen-
tial equations with a p-Laplacian like operator

(
r(t)

∣∣z′′′(t)
∣∣p–z′′′(t)

)′ +
l∑

i=

qi(t)
∣∣x(τi(t))∣∣p–x(τi(t)) = , (.)

where

z(t) := x(t) + a(t)x
(
σ (t)

)
.

It is interesting to study equation (.) since the p-Laplace differential equations have ap-
plications in continuummechanics as seen from []. Throughout, we assume that p >  is a
constant, I := [t,∞), r ∈ C(I, (,∞)), r′(t) ≥ , a,σ ,qi, τi ∈ C(I,R),  ≤ a(t) < , qi(t) ≥ ,
i = , , . . . , l, σ (t) ≤ t, limt→∞ σ (t) = ∞, there exists a function τ ∈ C(I,R) such that
τ (t) ≤ τi(t) for i = , , . . . , l, τ (t) ≤ t, τ ′(t) > , and limt→∞ τ (t) =∞.
We use the notation t– :=mint∈[t,∞){σ (t), τ(t), τ(t), . . . , τl(t)}. By a solution of (.), we

mean a function x ∈ C([t–,∞),R) which has the property r|z′′′|p–z′′′ ∈ C(I,R) and satis-
fies (.) on I.We consider only those solutions x of (.) which satisfy sup{|x(t)| : t ≥ t∗} > 
for all t∗ ≥ t and tacitly assume that (.) possesses such solutions. A solution x of (.) is
called oscillatory if it has arbitrarily large zeros on I; otherwise, it is said to be nonoscilla-
tory. Equation (.) is termed oscillatory if all its solutions oscillate.
Fourth-order differential equations naturally appear in models concerning physical, bi-

ological, and chemical phenomena; see []. In mechanical and engineering problems,
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questions related to the existence of oscillatory solutions play an important role. During
the past few years, there has been constant interest in obtaining sufficient conditions for
oscillatory and nonoscillatory properties of different classes of fourth-order differential
equations. We refer the reader to [–] and the references cited therein. Parhi and Tri-
pathy [, ] and Thandapani and Savitri [] studied a fourth-order neutral differential
equation

(
r(t)

(
x(t) + p(t)x

(
σ (t)

))′′)′′ + q(t)x
(
τ (t)

)
= .

Most oscillation results reported in [, , , ] for (.) and its particular cases have been
obtained under the assumption that

R(t) = ∞, (.)

where

R(t) :=
∫ ∞

t

ds
r/(p–)(s)

.

The analogue for (.) in case a(t) =  has been studied in [, , , –] under the
condition that

R(t) < ∞, (.)

which is called a noncanonical case. Assuming (.), a question regarding the oscillation
and asymptotic behavior of solutions to (.) in the case

p = , l = ,  ≤ a(t)≤ a < , and τ(t)≤ t (.)

has been studied by Li et al. []. Note that [, Theorem .] ensures that every solution x
of the studied equation is either oscillatory or tends to zero as t → ∞ and, unfortunately,
cannot distinguish solutions with different behaviors.
It should be noted that research in this paper is strongly motivated by the recent paper

[]. The purpose of this paper is to establish a Kamenev-type theorem which guarantees
that all solutions of equation (.) are oscillatory in the case where (.) holds and without
requiring conditions (.). In the sequel, all functional inequalities are assumed to hold for
all t large enough.

2 Main results
We begin with the following lemma.

Lemma . (See []) Let f ∈ Cn(I,R+). Assume that f (n) is eventually of one sign for all
large t, and there exists a t ≥ t such that f (n)(t)f (n–)(t) ≤  for all t ≥ t. Then, for every
constant λ ∈ (, ), there exist a tλ ∈ [t,∞) and a constant M >  such that

f (λt)≥Mtn–
∣∣f (n–)(t)∣∣

for all t ∈ [tλ,∞).
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Lemma . (See [, Lemma ..]) Let f be as in Lemma .. If limt→∞ f (t) 	= , then, for
every constant k ∈ (, ), there exists a tk ∈ [t,∞) such that

f (t)≥ k
(n – )!

tn–
∣∣f (n–)(t)∣∣

for all t ∈ [tk ,∞).

