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Abstract
In this paper, the modified generalized Laguerre operational matrix (MGLOM) of
Caputo fractional derivatives is constructed and implemented in combination with
the spectral tau method for solving linear multi-term FDEs on the half-line. In this
approach, truncated modified generalized Laguerre polynomials (MGLP) together
with the modified generalized Laguerre operational matrix of Caputo fractional
derivatives are analyzed and applied for numerical integration of such equations
subject to initial conditions. The modified generalized Laguerre pseudo-spectral
approximation based on the modified generalized Laguerre operational matrix is
investigated to reduce the nonlinear multi-term FDEs and their initial conditions to a
nonlinear algebraic system. Through some numerical experiments, we evaluate the
accuracy and efficiency of the proposed methods. The methods are easy to
implement and yield very accurate results.
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1 Introduction
Fractional calculus has been used to develop accurate models of many phenomena of sci-
ence, engineering, economics, and applied mathematics. These models are found to be
best described by FDEs [–]. More recently, Butkovskii et al. [, ] used fractional calcu-
lus for description of the dynamics of various systems and control processes.
Several numerical and analytical methods have been proposed in the literature for ap-

proximating FDEs (see [–]). In this direction, Atabakzadeh et al. [] used the oper-
ational matrix of Caputo fractional-order derivatives for Chebyshev polynomials, which
was derived in [] to solve a system of FDEs. In [] Tripathi et al. presented an approxi-
mate solution of multi-term FDEs using the operational matrix of fractional integration of
the generalized hat basis functions. The authors of [] presented a direct solution tech-
nique for approximating the linear multi-order FDEs on semi-infinite interval based on
the tau method and proposed the modified generalized Laguerre collocation methods for
solving the nonlinear FDEs. Recently, Kazem et al. [] investigated the operational ma-
trices of the fractional-order Legendre functions and used them together with the spectral
tau approximation to solve linear initial value problems of fractional orders. The Taylor
matrix method, in which the power is fractional number, was developed for approximat-
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ing the relaxation-oscillation equation in []. A Jacobi operationalmatrix was proved and
applied for approximating the multi-term FDEs in [] and a linear fuzzy fractional differ-
ential equation in []. Ahmadian et al. [] derived the operational matrix of Legendre
polynomials and applied it for solving a fuzzy fractional differential equation.
The authors of [] presented a numerical method for the solution of fractional dif-

ferential equations. In this method, the properties of the Caputo derivative are used to
reduce the given fractional differential equation into a Volterra integral equation. More
recently, the authors of [–] proposed the operational matrices of Riemann-Liouville
fractional integration of Chebyshev, Laguerre, modified generalized Laguerre polynomi-
als which are employed in combination with tau approximation for the numerical solution
of linear FDEs on finite and semi-infinite intervals.We refer also to the recent papers [–
] in which the authors studied the existence and uniqueness of several classes of FDEs;
for application of such equations, see [–] and the references therein.
In [], the authors derived the operational matrix of Riemann-Liouville fractional inte-

gration of MGLP and applied it for approximating the linear FDEs on the half-line. In this
article, we aim to derive the operational matrix of Caputo fractional derivatives of MGLP.
Furthermore, the MGLOM will be used in combination with the spectral tau scheme for
approximating linear FDEs, and with the pseudo-spectral scheme for approximating non-
linear FDEs on the half-line. It is worth mentioning here that the Laguerre operational
matrix and the generalized Laguerre operational matrix [] can be obtained as special
cases of MGLP. Finally, the accuracy of the proposed algorithms are demonstrated by test
problems.
This paper is organized as follows. In Section , we present some properties of MGLP.

TheMGLOMof fractional derivative is constructed and proved in detail in Section . Sec-
tion  is devoted to implementing the tau and collocation spectral schemes in combina-
tionwith theMGLOMof fractional derivative for approximating two classes ofmulti-term
FDEs. Some numerical experiments are presented in Section . The results are summa-
rized in the final section.

2 Some basic preliminaries
Wegive some definitions and properties of fractional derivatives andmodified generalized
Laguerre polynomials (see [, ]).

