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Abstract

This paper extends the scale-invariant edge detector to the one-dimensional slope. It can accurately detect the
slope and estimate its parameters. The method has been verified with several mathematical functions, sample sizes,
and noise levels. A contrast-invariant operator is proposed to suppress noise. The inter-sample localization and
interpolation greatly improve the accuracy. The proposed slope detector is also suitable for real-world signals. In
additional to above-mentioned, a threshold formula is developed for the first derivative slope detector, and the
upper-bound of the filterable noise level is also explored.

Keywords: Slope; Gaussian; Threshold; Error function; Sub-sample; Localization; Interpolation; Noise suppression;
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Introduction
This paper concerns the slope detection of one-
dimensional discrete signals (Oppenheim and Willsky
1983). The one-dimensional slope detection shares some
common problems (e.g. noise suppression, threshold se-
lection) with the two-dimensional case (Bansal et al.
2012, Pinho and Almeida 2012). This paper is dedicated
to these problems.
The edge detection has attracted the attention of many

researchers. To suppress signal noise, Witkin proposed a
scale space by convolving the input signal with the
Gaussian distribution function (Witkin 1983). Canny
treated the first derivative of the Gaussian distribution
function as one-dimensional edge detector (Canny
1986). Marr et al. studied edge detection using the zero
crossing of the second derivative of the Gaussian (Marr
1980). Zhang et al. found a scale-invariant edge detector
(Zhang and Liu 2013).
Although two-dimensional edge detection is a well-

established subject, however, it seems that the slope of
one-dimensional discrete signal is seldom studied. The
first derivative operator is a seemingly easy solution.
This paper will discuss its problems in detail, and give
the remedies. Noise suppression is an important subject
of slope detection. Inspired by a contrast-invariant dif-
ferential operator (Zhang and Liu 2013), a method cap-
able of effectively differentiating noise and slope is
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proposed. The selection of the smoothing scale is an-
other major problem of many existing methods. The
scale-invariant edge detector can address the issue by
automatically choosing the adequate scale for each edge
feature. This research extends the technique to the one-
dimensional slope detection. Because of the apparent
distinction between the one dimensional and the two di-
mensional signals, the scale-invariant edge detector is
adjusted for the slope with additional functions of inter-
sample localization and interpolation. The proposed
method is suitable for several broad classifications of sig-
nals: noisy and noiseless, periodic and non-periodic,
densely and sparsely sampled.

One dimensional slope detection
Signal representation
An ideal slope function is needed to investigate detectors
quantitatively. The function is characterized by a pos-
ition, contrast, offset, and width parameters (Figure 1).
These parameters can be modeled by the x0, c, d, and w
constant parameters of an error function (Equation 1).

slope x; c; d;w; x0ð Þ ¼ c
Z x−x0

−∞

e
−ξ2

2w2ffiffiffiffiffiffi
2π

p
w
dξ þ d

¼ c
2

1þ erf
x−x0ffiffiffi
2

p
w

� �� �
þ d ð1Þ

A step is just a special ideal slope with zero width
(Equation 2), therefore all forthcoming discussions are
equally applicable.
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Figure 1 An ideal slope and its parameters.
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step x; c; dð Þ ¼ lim
w→0

slope x; c; d;wð Þ ð2Þ

For a function f having the shape of a slope, two steps
are involved to acquire a slope of width w, contrast c,
position x0, and offset d, as shown in Equation 3. The
min and max functions return minimum and maximum
value of their inputs. The discussion is based on the
ideal slope (Zhang and Liu 2013), and the result is veri-
fied by several slope functions.

y ¼ f
x−x0
w

� �

y ¼ y−min yð Þ
max yð Þ � cþ d

ð3Þ

Convolving the input slope function and the Gaussian
distribution function results in the scale space (Equation 4)
of the input signal where the σ represents the scale.
Figure 2 The transformed Lx and Lxs.
It is easy to verify that the L function is also an error
function.

