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Abstract
Let X be a uniformly convex and 2-uniformly smooth Banach space. In this paper, we
propose an implicit iterative method and an explicit iterative method for solving a
general system of variational inequalities (in short, GSVI) in X based on Korpelevich’s
extragradient method and viscosity approximation method. We show that the
proposed algorithms converge strongly to some solutions of the GSVI under
consideration. When X is a 2-uniformly smooth Banach space with weakly
sequentially continuous duality mapping, we also propose two methods, which were
inspired and motivated by Korpelevich’s extragradient method and Mann’s iterative
method. Furthermore, it is also proven that the proposed algorithms converge
strongly to some solutions of the considered GSVI.
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1 Introduction
Let X be a real Banach space whose dual space is denoted by X∗. Let U = {x ∈ X : ‖x‖ = }.
A Banach space X is said to be uniformly convex if for each ε ∈ (, ], there exists δ > 
such that for all x, y ∈U ,

‖x – y‖ ≥ ε ⇒ ‖x + y‖/ ≤  – δ.

It is known that a uniformly convex Banach space is reflexive and strict convex. A Banach
space X is said to be smooth if

lim
t→

‖x + ty‖ – ‖x‖
t

exists for all x, y ∈ U . X is said to be uniformly smooth if this limit is attained uniformly
for x, y ∈U . The norm of X is said to be the Frechet differential if for each x ∈U , this limit
is attained uniformly for y ∈ U . Also, we define a function ρ : [,∞) → [,∞) called the
modulus of smoothness of X as follows:

ρ(τ ) = sup

{


(‖x + y‖ + ‖x – y‖) –  : x, y ∈ X,‖x‖ = ,‖y‖ = τ

}
.
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It is known that X is uniformly smooth if and only if limτ→ ρ(τ )/τ = . Let q be a fixed
real number with  < q ≤ . Then a Banach space X is said to be q-uniformly smooth if
there exists a constant c >  such that ρ(τ )≤ cτ q for all τ > .
Let X∗ be the dual of X. The normalized duality mapping J : X → X∗ is defined by

J(x) =
{
x∗ ∈ X∗ :

〈
x,x∗〉 = ‖x‖ = ‖x∗‖}, ∀x ∈ X,

where 〈·, ·〉 denotes the generalized duality pairing. It is an immediate consequence of the
Hahn-Banach theorem that J(x) is nonempty for each x ∈ X. Moreover, it is known that
J is single-valued if and only if X is smooth, whereas if X is uniformly smooth, then the
mapping J is uniformly continuous on bounded subsets of X. Let C be a nonempty closed
convex subset of a real Banach space X. A mapping T : C → C is called nonexpansive if

‖Tx – Ty‖ ≤ ‖x – y‖, ∀x, y ∈ C.

We use the notation ⇀ to indicate the weak convergence and the one → to indicate the
strong convergence.

Definition . Let A : C → X be a mapping of C into X. Then A is said to be
(i) accretive if for each x, y ∈ C there exists j(x – y) ∈ J(x – y) such that

〈
Ax –Ay, j(x – y)

〉 ≥ ,

where J is the normalized duality mapping;
(ii) α-strongly accretive if for each x, y ∈ C there exists j(x – y) ∈ J(x – y) such that

〈
Ax –Ay, j(x – y)

〉 ≥ α‖x – y‖

for some α ∈ (, );
(iii) β-inverse-strongly accretive if for each x, y ∈ C, there exists j(x – y) ∈ J(x – y) such

that

〈
Ax –Ay, j(x – y)

〉 ≥ β‖Ax –Ay‖

for some β > ;
(iv) λ-strictly pseudocontractive if for each x, y ∈ C, there exists j(x – y) ∈ J(x – y) such

that

〈
Ax –Ay, j(x – y)

〉 ≤ ‖x – y‖ – λ
∥∥x – y – (Ax –Ay)

∥∥

for some λ ∈ (, ).