Definition . The Riemann-Liouville fractional integral operator of order ν (ν > ) is
defined as

Jν f (x) =


�(ν)

∫ x


(x – t)ν–f (t)dt, ν > ,x > ,

Jf (x) = f (x).
()

Definition . The Caputo fractional derivatives of order ν are defined as

Dν f (x) = Jm–νDmf (x) =


�(m – ν)

∫ x


(x – t)m–ν– dm

dtm
f (t)dt,

m –  < ν <m,x > , ()

where Dm is the classical differential operator of orderm.

http://www.advancesindifferenceequations.com/content/2013/1/307


Bhrawy and Alghamdi Advances in Difference Equations 2013, 2013:307 Page 3 of 19
http://www.advancesindifferenceequations.com/content/2013/1/307

For the Caputo derivative, we have

DνC =  (C is a constant), ()

Dνxβ =

⎧⎨
⎩ for β ∈N and β < �ν�,

�(β+)
�(β+–ν)x

β–ν for β ∈N and β ≥ �ν� or β /∈N and β > �ν�,
()

where �ν� and �ν� are the ceiling and floor functions respectively, while N = {, , . . .} and
N = {, , , . . .}.
The Caputo fractional differentiation is a linear operation similar to the integer-order

differentiation

Dν
(
λf (x) +μg(x)

)
= λDν f (x) +μDνg(x), ()

where λ and μ are constants.
We recall below some relevant properties of the modified generalized Laguerre polyno-

mials (see [–]). Now, let � = (,∞) and w(α,β)(x) = xαe–βx be a weight function on �

in the usual sense. Define

Lw(α,β) (�) =
{
v|v is measurable on � and ‖v‖w(α,β) < ∞}

,

equipped with the following inner product and norm

(u, v)w(α,β) =
∫

�

u(x)v(x)w(α,β)(x)dx, ‖v‖w(α,β) = (v, v)


w(α,β) .

Next, let L(α,β)i (x) be the MGLP of degree i for α > –, and β >  is defined by

L(α,β)i (x) =

i!
x–αeβx∂ i

x
(
xi+αe–βx), i = , , . . . .

For α > – and β > , we have

∂xL(α,β)i (x) = –βL(α+,β)i– (x),

L(α,β)i+ (x) =


i + 
[
(i + α +  – βx)L(α,β)i (x) – (i + α)L(α,β)i– (x)

]
, i = , , . . . ,

where L(α,β) (x) =  and L(α,β) (x) = –βx + �(α+)
�(α+) .

The set of MGLP is the Lw(α,β) (�)-orthogonal system, namely

∫ ∞


L(α,β)j (x)L(α,β)k (x)w(α,β)(x)dx = hkδjk , ()

where δjk is the Kronecker function and hk = �(k+α+)
βα+k! .

The modified generalized Laguerre polynomial of degree i on the interval � is given by

L(α,β)i (x) =
i∑

k=

(–)k
�(i + α + )βk

�(k + α + )(i – k)!k!
xk , i = , , . . . , ()

where L(α,β)i () = �(i+α+)
�(α+)�(i+) .
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The special value

DqL(α,β)i () =
(–)qβq�(i + α + )
(i – q)!�(q + α + )

, i≥ q, ()

will be of important use later.

3 MGLOM of Caputo fractional derivatives
Let u(x) ∈ Lw(α,β) (�), then u(x) may be expressed in terms of MGLP as

u(x) =
∞∑
j=

ajL(α,β)j (x), aj =

hk

∫ ∞


u(x)L(α,β)j (x)w(α,β)(x)dx, j = , , , . . . . ()

In particular applications, the MGLP up to degree N +  are considered. Then we have

uN (x) =
N∑
j=

ajL(α,β)j (x) = CTφ(x), ()

where the modified generalized Laguerre coefficient vector C and the modified general-
ized Laguerre vector φ(x) are given by

CT = [c, c, . . . , cN ], φ(x) =
[
L(α,β) (x),L(α,β) (x), . . . ,L(α,β)N (x)

]T , ()

then the derivative of the vector φ(x) can be expressed by

dφ(x)
dx

=D()φ(x), ()

where D() is the (N + )× (N + ) operational matrix of derivative given by

D() = –β

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

     · · ·  
     · · ·  
     · · ·  
     · · ·  
     · · ·  
...