L x; σ; c; d;w; x0ð Þ ¼ slope x; c; d;w; x0ð Þ � e−
x2

2σ2ffiffiffiffiffiffi
2π

p
σ

ð4Þ

The error function has nice properties. For example,
with a variable substitute (Equation 6), both the error
function and its scale space are solutions of the heat
equation:

ut ¼ 1
2
∇2u ð5Þ

w ¼ ffiffi
t

p ð6Þ

Because the scale space of the ideal slope and its dif-
ferential operators are represented in closed-form, fur-
ther investigation can be carried out.
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Figure 3 The spatial and scale perspective of Lx and Lxs.
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Scale and spatial detector
The Lx operator is used in this paper to denote the scale-
normalized derivative of L with respect to x (Equation 7).
The scale-normalization is necessary for a scale-invariant
detector (Zhang and Liu 2013). The derivative of Lx with
respect to scale is shown in Equation 8.

Lx ¼ σ � Lx ð7Þ

Lxs ¼ σ � Lxσ ¼ σ � σ � Lxð Þσ ð8Þ
To detect a slope on a specific scale, the operator

should have a local extremum along the scale coordin-
ate axis. In order to show that Lxs satisfies the require-
ment, Equation 9 (Zhang and Liu 2013) is used to
5 10

0.2

0.3

0.4

0.5

0.6

0.7

0.8

y

Figure 4 Sparsely sampled sine slopes detected by the proposed det
substitute variables. The ξ and Q can be treated as
scale-normalized x and w.

ξ ¼ x−x0
σ

;Q ¼ w
σ

ð9Þ

Figure 2 shows the variable substituted version of Lx
and Lxs. The Lx operator has a local extremum along
the ξ coordinate axis, and the Lxs operator has a local
extremum along the Q coordinate axis.
The location of Q is solved by taking the derivative of

Lxs with respect to Q and evaluating to zero (Equation 10).

LxsQjξ¼0 ¼ 0→Q ¼
ffiffiffi
2

p
ð10Þ
15 20
x

ector.



Table 2 Parameter ranges for ideal slopes

Parameter Minimum (m) Maximum (M)

Width (w) 1 50

Contrast (c) 0.05 1

Offset (d) 0.05 1

x0 −40 40

Table 1 Implementation configuration

Signal samples σ0 S Maximum scale

513 0.6 6 513/6
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The same thing can be illustrated by Figure 3. Using
planes ξ=0 and Q=sqrt(2) to intersect Lx and Lxs results
in curves. The diagram in the upper left quadrant of
Figure 3 shows Lx lacking a local extremum along Q
coordinate axis. On the other hand, Lxs has a local
extremum along Q coordinate axis (upper right quad-
rant). From the diagrams in the lower left and lower
right quadrants of Figure 3, it seems that both operators
having a local extreme along ξ coordinate.
To ensure the existence of a local extremum of Lxs

along the ξ coordinate axis, the second derivative of
Lxs with respect to ξ is computed, obtaining a zero
(Equation 11).

∂ξ;ξLxs Q¼ ffiffi
2

p
;ξ¼0 ¼ 0

��� ð11Þ

The fact indicates that Lxs has not a local extremum
along the ξ coordinate and therefore can not locate
spatial position. To detect the position and scale of a
slope, two operators are necessary.

Parameter estimation
The slope is detected when Lxs reaches a local extre-
mum along the scale coordinate. As shown in Equation 12,
the contrast of the slope can be solved for using Lxs and
the offset can be solved for using L (value at the
extremum location). To detect step slopes, a pre-
smoothing operation with a small scale is required. The
pre-smoothing scale is removed from the detected scale,
results in the width.

c ¼ 3� Lxs�
ffiffiffiffiffiffi
3π
2

r

d ¼ L−
c
2

w ¼
ffiffiffi
2

p
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2detected−σ

2
pre−smooth

q
ð12Þ

Inter-sample localization and interpolation
Directly applying the method of continuous functions will
produce noticeable errors for discrete signals. Sub-pixel
localization can be applied to three-dimensional scale
space functions (Brown and Lowe 2002, Lowe 2004). This
paper adopts a slightly different approach, because the
scale and position are detected by two different operators.
Taking the derivative of the Taylor expansion of a function
can determine the inter-sample location. The Lxs operator
is used for scale localization (Equation 13) and Lx for
spatial localization (Equation 14).
Lxs σð Þ ¼ Lxsþ Lxsσ � σ þ 1
2
Lxsσσ � σ2 þ ε