Very recently, Yao et al. [] studied the following general system of variational inequali-
ties (GSVI) in a real smooth Banach space X, which is to find (x∗, y∗) ∈ C ×C such that

⎧⎨
⎩

〈μBy∗ + x∗ – y∗, J(x – x∗)〉 ≥ , ∀x ∈ C,

〈μBx∗ + y∗ – x∗, J(x – y∗)〉 ≥ , ∀x ∈ C,
(.)

http://www.fixedpointtheoryandapplications.com/content/2013/1/258
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where C is a nonempty, closed and convex subset of X, B,B : C → X are two nonlinear
mappings, and μ and μ are two positive constants. The set of solutions of GSVI (.) is
denoted by GSVI(C,B,B). In particular, if X = H , a real Hilbert space, then GSVI (.)
reduces to the following GSVI of finding (x∗, y∗) ∈ C ×C such that

⎧⎨
⎩

〈μBy∗ + x∗ – y∗,x – x∗〉 ≥ , ∀x ∈ C,

〈μBx∗ + y∗ – x∗,x – y∗〉 ≥ , ∀x ∈ C,
(.)

which was considered by Ceng et al. []. The set of solutions of problem (.) is also de-
noted byGSVI(C,B,B). In [], problem (.) was transformed into a fixed point problem
in the following way.

Lemma . (See []) For given x̄, ȳ ∈ C, (x̄, ȳ) is a solution of problem (.) if and only if x̄
is a fixed point of the mapping G : C → C defined by

G(x) = PC
[
PC(x –μBx) –μBPC(x –μBx)

]
, ∀x ∈ C, (.)

where ȳ = PC(x̄ –μBx̄).

In this paper, we continue to study problem GSVI (.). We propose implicit and ex-
plicit algorithms based on Korpelevich’s extragradient method [], viscosity approxima-
tion method [] and Mann’s iterative method [] to find approximate solutions of GSVI
(.). Strong convergence results of thesemethods will be established under verymild con-
ditions. We observe that some recent results in this direction have been obtained in, e.g.,
[–] and the references therein.

2 Preliminaries
We need the following lemmas that will be used in the sequel.

Lemma . (See []) Let {sn} be a sequence of nonnegative real numbers satisfying

sn+ ≤ ( – αn)sn + αnβn + γn, ∀n≥ ,

where {αn}, {βn} and {γn} satisfy the conditions:
(i) {αn} ⊂ [, ],

∑∞
n= αn =∞;

(ii) lim supn→∞ βn ≤ ;
(iii) γn ≥  (∀n≥ ),

∑∞
n= γn < ∞.

Then lim supn→∞ sn = .

Lemma . (See []) In a smooth Banach space X, the following inequality holds:

‖x + y‖ ≤ ‖x‖ + 
〈
y, J(x + y)

〉
, ∀x, y ∈ X.

Let LIM be a continuous linear functional on l∞ and (a,a, . . .) ∈ l∞. We write LIMan
instead of LIM((a,a, . . .)). LIM is said to be a Banach limit if LIM satisfies ‖LIM‖ =
LIM  = , and LIMan+ = LIMan for all (a,a, . . .) ∈ l∞. It is well known that for the
Banach limit LIM, the following hold:

http://www.fixedpointtheoryandapplications.com/content/2013/1/258
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(i) for all n≥ , an ≤ cn implies that LIMan ≤ LIM cn;
(ii) LIMan+N = LIMan for any fixed positive integer N ;
(iii) lim infn→∞ an ≤ LIMan ≤ lim supn→∞ an for all (a,a, . . .) ∈ l∞.

Lemma . (See []) Let (a,a, . . .) ∈ l∞. If LIMan = , then there exists a subsequence
{ank } of {an} such that ank →  as k → ∞.

We also need the following lemmas for the proofs of our main results.

Lemma . (See []) Let q be a given real number with  < q ≤ , and let X be a
q-uniformly smooth Banach space. Then

‖x + y‖q ≤ ‖x‖q + q
〈
y, Jq(x)

〉
+ ‖κy‖q, ∀x, y ∈ X,

where κ is the q-uniformly smooth constant of X , and Jq is the generalized duality mapping
from X into X∗ defined by

Jq(x) =
{
x∗ ∈ X∗ :

〈
x,x∗〉 = ‖x‖q,∥∥x∗∥∥ = ‖x‖q–}, ∀x ∈ X.