...
...

...
... · · · ...

...
     · · ·  

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

By using Eq. (), it is clear that

dnφ(x)
dxn

=
(
D())nφ(x), ()

where n ∈N and the superscript in D() denotes matrix powers. Thus

D(n) =
(
D())n, n = , , . . . . ()
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Lemma . Let L(α,β)i (x) be a modified generalized Laguerre polynomial, then

DνL(α,β)i (x) = , i = , , . . . , �ν� – ,ν > . ()

Proof Immediately, if we use Eqs. () and () in Eq. (), the lemma can be proved. �

In what follows, we derive the operational matrix of Caputo fractional derivatives for
MGLP.

Theorem . Let φ(x) be a modified generalized Laguerre vector defined in Eq. () and
consider ν > , then

Dνφ(x) 
D(ν)φ(x), ()

where D(ν) is the (N + ) × (N + ) operational matrix of Caputo fractional derivatives of
order ν and is given by

D(ν) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

   · · · 
...

...
... · · · ...

   · · · 
�ν(�ν�, ) �ν(�ν�, ) �ν(�ν�, ) · · · �ν(�ν�,N)

...
...

... · · · ...
�ν(i, ) �ν(i, ) �ν(i, ) · · · �ν(i,N)

...
...

... · · · ...
�ν(N , ) �ν(N , ) �ν(N , ) · · · �ν(N ,N)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, ()

where

�ν(i, j) =
i∑

k=�ν�

j∑
�=

(–)k+� βν j!�(i + α + )�(k – ν + α + � + )
(i – k)!(j – �)!�!�(k – ν + )�(k + α + )�(α + � + )

.

Note that in D(ν), the first �ν� rows are all zero.

Proof The analytic form of the MGLP L(α,β)i (x) of degree i is obtained by (). Making use
of (), () and (), we get

DνL(α,β)i (x) =
i∑

k=

(–)k
βk�(i + α + )

(i – k)!k!�(k + α + )
Dνxk

=
i∑

k=�ν�
(–)k

βk�(i + α + )
(i – k)!�(k – ν + )�(k + α + )

xk–ν , i = �ν�, . . . ,N . ()

Now, approximating xk–ν by N +  terms of modified generalized Laguerre series, we
have

xk–ν =
N∑
j=

bjL(α,β)j (x), ()
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where bj is given from () with u(x) = xk–ν , and

bj =
j∑

�=

(–)�
β–k+ν j! �(k – ν + α + � + )

(j – �)!(�)!�(� + α + )
. ()

Employing Eqs. ()-(), we get

DνL(α,β)i (x) =
N∑
j=

�ν(i, j)L(α,β)j (x), i = �ν�, . . . ,N , ()

where

�ijk =
i∑

k=�ν�

j∑
�=

(–)k+� βν j!�(i + α + )�(k – ν + α + � + )
(i – k)!(j – �)!�!�(k – ν + )�(k + α + )�(α + � + )

. ()

Accordingly, Eq. () can be written in a vector form as follows:

DνL(α,β)i (x)
 [
�ν(i, ),�ν(i, ),�ν(i, ), . . . ,�ν(i,N)

]
φ(x), i = �ν�, . . . ,N . ()

Also, according to Lemma ., we can write

DνL(α,β)i (x)
 [, , , . . . , ]φ(x), i = , , . . . , �ν� – . ()

A combination of Eqs. () and () leads to the desired result. �

Remark In the case of ν = n ∈N , Theorem . gives the same result as Eq. ().

4 Applications of theMGLOM for FDEs
Themain aimof this section is to approximate linear and nonlinearmulti-termFDEs using
the MGLOM based on modified generalized Laguerre tau and pseudo-spectral approxi-
mations respectively.