σ̂ ¼ −
Lxsσ
Lxsσσ

ð13Þ

Lx xð Þ ¼ Lxþ Lxx � xþ 1
2
Lxxx � x2 þ ε

x̂ ¼ −
Lxx
Lxxx

ð14Þ

Bilinear interpolation using the refined location and
scale is involved to compute the parameters. The inter-
sample localization and interpolation procedure greatly
improves the detection and estimation accuracy. Figure 4
illustrates located slopes between samples and the inter-
polated vertical position (d+c/2).

Implementation
The scale space (L) and the Lx spaces are computed in
the frequency domain (Cooley and Tukey 1965):

L ¼ edge � g ¼ ifft fft slopeð Þ � fft gð Þð Þ
Lx ¼ σs � slope � gx ¼ σs � ifft fft slopeð Þ � fft gx

� 	� 	
ð15Þ

Where σs is the discrete smoothing scale given by
Equation 20.
The Gaussian and the derivative of the Gaussian con-

volution kernels can be computed using the expression:

g ¼ e
−

x2

2σ s
2

ffiffiffiffiffiffi
2π

p
σs

gx ¼ −
e
−

x2

2σs2xffiffiffiffiffiffi
2π

p
σs3

ð16Þ



Table 5 statistics of Lxs/Lx for various slope functions

Edge Min Max Mean Std

Erf 0.6381 0.6891 0.6637 0.0149

tanh 0.6169 0.9932 0.6488 0.0503

sigmoid 0.4503 0.6705 0.6398 0.0193

ramp 0.7768 0.8565 0.8134 0.0221

step 0.6429 0.6429 0.6429 0

arctan 0.5531 0.9968 0.5798 0.0522

Table 3 RMSD of positional errors of the Lx detector for
the noisy ideal slopes, without considering noise
threshold

stdn Pre-smooth Erf Tanh Sigmoid Ramp Step Arctan

0.001 1 92.1 96.31 88.28 94.26 145.67 95.77

4 8.92 8.14 51.64 13.01 0.58 81.91

64 0.3 0.3 0.3 0.41 0.58 0.3

0.01 1 147.65 148.06 146.24 148.34 150.46 146.63

4 131.81 136.07 119.53 130.57 143.35 123.38

64 0.39 0.41 0.45 0.46 0.61 0.42

0.1 1 149.72 149.85 149.61 149.77 150.2 149.58

4 147.27 147.78 146.49 147.99 148.9 146.55

64 56.84 60.87 58.98 56.84 52.13 63.43
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The Lxs is implemented using a central difference:

Lxs ¼ σs
Lx x; σsþ1ð Þ−Lx x; σs−1ð Þ

σsþ1−σs−1
: ð17Þ

The scale and spatial derivatives of Lx and Lxs can be
obtained using differences (Equation 18 and Equation 19),
and these values are used for the inter-sample localization.

Lxx ¼ 1
2

Lx xþ 1; σsð Þ−Lx x−1; σsð Þð Þ
Lxxx ¼ Lx x−1; σsð Þ þ Lx xþ 1; σsð Þ−2� Lx x; σsð Þ

ð18Þ

Lxsσ ¼ 1
2

Lxs x; σsþ1ð Þ−Lxs x; σs−1ð Þð Þ
Lxsσσ ¼ Lxs x; σs−1ð Þ þ Lxs x; σsþ1ð Þ−2� Lxs x; σ sð Þ