Let D be a subset of C, and let Π be a mapping of C into D. Then Π is said to be sunny
if

Π
[
Π (x) + t

(
x –Π (x)

)]
= Π (x),

wheneverΠ (x)+ t(x–Π (x)) ∈ C for x ∈ C and t ≥ . AmappingΠ ofC into itself is called
a retraction ifΠ =Π . If amappingΠ ofC into itself is a retraction, thenΠ (z) = z for every
z ∈ R(Π ), where R(Π ) is the range of Π . A subset D of C is called a sunny nonexpansive
retract of C if there exists a sunny nonexpansive retraction from C onto D. The following
lemma concerns the sunny nonexpansive retraction.

Lemma . (See []) Let C be a nonempty closed convex subset of a real smooth Banach
space X, let D be a nonempty subset of C, and let Π be a retraction from C onto D. Then
Π is sunny and nonexpansive if and only if

〈
x –Π (x), J

(
y –Π (x)

)〉 ≤ 

for all x ∈ C and y ∈D.

It is well known that if X = H a Hilbert space, then a sunny nonexpansive retraction
ΠC is coincident with the metric projection from X onto C; that is, ΠC = PC . Let C be
a nonempty closed convex subset of a uniformly convex and uniformly smooth Banach
space X, and let T : C → C be a nonexpansive mapping with the fixed point set Fix(T) �= ∅.
Then the set Fix(T) is a sunny nonexpansive retract of C.

Lemma . (Demiclosedness principle; see []) Let X be a uniformly convex Banach
space or a reflexive Banach space satisfying Opial’s condition, let C be a nonempty closed
convex subset of X, and let T : C → C be a nonexpansive mapping. Then the mapping I –T

http://www.fixedpointtheoryandapplications.com/content/2013/1/258
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is demiclosed on C, where I is the identity mapping; that is, if {xn} is a sequence of C such
that xn ⇀ x and (I – T)xn → y, then (I – T)x = y.

Lemma . (See []) Let {xn} and {zn} be bounded sequences in a Banach space X, and
let {αn} be a sequence in [, ], which satisfies the following condition

 < lim inf
n→∞ αn ≤ lim sup

n→∞
αn < .

Suppose that xn+ = αnxn+(–αn)zn, ∀n≥  and lim supn→∞(‖zn+ –zn‖–‖xn+ –xn‖)≤ .
Then limn→∞ ‖zn – xn‖ = .

Lemma . (See []) Let C be a nonempty closed convex subset of a real smooth Banach
space X. Assume that the mapping F : C → X is accretive and weakly continuous along
segments (i.e., F(x + ty) ⇀ F(x) as t → ). Then the variational inequality

find x̃ ∈ C:
〈
F(x̃), J(x – x̃)

〉 ≥ , ∀x ∈ C,

is equivalent to the dual variational inequality

find x̃ ∈ C:
〈
F(x), J(x – x̃)

〉 ≥ , ∀x ∈ C.

Lemma . (See []) Let C be a nonempty closed convex subset of a -uniformly smooth
Banach space X. Let the mapping Bi : C → X be αi-inverse-strongly accretive for i = , .
Then we have

∥∥(I –μiBi)x – (I –μiBi)y
∥∥ ≤ ‖x – y‖ + λi

(
κλi – αi

)‖Bix – Biy‖, ∀x, y ∈ C

for i = , . In particular, if  ≤ μi ≤ αi
κ
, then I –μiBi is nonexpansive for i = , .

Lemma . (See []) Let C be a nonempty closed convex subset of a real -uniformly
smooth Banach space X. Let ΠC be a sunny nonexpansive retraction from X onto C. Let
the mapping Bi : C → X be αi-inverse-strongly accretive for i = , . Let G : C → C be the
mapping defined by (.). If  < μi ≤ αi

κ
, then G : C → C is nonexpansive for i = , .