Theorem . Assume (.) and let one of the following conditions hold:
∫ ∞

t
R(s) ds =∞ (.)

and ∫ ∞

t

∫ ∞

u
R(s) dsdu =∞. (.)

Suppose also that there exist functions ρ ∈ C(I, (,∞)), H ,� ∈ C(D,R), where D = {(t, s) :
t ≥ s ≥ t} such that

H(t, t) = , t ≥ t, H(t, s) > , t > s ≥ t,

and H has a nonpositive continuous partial derivative ∂H/∂s satisfying, for all sufficiently
large T ≥ t, for some constant λ ∈ (, ), and for all constants M > ,

lim sup
t→∞


H(t,T)

∫ t

T

[
H(t, s)ρ(s)

l∑
i=

qi(s)
(
 – a

(
τi(s)

))p–

–

pp

r(s)(�+(t, s))p

(λMτ ′(s)τ (s)ρ(s))p–

]
ds =∞, (.)

where

�+(t, s) :=max
{
,�(t, s)

}
and

∂H(t, s)
∂s

+
ρ ′(s)
ρ(s)

H(t, s) =
�(t, s)
ρ(s)

(
H(t, s)

)(p–)/p.
If there exist functions δ ∈ C(I, (,∞)), K , ξ ∈ C(D,R) such that

K (t, t) = , t ≥ t, K (t, s) > , t > s ≥ t,

and K has a nonpositive continuous partial derivative ∂K/∂s satisfying, for all sufficiently
large T ≥ t and for some constant k ∈ (, ),

lim sup
t→∞

∫ t

T

[
K (t, s)δ(s)

(
kτ (s)


)p– l∑
i=

qi(s)
(
 – a

(
τi(s)

))p–

–
r(s)(ξ+(t, s))p

ppδp–(s)

]
ds > , (.)
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where

ξ+(t, s) :=max
{
, ξ (t, s)

}
and

∂K (t, s)
∂s

+
δ′(s)
δ(s)

K (t, s) = –
ξ (t, s)
δ(s)

(
K (t, s)

)(p–)/p,
then equation (.) is oscillatory.

Proof Let x be a nonoscillatory solution of (.).Without loss of generality, wemay assume
that x is eventually positive. Equation (.) implies that there exists a t ≥ t such that the
following three possible cases hold for all t ≥ t:
() z(t) > , z′(t) < , z′′(t) > , z′′′(t) < , (r|z′′′|p–z′′′)′(t) ≤ ;
() z(t) > , z′(t) > , z′′′(t) > , z()(t)≤ , (r|z′′′|p–z′′′)′(t)≤ ;
() z(t) > , z′(t) > , z′′(t) > , z′′′(t) < , (r|z′′′|p–z′′′)′(t) ≤ .

We consider each of these cases separately.
Case . Assume that () is satisfied. Noting that r(–z′′′)p– is nondecreasing, we have, for

s ≥ t ≥ t,

r/(p–)(s)z′′′(s)≤ r/(p–)(t)z′′′(t).

Dividing the latter inequality by r/(p–)(s) and integrating the resulting inequality from t
to ι, ι ≥ t ≥ t, we obtain

z′′(ι) ≤ z′′(t) + r/(p–)(t)z′′′(t)
∫ ι

t

ds
r/(p–)(s)

.

Passing to the limit as ι → ∞, we conclude that

z′′(t) ≥ –r/(p–)(t)z′′′(t)R(t).

Hence, there exists a constant c >  such that

z′′(t) ≥ cR(t). (.)

Integrating (.) from t to t, we have

z′(t) – z′(t) ≥ c
∫ t

t
R(s) ds.

This yields

–z′(t) ≥ c
∫ t

t
R(s) ds,

which contradicts (.). Next, integrating (.) from t to ∞, we get

–z′(t)≥ c
∫ ∞

t
R(s) ds.

http://www.boundaryvalueproblems.com/content/2014/1/56
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Integrating again from t to t, we have

–z(t) + z(t) ≥ c
∫ t

t

∫ ∞

u
R(s) dsdu.

This implies that

z(t) ≥ c
∫ t

t

∫ ∞

u
R(s) dsdu,

which contradicts (.).
Case . Assume that () is satisfied and let λ ∈ (, ) be an arbitrary constant. Then, there

exists a tλ ≥ t such that, for all t ≥ tλ, z(λτ (t)) > . For t ≥ tλ, define

ω(t) := ρ(t)
r(t)(z′′′(t))p–

zp–(λτ (t))
. (.)