ð19Þ
In Table 1 and Equation 20, the maximum scale en-

sures that the convolution kernel will not exceed the sig-
nal boundary. Only slopes with contrast greater than
0.05 are considered therefore low contrast slopes are ig-
nored as a noise. Because narrow slopes (e.g. step) are
difficult to detect; it is necessary to smooth the signal
Table 4 RMSD of positional errors of the Lx detector for
the noisy ideal slopes, considering noise threshold

stdn Pre-smooth Erf Tanh Sigmoid Ramp Step Arctan

0.001 1 34.64 33.4 52.53 16.65 0.58 56.26

4 8.64 4.5 47.17 12.76 0.57 75.2

64 0.28 0.28 0.29 0.4 0.57 0.29

0.01 1 24.53 21.04 39.43 15.36 0.58 38.86

4 15.08 10.36 33.27 14.11 0.57 38.06

64 0.39 0.41 0.47 0.46 0.58 0.47

0.1 1 21.34 20.04 47.93 15.17 0.57 51.45

4 10.4 8 28 11.54 0.58 30.67

64 1.05 0.95 1.2 0.86 0.89 1.15
pre-smoothing operation is not performed for the par-
ameter estimation experiment.

σs ¼ σ0 � 2
s
S; s ¼ 0; 1; ð20Þ

Noise suppression
It is well-known that the first derivative operator is ex-
tremely sensitive to noise; therefore a smoothing operation
is often carried out to suppress noise. Although a large
scale can filter the high level noise, signal details are also
removed. The smoothing scale is often selected empirically,
and a minimum scale is necessary to filter a certain noise
level (mean and standard deviation). The minimum scale
can only be determined by the scale-invariant detectors
(instead of Lx). Therefore the following paragraphs deduce
the threshold of Lx for a pre-smoothing scale.

The threshold of the first derivative operator
The first derivative of the smoothed ideal slope at the lo-
cation of x0 can be obtained using Equation 21, where
the σ is the pre-smoothing scale.

Lxjx¼x0 ¼
cffiffiffiffiffiffi

2π
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

w2 þ σ2
p ð21Þ
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Figure 5 Lxs/Lx of Gaussian noise of zero mean and random
standard deviations, pre-smoothing scale and Tm are 0.



Figure 6 Lxs/Lx of noise impulse signal.
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If the minimum and maximum values are denoted by
subscript m and M, then the low and high threshold of
the Lx detector are represented by Tm and TM (Equation 22).
The TM and the first component of Tm filter slopes
whose contrast is within the range of cm and cM, and
the width within wm and wM. A noise can be filtered out
by the second component of Tm, if the standard devi-
ation (stdn) and mean (meann) of the noise are known.
It is assumed that the highest contrast of a Gaussian
noise is six times the standard deviation plus the mean,
and its lowest width is wm

n (a small value, e.g. 0.5). If the
second component of Tm is smaller than the first com-
ponent, then all slopes within the range are detectable. If
the second component of Tm is between the first one
and TM, then only slopes of partial range are detectable.
Otherwise, no slope can be detected. Besides, six times
standard deviation is guaranteed to filter out all noise
Table 6 The percentages of Lxs/Lx of noise at three intervals

Lxs/Lx

0

Pre-smoothing scale 0 (−∞,0) 81.907

[0,1) 3.204

[1,∞) 14.889

1 (−∞,0) 69.709

[0,1) 11.758

[1,∞) 18.533

10 (−∞,0) 28.724

[0,1) 60.152

[1,∞) 11.125

100 (−∞,0) 0.149

[0,1) 97.879

[1,∞) 1.972
points in principle, while three times standard deviation
may preserve a few noise points.

Tm ¼ max
cmffiffiffiffiffiffi

2π
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

wM
2 þ σ2

p ;
6� stdn þmeannffiffiffiffiffiffi
2π

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
wnnm
� 	2 þ σ2

q
0
B@

1
CA

TM ¼ cMffiffiffiffiffiffi
2π

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
wm

2 þ σ2
p

ð22Þ
In order to detect slope and filter out all noise, the

second component of Tm should be no more than TM

(equation 23). An upper bound of the filterable noise is
achieved with an infinite large pre-smoothing scale. The
noise with higher standard deviation can not be com-
pletely removed from the detectable slopes.
under two conditions