4.1 Linear multi-term FDEs
Consider the linear FDE

Dνu(x) =
k∑
j=

γjDζju(x) + γk+u(x) + g(x), in �, ()

with initial conditions

u(i)() = di, i = , . . . ,m – , ()

where γj (j = , . . . ,k + ) are real constant coefficients, m –  < ν ≤ m,  < ζ < ζ < · · · <
ζk < ν and di (i = , . . . ,m – ) are the initial values of u(x).

http://www.advancesindifferenceequations.com/content/2013/1/307
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To solve the fractional initial value problem, ()-(), we approximate u(x) and g(x) by
modified generalized Laguerre polynomials as

u(x)

N∑
i=

ciL(α,β)i (x) = CTφ(x), ()

g(x)

N∑
i=

giL(α,β)i (x) =GTφ(x), ()

where a vector G = [g, . . . , gN ]T is known and C = [c, . . . , cN ]T is an unknown vector.
By using Theorem . (Eqs. () and ()), we have

Dνu(x) 
 CTDνφ(x) = CTD(ν)φ(x), ()

Dζju(x) 
 CTDζjφ(x) = CTD(ζj)φ(x), j = , . . . ,k. ()

If we use ()-(), then the residual RN (x) for Eq. () can be given by

RN (x) =

(
CTD(ν) –CT

k∑
j=

γjD(ζj) – γk+CT –GT

)
φ(x). ()

As in a typical tau method, see [, , ], we generate (N –m + ) linear equations by
applying

〈
RN (x),L(α,β)j (x)

〉
= , j = , , . . . ,N –m. ()

Also, by substituting Eqs. () and () into Eq (), we get

u(i)() = CTD(i)φ() = di, i = , , . . . ,m – . ()

Eqs. () and () generate (N –m+ ) andm sets of linear equations, respectively. These
linear equations can be solved for unknown coefficients of the vector C. Consequently,
u(x) given in Eq. () can be calculated, which gives the solution of the initial value problem
in Eqs. () and ().

4.2 Nonlinear multi-term FDEs
In this section, in order to show the high importance of theMGLOM of Caputo fractional
derivatives, we apply it to approximate nonlinear multi-term FDEs. Regarding such prob-
lems on the interval �, we investigate the modified generalized Laguerre pseudo-spectral
scheme based on theMGLOM to obtain the numerical solution uN (x). The nonlinear FDE
is collocated at (N –m + ) nodes of the modified generalized Laguerre-Gauss interpola-
tion on the interval �, and then the problem reduces to the (N + ) system of algebraic
equations.
Consider the nonlinear FDE

Dνu(x) = F
(
x,u(x),Dβu(x), . . . ,Dβk u(x)

)
, in �, ()

with initial conditions (), where F can be nonlinear in general.

http://www.advancesindifferenceequations.com/content/2013/1/307
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In order to use theMGLOM for approximating (), we expand u(x),Dνu(x) andDβju(x)
for j = , . . . ,k as (), () and () respectively, and then () becomes

CTD(ν)φ(x) = F
(
x,CTφ(x),CTD(β)φ(x), . . . ,CTD(βk )φ(x)

)
. ()

Substituting () and () in () gives

u(i)() = CTD(i)φ() = di, i = , , . . . ,m – . ()

Collocating () at (N –m + ) nodes of modified generalized Laguerre-Gauss interpola-
tion yields

CTD(ν)φ
(
x(α,β)i

)
= F

(
x(α,β)i ,CTφ

(
x(α,β)i

)
,CTD(β)φ

(
x(α,β)i

)
, . . . ,CTD(βk )φ

(
x(α,β)i

))
,

i = , , . . . ,N –m + . ()

For every two special choices of the modified generalized Laguerre parameters α and β ,
the above-mentioned system of algebraic equations together with () gives the (N + )
nonlinear system of equations which may be solved by Newton’s iterative method.

5 Illustrative examples
To illustrate the effectiveness of the proposed algorithms, six illustrative examples are im-
plemented by the two methods proposed in the previous section. The results obtained by
the proposed algorithms reveal that these algorithms are very effective and convenient for
approximating the linear and nonlinear FDEs on a semi-infinite interval.

Example  Consider the FDE

Du(x) +D

 u(x) + u(x) = x +  +

.
�(.)

x., u() = , u′() = ,

x ∈ �. ()

The exact solution is u(x) = x.

Now, we implement the tau technique based on the MGLOM of fractional derivative
with N = , then the approximate solution may be written as

u(x) = cL(α,β) (x) + cL(α,β) (x) + cL(α,β) (x) = CTφ(x).