Then ω(t) >  for all t ≥ tλ, and

ω′(t) = ρ ′(t)
r(t)(z′′′(t))p–

zp–(λτ (t))
+ ρ(t)

(r(t)(z′′′(t))p–)′

zp–(λτ (t))

– (p – )λρ(t)
τ ′(t)zp–(λτ (t))z′(λτ (t))r(t)(z′′′(t))p–

z(p–)(λτ (t))
. (.)

By virtue of Lemma ., we have, for some constantM >  and for all sufficiently large t,

z′(λτ (t)
) ≥Mτ (t)z′′′(τ (t)) ≥Mτ (t)z′′′(t). (.)

Combining (.) and (.), we get

ω′(t) ≤ ρ ′(t)
r(t)(z′′′(t))p–

zp–(λτ (t))
+ ρ(t)

(r(t)(z′′′(t))p–)′

zp–(λτ (t))

– (p – )λMτ (t)τ ′(t)
ρ(t)r(t)(z′′′(t))p

zp(λτ (t))
. (.)

Recalling that z′ >  and σ (t)≤ t, we have

x(t) = z(t) – a(t)x
(
σ (t)

) ≥ z(t) – a(t)z
(
σ (t)

) ≥ (
 – a(t)

)
z(t). (.)

Then it follows from (.), (.), (.), and (.) that there exists a t ≥ tλ such that, for all
t ≥ t,

ω′(t) ≤ –ρ(t)
l∑

i=

qi(t)
(
 – a

(
τi(t)

))p– + ρ ′(t)
ρ(t)

ω(t)

–
(p – )λMτ (t)τ ′(t)

(r(t)ρ(t))/(p–)
ωp/(p–)(t).
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Multiplying the latter inequality by H(t, s) and integrating the resulting inequality from t
to t, we obtain

∫ t

t
H(t, s)ρ(s)

l∑
i=

qi(s)
(
 – a

(
τi(s)

))p– ds
≤H(t, t)ω(t) +

∫ t

t

[
∂H(t, s)

∂s
+

ρ ′(s)
ρ(s)

H(t, s)
]
ω(s) ds

–
∫ t

t

(p – )λMτ (s)τ ′(s)
(r(s)ρ(s))/(p–)

H(t, s)ωp/(p–)(s) ds

≤H(t, t)ω(t) +
∫ t

t

�+(t, s)
ρ(s)

(
H(t, s)

)(p–)/p
ω(s) ds

–
∫ t

t

(p – )λMτ (s)τ ′(s)
(r(s)ρ(s))/(p–)

H(t, s)ωp/(p–)(s) ds. (.)

Now set

Ap/(p–) :=
(p – )λMτ (s)τ ′(s)

(r(s)ρ(s))/(p–)
H(t, s)ωp/(p–)(s)

and

B/(p–) :=
(p – )/p�+(t, s)(r(s)ρ(s))/p

pρ(s)(λMτ (s)τ ′(s))(p–)/p
.

Letting θ := p/(p – ) and using the inequality (see [])

θABθ– –Aθ ≤ (θ – )Bθ , θ > ,A≥ ,B ≥ , (.)

we have

�+(t, s)
ρ(s)

(
H(t, s)

)(p–)/p
ω(s) –

(p – )λMτ (s)τ ′(s)
(r(s)ρ(s))/(p–)

H(t, s)ωp/(p–)(s)

≤ 
pp

r(s)(�+(t, s))p

(λMτ ′(s)τ (s)ρ(s))p–
.

Hence, we conclude by (.) that, for all sufficiently large t,


H(t, t)

∫ t

t

[
H(t, s)ρ(s)

l∑
i=

qi(s)
(
 – a

(
τi(s)

))p–

–

pp

r(s)(�+(t, s))p

(λMτ ′(s)τ (s)ρ(s))p–

]
ds ≤ ω(t),

which contradicts (.).
Case . Assume that () is satisfied. We also have (.). By virtue of Lemma ., we

conclude that, for every constant k ∈ (, ), there exists a tk ≥ t such that, for all t ≥ tk ,

z(t) ≥ k

tz′′(t). (.)

http://www.boundaryvalueproblems.com/content/2014/1/56


Li et al. Boundary Value Problems 2014, 2014:56 Page 7 of 9
http://www.boundaryvalueproblems.com/content/2014/1/56

Now define

φ(t) := –δ(t)
r(t)(–z′′′(t))p–

(z′′(t))p–
, t ≥ t. (.)