3 Implicit iterative schemes
In this section, we propose implicit iterative schemes and show the strong convergence
theorems. First, we state the following obvious proposition.

Proposition . Let C be a nonempty closed convex subset of a real smooth Banach space
X, and let F : C → X be a mapping.

(i) If F : C → X is α-strongly accretive and λ-strictly pseudocontractive with α + λ ≥ ,
then I – F is nonexpansive, and F is Lipschitz-continuous with constant  + 

λ
;

(ii) If F : C → X is α-strongly accretive and λ-strictly pseudocontractive with α + λ ≥ ,
then for any fixed τ ∈ (, ), I – τF is a contraction with coefficient  – τ ( –

√
–α
λ
).

http://www.fixedpointtheoryandapplications.com/content/2013/1/258
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Lemma . Let C be a nonempty closed convex subset of a real smooth Banach space X .
Let ΠC be a sunny nonexpansive retraction from X onto C, and let the mapping Bi : C → X
be αi-inverse-strongly accretive for i = , . For given x∗, y∗ ∈ C, (x∗, y∗) is a solution of GSVI
(.) if and only if x∗ =ΠC(y∗ –μBy∗), where y∗ =ΠC(x∗ –μBx∗).

Proof Rewriting GSVI (.) as

⎧⎨
⎩

〈x∗ – (y∗ –μBy∗), J(x – x∗)〉 ≥ , ∀x ∈ C,

〈y∗ – (x∗ –μBx∗), J(x – y∗)〉 ≥ , ∀x ∈ C,
(.)

the proof then follows from Lemma .. �

By Lemma ., we observe that

x∗ =ΠC
[
ΠC

(
x∗ –μBx∗) –μBΠC

(
x∗ –μBx∗)],

which implies that x∗ is a fixed point of the mapping G. Throughout this paper, the set of
fixed points of the mapping G is denoted by Ω .
To solve GSVI (.), we first propose an implicit algorithm as follows. Let C be a

nonempty closed convex subset of a real -uniformly smooth Banach space X. Let ΠC

be a sunny nonexpansive retraction from X onto C. As previously, let ΞC be the set of all
contractions onC. Let themapping Bi : C → X be αi-inverse-strongly accretive for i = , .
Let f ∈ ΞC with coefficient ρ ∈ (, ) and F : C → X be α-strongly accretive and λ-strictly
pseudocontractive with α + λ ≥ . In what follows, we assume that  < μi ≤ αi

κ
for i = , .

For any given t ∈ (, ), we define a mapping Tt : C → C by

Ttx = tf (xt) + ( – t)ΠC(I – θtF)ΠC(I –μB)ΠC(I –μB)x, ∀x ∈ C, (.)

where θt ∈ [, ), ∀t ∈ (, ).
Define another mapping St :

Stx =ΠC(I – θtF)ΠC(I –μB)ΠC(I –μB)x

=ΠC
[
( – θt)I + θt(I – F)

]
ΠC(I –μB)ΠC(I –μB)x, ∀x ∈ C. (.)

Then Tt is rewritten as

Ttx = tf (xt) + ( – t)Stx, ∀x ∈ C. (.)

Let us show that St : C → C is nonexpansive. As amatter of fact, since α+λ ≥ , by Propo-
sition . we know that I – F is nonexpansive; that is,

∥∥(I – F)x – (I – F)y
∥∥ ≤ ‖x – y‖, ∀x, y ∈ C.

Hence, I – θtF = ( – θt)I + θt(I – F) is nonexpansive. So, ΠC(I – θtF) is nonexpansive. We
note that by Lemma ., ΠC(I – μiBi) is nonexpansive for i = , . Thus, it follows from

http://www.fixedpointtheoryandapplications.com/content/2013/1/258
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(.) that St : C → C is nonexpansive. This together with (.) implies that for all x, y ∈ C,

‖Ttx – Tty‖ =
∥∥t(f (x) – f (y)

)
+ ( – t)(Stx – Sty)

∥∥
≤ t

∥∥f (x) – f (y)
∥∥ + ( – t)‖Stx – Sty‖

≤ tρ‖x – y‖ + ( – t)‖x – y‖
=

(
 – t( – ρ)

)‖x – y‖.