Tm

1×stdn+meann 3×stdn+meann 6×stdn+meann

82.916 84.421 89.578

0.974 0.222 0.005

16.109 15.357 10.417

70.955 80.155 84.211

7.465 0.379 0

21.580 19.467 15.790

75.932 - -

0.641 - -

23.427 - -

- - -

- - -

- - -



Table 7 RMSD of positional errors of the proposed
method, pre-smoothing scale 0

Error Erf Tanh Sigmoid Ramp Step Arctan

Position
(point)

0.0097 0.0140 0.1107 0.2065 0.3527 0.0062

Width (%) 1.1900 2.0600 19.2500 6.9900 0.9900 1.3400

Contrast (%) 2.6300 7.2600 9.0000 16.4400 7.4300 24.8700

Offset (%) 3.7300 10.3800 12.7100 23.4800 22.9800 35.7400

Table 9 RMSD of positional errors of the proposed
detector for the ideal slopes

Pre-smooth Erf Tanh Sigmoid Ramp Step Arctan

0 0.0092 0.0157 0.1024 0.2116 - 0.0686

1 0.0067 0.0094 0.1024 0.2068 0.3706 0.0682

2 0.0040 0.0049 0.1024 0.2094 0.2950 0.0681

4 0.0018 0.0021 0.1052 0.2065 0.2913 0.0683
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6� stdn þmeannffiffiffiffiffiffi
2π

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
wnm2 þ σ2

p ≤
cMffiffiffiffiffiffi

2π
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

wm
2 þ σ2

p

⇒6� stdn þmeann≤
cM

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
wnm2 þ σ2

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
wm

2 þ σ2
p

⇒6� stdn þmeann σ−>∞≤cMj

ð23Þ

As defined by Table 2, the highest contrast of synthe-
sized ideal slopes is 1, hence the highest contrast of
filterable noise is also 1. Without loss of generality, the
experiments are based on Gaussian noise series of zero
mean and random standard deviation. The Lx detector
uses the thresholds (Tm and TM) to filter out noise. The
errors of Lx are effectively reduced, as shown in Table 3
and Table 4.

A method to differentiate slope and noise
Two techniques are adopted by the proposed method to
suppress noise. The first is setting contrast threshold
(Equation 24), and the second is limiting an operator to
some range. The contrast is estimated using equation 12;
therefore this sub-section will concentrate on the second
technique.

Tc
m ¼ max cm; 6� stdn þmeannð Þ

Tc
M ¼ cM

ð24Þ

The ratio of the two operators of the ideal slope is
a constant at the extremum location, as shown in
Equation 25.

Lxs
Lx

jξ¼0;Q¼ ffiffi
2

p ¼ 2
3

ð25Þ

Table 5 lists the ratios’ range, mean and standard devi-
ation of several slope functions. For each slope function,
the experiment uses Table 2 to generate 1000 synthesized
Table 8 RMSD of positional errors of the Lx detector for
the ideal slopes

Pre-smooth Erf Tanh Sigmoid Ramp Step Arctan

0 0.2859 0.2859 0.2861 16.9743 - 0.2859

1 0.2859 0.2859 0.2861 14.3276 0.5836 0.2859

2 0.2859 0.2859 0.2861 10.8449 0.5857 0.2860

4 0.2859 0.2859 0.2861 4.2151 0.5558 0.2860
slopes. The ratios of different slope functions are similar,
because the means are near 2/3, and the standard devia-
tions are small.
The ratio behaves differently for noise. Figure 5 illus-

trates the ratios’ distribution for Gaussian noise. The ra-
tios are mainly located at negative axis, and reach a peak
near −1.5.
The following content tries to explain the phenomenon.

A noise (impulse) of contrast, offset, and width (c, d, and
w) is modeled by:

noise ¼ c� e−
x2

2w2

� 	
þ d ð26Þ

As before, the scale space L is the Gaussian smoothed
signal, and the Lxs and Lx operators can be obtained
from Equation 7 and Equation 8. The ratio equals −2
when both Q and ξ are zero (Equation 27).