Here, we get the following operational matrices:

D() = –β

⎛
⎜⎝
  
  
  

⎞
⎟⎠ , D() = β

⎛
⎜⎝
  
  
  

⎞
⎟⎠ ,

D(  ) =

⎛
⎜⎝

  
  

� 

(, ) � 


(, ) � 


(, )

⎞
⎟⎠ , G =

⎛
⎜⎝
g
g
g

⎞
⎟⎠ ,

where gj and �ν(i, j) are evaluated from () and (), respectively.
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Table 1 c0, c1 and c2 for different values of α and β for Example 1

α β c0 c1 c2 α β c0 c1 c2

0 1 2 –4 2 0 2 1
2 –1 1

2

1 6 –6 2 1 3
2 – 3

2
1
2

2 12 –8 2 2 3 –2 1
2

3 20 –10 2 3 5 – 5
2

1
2

4 30 –12 2 4 15
2 –3 1

2

0 3 2
9 – 4

9
2
9 0 4 1

8 – 1
4

1
8

1 2
3 – 2

3
2
9 1 3

8 – 3
8

1
8

2 4
3 – 8

9
2
9 2 3

4 – 1
2

1
8

3 20
9 – 10

9
2
9 3 5

4 – 5
8

1
8

4 10
3 – 4

3
2
9 4 15

8 – 3
4

1
8

Firstly, applying the tau method to () (see relation ()) yields

c +
[
� 


(, ) + β]c – go = . ()

Secondly, applying () to the initial conditions yields

c + (α + )c +
(α + )(α + )


c = , ()

–βc – β(α + )c = . ()

Finally, solving ()-(), we have the three unknown coefficients with various choices of
α and β which are given in Table . Then, we have

c =
α + α + 

β , c =
–α – 

β , c =

β .

Consequentially, we can write

u(x) =
(
c c c

)⎛
⎜⎝
L(α,β) (x)
L(α,β) (x)
L(α,β) (x)

⎞
⎟⎠ = x,

which is the exact solution.

Example  Consider the equation

Du(x) – D

 u(x) +D


 u(x) + u(x) = x + x –


�(  )

x

 +


�(  )

x

 ,

u() = , u′() = , x ∈ �,
()

whose exact solution is given by u(x) = x.

By applying the technique described in Section . with N =  and x ∈ �, we approxi-
mate the solution as

u(x) =
∑
i=

ciL(α,β)i (x) = CTφ(x).
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Here, we have

D() = β

⎛
⎜⎜⎜⎝
   
   
   
   

⎞
⎟⎟⎟⎠ , D(  ) =

⎛
⎜⎜⎜⎜⎝

   
   

� 

(, ) � 


(, ) � 


(, ) � 


(, )

� 

(, ) � 


(, ) � 


(, ) � 


(, )

⎞
⎟⎟⎟⎟⎠ ,

D(  ) =

⎛
⎜⎜⎜⎜⎝

   
� 


(, ) � 


(, ) � 


(, ) � 


(, )

� 

(, ) � 


(, ) � 


(, ) � 


(, )

� 

(, ) � 


(, ) � 


(, ) � 


(, )

⎞
⎟⎟⎟⎟⎠ , G =

⎛
⎜⎜⎜⎝
g
g
g
g

⎞
⎟⎟⎟⎠ ,

where gj and �ν(i, j) are computed from () and (), respectively.
Therefore using (), we obtain

c +
[
 +� 


(, )

]
c +

[
 – � 


(, ) +� 


(, )

]
c

+
[
 – � 


(, )

]
c – g = , ()

[
 +� 


(, )

]
c +

[
� 


(, ) – � 


(, )

]
c

+
[
 – � 


(, ) +� 


(, )

]
c – g = . ()

Now, by applying (), we have

CTφ() = c + (α + )c +
(α + )(α + )


c +

(α + )(α + )(α + )


c = ,

CTD()φ() = –βc – β(α + )c –
β(α + )(α + )


c = .