So, Tt : C → C is a contraction. Therefore, the Banach contraction principle guarantees
that Tt has a unique fixed point in C, which we denote by xt ; that is,

xt = tf (xt) + ( – t)Stxt = tf (xt) + ( – t)ΠC(I – θtF)ΠC(I –μB)ΠC(I –μB)xt . (.)

We now state and prove our first main result.

Theorem . Let C be a nonempty closed convex subset of a real -uniformly smooth
Banach space X. Let ΠC be a sunny nonexpansive retraction from X onto C. Let the map-
ping Bi : C → X be αi-inverse-strongly accretive for i = , . Let f ∈ ΞC with coefficient
ρ ∈ (, ), and let F : C → X be α-strongly accretive and λ-strictly pseudocontractive with
α + λ ≥ . Assume that  < μi ≤ αi

κ
for i = , . Let xt ∈ C be the unique solution in C to

Equation (.), where θt ∈ [, ), ∀t ∈ (, ) and limt→+ θt/t = . Then Ω �= ∅ if and only if

lim sup
t→+

‖xt‖ < ∞, (.)

and in this case, {xt} converges as t → + strongly to an element of Ω . In addition, if we
define Q :ΞC → Ω by

Q(f ) := s – lim
t→

xt , ∀f ∈ ΞC , (.)

then Q(f ) solves the variational inequality problem (VIP)

〈
(I – f )Q(f ), J

(
Q(f ) – p

)〉 ≤ , ∀f ∈ ΞC ,p ∈ Ω .

In particular, if f = u ∈ C is a constant, then (.) reduces to the sunny nonexpansive re-
traction of Reich from C onto Ω ,

〈
Q(u) – u, J

(
Q(u) – p

)〉 ≤ , ∀u ∈ C,p ∈ Ω .

Proof If Ω �= ∅, we can take p ∈ Ω to derive from (.) that for t ∈ (, ),

‖xt – p‖ ≤ t
∥∥f (xt) – p

∥∥ + ( – t)‖Stxt – p‖
≤ t

(∥∥f (xt) – f (p)
∥∥ +

∥∥f (p) – p
∥∥)

+ ( – t)
(‖Stxt – Stp‖ + ‖Stp – p‖)

= t
(∥∥f (xt) – f (p)

∥∥ +
∥∥f (p) – p

∥∥)
+ ( – t)

(‖Stxt – Stp‖ +
∥∥ΠC(I – θtF)p –ΠCp

∥∥)

http://www.fixedpointtheoryandapplications.com/content/2013/1/258
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≤ tρ‖xt – p‖ + t
∥∥f (p) – p

∥∥ + ( – t)
(‖xt – p‖ + θt

∥∥F(p)∥∥)
=

(
 – t( – ρ)

)‖xt – p‖ + t
∥∥f (p) – p

∥∥ + ( – t)θt
∥∥F(p)∥∥

≤ t
∥∥f (p) – p

∥∥ +
(
 – t( – ρ)

)‖xt – p‖ + θt
∥∥F(p)∥∥,

which implies that

‖xt – p‖ ≤ 
 – ρ

∥∥f (p) – p
∥∥ +

θt

t
· ‖F(p)‖
 – ρ

.

Because limt→+ θt/t = , we deduce that

lim sup
t→+

‖xt‖ ≤ ‖p‖ + 
 – ρ

∥∥f (p) – p
∥∥ < ∞, (.)

and hence, (.) holds.
Conversely, assume (.); that is, {xt} remains bounded when t → +; hence, f (xt) and

F(G(xt)) are bounded when t → +, where G is defined by (.). Because in terms of (.),

xt –G(xt) =
t

 – t
(
f (xt) – xt

)
+ Stxt –G(xt), (.)

we obtain

∥∥xt –G(xt)
∥∥ ≤ t

 – t
∥∥f (xt) – xt

∥∥ +
∥∥Stxt –G(xt)

∥∥
=

t
 – t

∥∥f (xt) – xt
∥∥ +

∥∥ΠC
(
G(xt) – θtF

(
G(xt)

))
–ΠCG(xt)

∥∥
≤ t

 – t
∥∥f (xt) – xt

∥∥ + θt
∥∥F(

G(xt)
)∥∥,

which hence yields

lim
t→+

∥∥xt –G(xt)
∥∥ = . (.)