Then φ(t) <  for all t ≥ t. It follows from (.), (.), (.), and (.) that there exists a
t ≥ tk such that, for all t ≥ t,

φ′(t) = –δ(t)
l∑

i=

qi(t)
(
 – a

(
τi(t)

))p– zp–(τ (t))
(z′′(τ (t)))p–

(z′′(τ (t)))p–

(z′′(t))p–

+
δ′(t)
δ(t)

φ(t) – (p – )
(–φ(t))p/(p–)

(r(t)δ(t))/(p–)

≤ –δ(t)
(
kτ (t)


)p– l∑
i=

qi(t)
(
 – a

(
τi(t)

))p–

+
δ′(t)
δ(t)

φ(t) – (p – )
(–φ(t))p/(p–)

(r(t)δ(t))/(p–)
. (.)

Multiplying (.) by K (t, s) and integrating the resulting inequality from t to t, we obtain

∫ t

t
K (t, s)δ(s)

(
kτ (s)


)p– l∑
i=

qi(s)
(
 – a

(
τi(s)

))p– ds
≤ K (t, t)φ(t) +

∫ t

t

[
∂K (t, s)

∂s
+

δ′(s)
δ(s)

K (t, s)
]
φ(s) ds

– (p – )
∫ t

t
K (t, s)

(–φ(s))p/(p–)

(r(s)δ(s))/(p–)
ds

≤ K (t, t)φ(t) –
∫ t

t

ξ+(t, s)
δ(s)

(
K (t, s)

)(p–)/p
φ(s) ds

– (p – )
∫ t

t
K (t, s)

(–φ(s))p/(p–)

(r(s)δ(s))/(p–)
ds. (.)

Set

Ap/(p–) := (p – )K (t, s)
(–φ(s))p/(p–)

(r(s)δ(s))/(p–)

and

B/(p–) :=
(p – )/p(r(s)δ(s))/pξ+(t, s)

pδ(s)
.

Letting θ := p/(p – ) and using inequality (.), we have by (.) that, for all sufficiently
large t,

∫ t

t

[
K (t, s)δ(s)

(
kτ (s)


)p– l∑
i=

qi(s)
(
 – a

(
τi(s)

))p– – r(s)(ξ+(t, s))p

ppδp–(s)

]
ds

≤ K (t, t)φ(t) < ,

which contradicts (.). This completes the proof. �
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Remark . Choosing different combinations of functions H , ρ , K , and δ, one can de-
rive from Theorem . a variety of efficient tests for oscillation of equation (.) and its
particular cases.

3 Example and discussion
The following example illustrates applications of Theorem ..

Example . For t ≥  and  ≤ a < , consider the fourth-order neutral differential equa-
tion

(
t

(
x(t) + ax(t – π )

)′′′)′ + ( + a)tx(t – π ) + ( + a)tx
(
t +

π



)
= . (.)

Let p = , τ (t) = t – π , ρ(t) = δ(t) = , and H(t, s) = K (t, s) = (t – s). It is not difficult
to verify that all assumptions of Theorem . are satisfied, and hence equation (.) is
oscillatory. As a matter of fact, one such solution is x(t) = sin t.

Remark . Oscillation theorem established in this paper for equation (.) comple-
ments, on one hand, results reported by Baculíková and Džurina [], Karpuz [], and Li et
al. [] because we use assumption (.) rather than (.) and, on the other hand, those by
Li et al. [] and Zhang et al. [, , –] since our theorem can be applied to the case
where a(t) 	= .

Remark . Wepoint out that, contrary to [, Theorem .], Theorem . does not need
restrictive conditions (.) and can ensure that all solutions of equation (.) oscillate,
which, in a certain sense, is a significant improvement compared to [, Theorem .]
for fourth-order neutral differential equations.

Remark . It would be of interest to study equation (.) in the case where

∫ ∞

t

∫ ∞

u
R(s) dsdu < ∞

for future research.
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