Lxs
Lx

jξ¼0;Q¼0 ¼ −2 ð27Þ

The division of Lxs and Lx is shown in Figure 6. Be-
cause the width of the noise impulse is near zero, the lo-
cation (x) of the feature is also near zero. And because
the smoothing scale is not zero, according to Equation 9,
Q and ξ are also near zero. However, since both Q and ξ
are actually small values, the ratio will be slightly larger
than −2 (accord with −1.5 in Figure 5).
Experimenting on Gaussian noise series of zero mean

(meann) and random standard deviations (stdn), Table 6
lists the percentages of Lxs/Lx at three intervals under
two conditions. The first condition is four pre-smoothing
scales, and the second is the contrast thresholds, which is
0, 1, 3, or 6 times standard deviation of the noise. The
table indicates that, increasing the contrast threshold will
Table 10 RMSD of positional error of the proposed
method for noisy ideal slopes under two conditions

Tm Lxs/Lx ∈ [−∞,∞) Lxs/Lx ∈ [0, 1)

cm 146.69 147.31

max(cm,1×stdn) 145.85 145.16

max(cm,3×stdn) 142.47 33.22

max(cm,6×stdn) 34.87 2.60



Table 11 RMSD of positional errors of the proposed
detector for the noisy ideal slopes, without considering
noise threshold

stdn Pre-smooth Erf Tanh Sigmoid Ramp Step Arctan

0.001 1 0.06 0.05 0.13 0.22 0.37 0.08

4 0.06 0.04 0.14 0.21 0.29 0.07

64 0.32 0.28 0.55 0.31 0.35 0.58

0.01 1 7.29 6.1 8.95 6.16 0.35 6.72

4 0.52 0.43 0.61 0.66 0.3 0.48

64 0.41 0.41 0.65 0.43 0.46 0.73

0.1 1 116.58 119.78 111.97 117.69 135.31 111.44

4 121.03 123.27 109.43 124.5 128.4 109.58

64 12.12 12.37 10.2 9.64 11.72 13.96

Table 13 RMSD of positional errors of the proposed
detector for the sparsely sampled ideal slopes

Pre-smooth Erf Tanh Sigmoid Ramp Step Arctan

0 0.1004 0.0615 0.2323 0.2547 - 0.0692

1 0.0946 0.0484 0.2421 0.2353 0.3519 0.0665

4 0.3529 0.2818 0.7248 0.2840 0.2932 0.4723
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reduce the percentage of Lxs/Lx at interval [0, 1). The
characteristic contributes to noise suppression, because
the noise and the slopes are indistinguishable in this inter-
val. Noise is suppressed by large pre-smoothing scale,
leading to a lower contrast threshold. The noise is com-
pletely removed by pre-smoothing scale 1 and contrast
threshold of 6 times standard deviation. The experiment
shows that the noise can be suppressed by the following
procedures: pre-smoothing the signal with a small scale,
setting appropriate contrast threshold, and limiting the
Lxs/Lx.

Experimental
Quantitative experiments
The quantitative experiments involve 1000 randomly
generated synthesized slopes with parameters listed in
Table 2. Signal is sampled from −256 to 256 discretely
and the slope is centered at x0.
The positional error (ex) was measured by the dis-

tances between the slope center and the detected loca-
tion (Equation 28). The slope centers could be located
between the samples. Except the width of the step
slopes, the parameter estimation accuracies have been
measured by the relative error where the true value of a
Table 12 RMSD of positional errors of the proposed
detector for the noisy ideal slopes, considering noise
threshold

stdn Pre-smooth Erf Tanh Sigmoid Ramp Step Arctan

0.001 1 0.06 0.05 0.15 0.23 0.36 0.08

4 0.06 0.05 0.15 0.21 0.29 0.08

64 0.32 0.29 0.55 0.31 0.35 0.58

0.01 1 2.91 3.15 4.3 4.55 0.35 2.45

4 0.55 0.5 0.68 0.77 0.29 0.48

64 0.44 0.43 0.66 0.41 0.43 0.67

0.1 1 3.16 2.3 3.94 4.86 0.34 2.32

4 1.58 1.46 2.19 2.09 0.35 1.49

64 1.05 1.04 1.28 0.93 0.92 1.32
quantity is q and the inferred value q0:

e ¼ 100� q0 − q
q

:

ex ¼ q0 − q
ð28Þ

The root mean squared deviation (RMSD) of the error
is given by

RMSD ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXN
n¼1

en − εnð Þ2

N

vuuut
; ð29Þ

where en is the nth actual error and εn is assumed to be
zero.
The step slopes are pre-smoothed with scale 1 and the

width is measured by absolute errors. Except the erf and
step slope, the widths are transformed by median values
for different function. The estimated parameters of the
ideal slopes are more precise than other slope functions
(Table 7). Although the signals are sampled at discrete
points, the inter-sample locations are precisely recov-
ered. The offset is estimated using the scale space and
the estimated contrast, therefore has a slightly lower
accuracy.
The following experiments use the RMSD of the pos-

itional error to evaluate the performances. Except ramp
slope, Lx produces similar errors for several slope func-
tions (Table 8). The Lx of ramp is a constant; therefore a
local extremum can not be found at the slope center. It
can be verified that if Lx is implemented by a central dif-
ference, then a pre-smoothing is required for step
slopes.
The proposed method achieves lower error because of

the inter-sample localization (Table 9). A pre-smoothing
is also required for the step slopes, because zero width
can not be detected in the scale space.
The following experiments adopt zero-mean Gaussian

noise. For the experiment of Table 10, the pre-smoothing
Table 14 RMSD of positional errors of the Lx detector for
the sparsely sampled ideal slopes

Pre-smooth Erf Tanh Sigmoid Ramp Step Arctan

0 0.2926 0.2926 0.2924 2.1233 - 0.2926

1 0.2926 0.2926 0.2924 0.3994 0.5738 0.2926

4 0.3206 0.3034 0.4762 0.4131 0.5649 0.3446
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scale is 2, and the standard deviation of the noise is a
random variable between 0.001 and 1. A lower error is
achieved with either a high contrast threshold (Tm) or a
constraint of Lxs/Lx.
Assuming zero noise (omitting the second component

of the lower threshold in Equation 22 and Equation 24),
the Lx (Table 3) will be more sensitive to noise than the
proposed method (Table 11). Even for low level noise, Lx
needs large pre-smoothing scales to suppress noise. Both
methods sacrifice for high level noise.
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Figure 8 Slopes detected for stock data by the proposed method.
Incorporating noise information to the lower thresh-
old, both methods produce significantly lower errors
(Table 4 and Table 12). The proposed method achieves
low errors for noisy slopes without large pre-smoothing
scale. For a large pre-smoothing scale (e.g. 64), the two
methods show similar performances.
In additional to densely sampled signals, the method

presented here can also detect slopes of sparsely sampled
signals. For these slopes (sample size is 21), the proposed
method (Table 13) outperforms Lx(Table 14). However the
2006 2007 2008
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result of sparsely sampled slopes (Table 13) is not as good
as that of densely sampled slopes (Table 9).

Some qualitative examples
A few slopes of periodic signals are displayed in Figure 7,
where the signal-to-noise ratio of the noisy signals is
25dB.
Using a script (Renfree 2008), historical stock data can

be retrieved from a financial website (Yahoo! Finance
2013). Figure 8 shows historical stock data of CitiBank
from January, 2003 to December, 2008, with threshold 1.
The proposed method successfully detects slopes of vari-
ous widths, contrasts, offset,and locations.

Conclusion
Simple methods such as the first derivative or zero cross-
ings of the second derivative are very sensitive to noise.
To detect a slope, two operators are necessary, which
should have a local extremum along either the scale or the
spatial coordinate axis. The proposed detector involves
the scale derivative of the spatial derivative operator, with
scale-normalization. Using an error function as a test
slope, the parameters are solved for precisely in closed
form. A precise inter-sample localization and interpolation
procedure is proposed to improve the accuracy. The
method can extract slopes from synthesized or real-world
signals while detecting less noise than its counterpart
methods. Based on mathematical functions, the threshold
selection of the first derivative is also discussed.
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