Now, assume that tn → +. Since {xt} remains bounded as t → +. Set xn := xtn . Then
{xn} is bounded. Now, define g : C → [,∞) by

g(x) = LIM‖xn – x‖, ∀x ∈ C,

where LIM is a Banach limit on l∞. Let

K =
{
x ∈ C : g(x) =min

y∈C LIM‖xn – y‖
}
.

It is easily seen that K is nonempty closed convex bounded subset of X. Since (note that
‖xn –G(xn)‖ → )

g
(
G(x)

)
= LIM

∥∥xn –G(x)
∥∥

= LIM
∥∥G(xn) –G(xn)

∥∥

≤ LIM‖xn – x‖ = g(x),

http://www.fixedpointtheoryandapplications.com/content/2013/1/258
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it follows thatG(K ) ⊂ K ; that is, K is invariant underG. Since a uniformly smooth Banach
space has the fixed point property for nonexpansive mappings, G has a fixed point, say z,
in K . Since z is also a minimizer of g over C, it follows that, for t ∈ (, ) and x ∈ C,

 ≤ g(z + t(x – z)) – g(z)
t

= LIM
‖(xn – z) + t(z – x)‖ – ‖xn – z‖

t
.

The uniform smoothness of X implies that the duality map J is norm-to-norm uniformly
continuous on bounded sets of X. Letting t → , we find that the two limits above can be
interchanged and obtain

LIM
〈
x – z, J(xn – z)

〉 ≤ , ∀x ∈ C. (.)

Since

xt – z = t
(
f (xt) – z

)
+ ( – t)(Stxt – z),

‖xt – z‖ = t
〈
f (xt) – z, J(xt – z)

〉
+ ( – t)

〈
Stxt – z, J(xt – z)

〉
≤ t

〈
f (xt) – z, J(xt – z)

〉
+ ( – t)‖Stxt – z‖‖xt – z‖

≤ t
〈
f (xt) – z, J(xt – z)

〉
+ ( – t)

(‖Stxt – Stz‖ + ‖Stz – z‖)‖xt – z‖
= t

〈
f (xt) – z, J(xt – z)

〉
+ ( – t)

(‖Stxt – Stz‖ +
∥∥ΠC(I – θtF)z –ΠCz

∥∥)‖xt – z‖
≤ t

〈
f (xt) – z, J(xt – z)

〉
+ ( – t)

(‖xt – z‖ + θt
∥∥F(z)∥∥)‖xt – z‖

≤ t
〈
f (xt) – z, J(xt – z)

〉
+ ( – t)‖xt – z‖ + θt

∥∥F(z)∥∥‖xt – z‖.

Hence,

‖xt – z‖ ≤ 〈
f (xt) – z, J(xt – z)

〉
+

θt

t
∥∥F(z)∥∥‖xt – z‖

=
〈
f (xt) – x, J(xt – z)

〉
+

〈
x – z, J(xt – z)

〉
+

θt

t
∥∥F(z)∥∥‖xt – z‖. (.)

So by (.), for x ∈ C,

LIM‖xn – z‖ ≤ LIM
〈
f (xn) – x, J(xn – z)

〉
+ LIM

〈
x – z, J(xn – z)

〉
≤ LIM

〈
f (xn) – x, J(xn – z)

〉
≤ LIM

∥∥f (xn) – x
∥∥‖xn – z‖.

In particular,

LIM‖xn – z‖ ≤ LIM
∥∥f (xn) – f (z)

∥∥‖xn – z‖ ≤ ρ‖xn – z‖.