()

Finally, by solving ()-(), we have the four unknown coefficients with various choices
of α and β which are displayed in Table . Then we get

c =
α + α + α + 

β , c =
–α – α – 

β , c =
α + 

β , c =
–
β ,

Table 2 c0, c1, c2 and c3 for different values of α and β for Example 2

α β c0 c1 c2 c3 α β c0 c1 c2 c3

0 1 6 –18 18 –6 0 2 3
4 – 9

4
9
4 – 3

4

1 24 –36 24 –6 1 3 – 9
2 3 – 3

4

2 60 –60 30 –6 2 15
2 – 15

2
15
4 – 3

4

3 120 –90 36 –6 3 15 – 45
4

9
2 – 3

4

4 210 –126 42 –6 4 105
4 – 63

4
21
4 – 3

4

0 3 2
9

2
3

2
3 – 2

9 0 4 3
32 – 9

32
9
32 – 3

32

1 8
9 – 4

3
8
9 – 2

9 1 3
8 – 9

16
3
8 – 3

32

2 20
9 – 20

9
10
9 – 2

9 2 15
16 – 15

16
15
32 – 3

32

3 40
9 – 30

9
4
3 – 2

9 3 15
8 – 45

32
9
16 – 3

32

4 70
9 – 14

3
14
9 – 2

9 4 105
32 – 63

32
21
32 – 3

32
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and

u(x) =
(
c c c c

)
⎛
⎜⎜⎜⎝
L(α,β) (x)
L(α,β) (x)
L(α,β) (x)
L(α,β) (x)

⎞
⎟⎟⎟⎠ = x.

Example  Consider the FDE

Du(x) +D

 u(x) + u(x) = g(x), u() = , u′() = , x ∈ [, ], ()

where

g(x) =
(
 – γ ) cos(γ x) + 

�(–
 )

∫ x


(x – t)–


 –u(t)dt

and the exact solution is given by u(x) = cos(γ x).

Themaximum absolute errors using theMGLOM together with the tau approximation,
for γ = . and various choices of N , α and β are shown in Table . Moreover, the approx-
imate solution obtained by this method for α = , β =  and two choices of N and γ is
shown in Figures  and . Also, maximum absolute error for N =  and different values
of γ , α, and β are displayed in Table .

Table 3 Maximum absolute error for γ = 0.1 and different values of α, β and N for Example 3

N α β error α β error

4 0 1 6.95.10–5 2 2 2.58.10–6

8 6.41.10–6 2.53.10–8

12 4.73.10–10 2.0.10–10

16 2.27.10–14 0

4 4 3 9.67.10–7 2 4 6.49.10–8

8 1.05.10–9 2.61.10–11

12 1.59.10–12 1.35.10–14

16 2.9.10–15 0

Figure 1 Comparing the exact solution and the approximate solutions at N = 5,10, where α = 2, β = 4
and γ = 0.1.
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Figure 2 Comparing the exact solution and the approximate solutions at N = 5,10, where α = 2, β = 4
and γ = 0.01.

Table 4 Maximum absolute error for N = 10 and different values of γ , α, and β for Example 3

γ α β error α β error α β error α β error

0.1 1 2 4.72.10–7 1
2

1
2 3.84.10–7 2 1 1.17.10–8 3 3 1.54.10–6

0.2 1.52.10–3 1.10.10–4 2.49.10–5 5.24.10–3

0.01 0 0 0 2.00.10–18

0.02 0 0 5.7.10–17 6.66.10–15

0.05 1.22.10–10 1.83.10–10 3.28.10–12 3.92.10–10

Example  Consider the nonlinear FDE

Du(x) +
[
D


 u(x)D


 u(x)

]
+ u(x) = γ eγ x + γ


 eγ x + eγ x,

u() = , u′() = γ , x ∈ [, ], ()

where u(x) = eγ x is the exact solution.

The solution of this problem is obtained by applying the modified generalized Laguerre
collocation method. The approximate solution obtained by the proposed method for γ =
{., .}, α = , β =  and two choices ofN are shown in Figures  and  tomake it easier
to compare with the analytic solution. Moreover, the absolute errors for γ = {., .},
α = , β =  and N =  are given in Figures  and .