Thus,

LIM‖xn – z‖ = ,

and there exists a subsequence which is still denoted by {xn} such that xn → z.

http://www.fixedpointtheoryandapplications.com/content/2013/1/258
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Now, assume that there exists another subsequence {xm} of {xt} such that xm → z̄ ∈ Ω .
It follows from (.) that

‖z̄ – z‖ ≤ 〈
f (z̄) – z, J(z̄ – z)

〉
. (.)

Interchange q̄ and q to obtain

‖z – z̄‖ ≤ 〈
f (z) – z̄, J(z – z̄)

〉
. (.)

Adding up (.) and (.) yields

‖z̄ – z‖ ≤ 〈
f (z̄) – f (z), J(z̄ – z)

〉
+

〈
z̄ – z, J(z̄ – z)

〉
≤ ( + ρ)‖z̄ – z‖.

Since ρ ∈ (, ), this implies that z̄ = z. Therefore, xt → z as t → .
Define Q :ΞC → Ω by

Q(f ) := s – lim
t→

xt . (.)

Since xt = tf (xt) + ( – t)Stxt , we have

(I – f )xt = –
 – t
t

(
xt –G(xt) +G(xt) – Stxt

)
. (.)

Hence, for p ∈ Ω ,

〈
(I – f )xt , J(xt – p)

〉
= –

 – t
t

〈
(I –G)xt – (I –G)p, J(xt – p)

〉

–
 – t
t

〈
G(xt) – Stxt , J(xt – p)

〉

≤  – t
t

∥∥G(xt) – Stxt
∥∥ϕ

(‖xt – p‖)

=
 – t
t

∥∥ΠCG(xt) –ΠC(I – θtF)G(xt)
∥∥ϕ

(‖xt – p‖)

≤ θt

t
∥∥F(

G(xt)
)∥∥‖xt – p‖. (.)

Because θt/t →  and xt → Q(f ) as t → +, taking the limit as t → + in (.), we obtain
that

〈
(I – f )Q(f ), J

(
Q(f ) – p

)〉 ≤ . (.)

If f (x) = u (∀x ∈ C) is a constant, then

〈
Q(u) – u, J

(
Q(u) – p

)〉 ≤ . (.)

Hence, Q reduces to the sunny nonexpansive retraction from C to Ω . �
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Theorem . Let C be a nonempty closed convex subset of a -uniformly smooth Banach
space X with weakly sequentially continuous duality mapping J . Let ΠC be a sunny non-
expansive retraction from X onto C. Let the mapping Bi : C → X be αi-inverse-strongly
accretive with  ≤ μi ≤ αi

κ
for i = , . Let F : C → X be α-strongly accretive and λ-strictly

pseudocontractive with α + λ > . Assume that Ω �= ∅. Let the net {xt} be defined by the
implicit scheme

xt =ΠC(I – tF)ΠC(I –μB)ΠC(I –μB)xt , ∀t ∈ (, ). (.)

Then {xt} converges in norm, as t → +, to the unique solution of the VIP

find x̃ ∈ Ω :
〈
F(x̃), J(x – x̃)

〉 ≥ , ∀x ∈ Ω . (.)

Proof For any given t ∈ (, ), consider the following mapping

Wtx :=ΠC(I – tF)ΠC(I –μB)ΠC(I –μB)x, ∀x ∈ C. (.)

By Proposition .(ii) and Lemma ., we know that ΠC(I – μiBi) is nonexpansive for i =
, , and I – tF is contractive with coefficient  – t( –

√
–α
λ
). Hence,

‖Wtx –Wty‖ ≤
(
 – t

(
 –

√
 – α

λ

))
‖x – y‖, ∀x, y ∈ C.