Example  Consider the nonlinear FDE

Du(x) +D

 u(x) + u(x) = g(x),

u() = ,u′() = γ , x ∈ [, ],
()

where

g(x) = –γ  sin(γ x) + sin(γ x) +


�(– 
 )

∫ x


(x – t)–


 –u(t)dt,

and the exact solution is given by u(x) = sin(γ x).

http://www.advancesindifferenceequations.com/content/2013/1/307
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Figure 3 Comparing the exact solution and the approximate solutions at N = 5,10, where α = 2, β = 3
and γ = 0.1.

Figure 4 Comparing the exact solution and the approximate solutions at N = 5,10, where α = 2, β = 3
and γ = 0.01.

Figure 5 The absolute error for γ = 1
10 , ν = 3

4 , α = 2 and β = 3 at N = 5.
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Figure 6 Maximum absolute error by using MGLOMwith the various choices of N and γ = 0.1.

Figure 7 Comparing the exact solution and the approximate solutions at N = 5,10, where α = 5, β = 3
and γ = 0.1.

Figure 8 The absolute error for γ = 1
100 , ν = 3

4 , α = 2 and β = 3 at N = 5.
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Figure 9 Comparing the exact solution and the approximate solutions at N = 12, α = 3, β = 5 and
ν = 1.2, 1.4, 1.6, 1.8.

Figure 10 Comparing the exact solution and the approximate solutions at N = 12, α = 3, β = 5 and
ν = 1.2, 1.4, 1.6, 1.8.

The solution of this problem is implemented by the modified generalized Laguerre col-
locationmethod. Themaximum absolute error obtained by the proposedmethod for var-
ious choices of N , α and β , where γ = ., is given in Figure . Moreover, the approximate
solution obtained by the proposed method for α = , β =  and two choices of N is shown
in Figure .
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Table 5 Maximum absolute error for ν = 3
2 , with various choices of N, for Example 6

N α β error α β error

3 1 2 2.57.10–2 2 5 4.35.10–2

6 4.91.10–3 2.77.10–3

9 1.39.10–3 1.22.10–3

12 9.36.10–4 6.09.10–4

3 3 3 4.35.10–2 3 6 2.92.10–2

6 6.28.10–2 3.73.10–3

9 4.75.10–3 1.75.10–3

12 1.69.10–3 8.53.10–4

Figure 11 Comparing the exact solution and the approximate solutions at N = 12, α = 3, β = 5 and
ν = 0.2, 0.4, 0.6, 0.8.

Example  Consider the following nonlinear initial value problem:

Dνu(x) + u(x) = �(ν + )x +
x–ν

�( – ν)
+

(
xν+ + x

),  < ν ≤ ,

whose exact solution is given by u(x) = xν+ + x.

Comparison between the curves of exact solutions and the approximate solutions at
α =  and β =  of the proposed problem subject to u() = u′() =  in case of N = 
and four different fractional orders ν = ., ., ., . are shown in Figures  and . The
maximum absolute errors at ν = . for various choices of α, β and N in the interval
[, ] are shown in Table . Moreover, Figures  and  display a comparison between
the curves of exact solutions and the approximate solutions at α =  and β =  of the pro-
posed problem subject to u() =  in case of N =  and four different fractional orders
ν = ., ., ., .. From Figures -, it can be seen that the numerical solutions are in
complete agreement with the exact solutions for all values of ν . Also, from the numerical
results implemented in this example and the previous ones, the classical Laguerre polyno-

http://www.advancesindifferenceequations.com/content/2013/1/307
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Figure 12 Comparing the exact solution and the approximate solutions at N = 12, α = 3, β = 5 and
ν = 0.2, 0.4, 0.6, 0.8.

mial (α = , β = ), which is usedmost frequently in practice, is not the best one, especially
when we are approximating the solution of FDEs.

6 Conclusions
In this paper, we have proposed two efficient spectral methods based onmodified general-
ized Laguerre polynomials for tackling linear and nonlinear FDEs on the half-line. In these
methods, the problem is reduced to the solution of a system of algebraic equations in the
expansion coefficient of the solution. Illustrative examples were implemented to demon-
strate the applicability of the proposed algorithms. The computational results show that
the proposed methods can be effectively used in numerical solution of a time-dependent
fractional partial differential equation and other problems on the half-line.
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