This means that Wt is a contraction. Therefore, the Banach contraction principle guar-
antees that Wt has a unique fixed point in C, which we denote by xt . This shows that the
implicit scheme (.) is well defined.
Now, we show that {xt} is bounded. As a matter of fact, take p ∈ Ω arbitrarily. Then it

follows from (.) and Lemma . that

‖xt – p‖ = ∥∥ΠC(I – tF)G(xt) –ΠC(I – tF)G(p) +ΠC(I – tF)G(p) – p
∥∥

≤ ∥∥ΠC(I – tF)G(xt) –ΠC(I – tF)G(p)
∥∥ +

∥∥ΠC(I – tF)p –ΠCp
∥∥

= ‖Wtxt –Wtp‖ +
∥∥ΠC(I – tF)p –ΠCp

∥∥

≤
(
 – t

(
 –

√
 – α

λ

))
‖xt – p‖ + t

∥∥F(p)∥∥
= ( – tγ̄ )‖xt – p‖ + t

∥∥F(p)∥∥,

where γ̄ =  –
√

–α
λ
. Thus, it immediately follows that

‖xt – p‖ ≤ 
γ̄

∥∥F(p)∥∥.

Therefore, {xt} is bounded and so are the nets {G(xt)}, {F(G(xt))}. Furthermore, by
Lemma ., we know that G : C → C is nonexpansive. Thus,

∥∥xt –G(xt)
∥∥ =

∥∥ΠC(I – tF)G(xt) –ΠCG(xt)
∥∥ ≤ t

∥∥F(
G(xt)

)∥∥ → 

http://www.fixedpointtheoryandapplications.com/content/2013/1/258
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as t → . That is,

lim
t→

∥∥xt –G(xt)
∥∥ = .

Furthermore, we show that {xt} is relatively norm-compact as t → +. Assume that {tn} ⊂
(, ) is such that tn → + as n→ ∞. Put xn := xtn . Then it is clear that

∥∥xn –G(xn)
∥∥ →  as n→ ∞. (.)

We can rewrite (.) as

xt =ΠC(I – tF)G(xt) – (I – tF)G(xt) + (I – tF)G(xt).

For any p ∈ Ω ⊂ C, by Lemma ., we have

〈
xt – (I – tF)G(xt), J(xt – p)

〉
=

〈
ΠC(I – tF)G(xt) – (I – tF)G(xt), J

(
ΠC(I – tF)G(xt) – p

)〉 ≤ .

According to this fact, we deduce that

‖xt – p‖ = 〈
xt – p, J(xt – p)

〉
=

〈
xt – (I – tF)G(xt), J(xt – p)

〉
+

〈
(I – tF)G(xt) – p, J(xt – p)

〉
≤ 〈

(I – tF)G(xt) – p, J(xt – p)
〉

=
〈
(I – tF)

(
G(xt) – p

)
, J(xt – p)

〉
– t

〈
F(p), J(xt – p)

〉
≤ ( – tγ̄ )

∥∥G(xt) – p
∥∥‖xt – p‖ – t

〈
F(p), J(xt – p)

〉
≤ ( – tγ̄ )‖xt – p‖ – t

〈
F(p), J(xt – p)

〉
.

It turns out that

‖xt – p‖ ≤ 
γ̄

〈
F(p), J(p – xt)

〉
, ∀p ∈ Ω . (.)

In particular,

‖xn – p‖ ≤ 
γ̄

〈
F(p), J(p – xn)

〉
, ∀p ∈ Ω . (.)

Since {xn} is bounded, we may assume, without loss of generality, that {xn} converges
weakly to a point x̃ ∈ C. Noticing (.), we can use Lemma . to get x̃ ∈ Ω . Therefore,
we can substitute x̃ for p in (.) to get

‖xn – x̃‖ ≤ 
γ̄

〈
F(x̃), J(x̃ – xn)

〉
, (.)

which together with the weakly sequential continuity of J implies that

lim
n→∞‖xn – x̃‖ = .

This has proven the relative norm compactness of the net {xn} as t → +.

http://www.fixedpointtheoryandapplications.com/content/2013/1/258
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We also show that x̃ solves the VIP (.). From (.), we have

xt =ΠC(I – tF)G(xt) – (I – tF)G(xt) + (I – tF)G(xt)

⇒ xt =ΠC(I – tF)G(xt) – (I – tF)G(xt)

–
(
(I – tF)xt – (I – tF)G(xt)

)
+ xt – tF(xt)

⇒ F(xt) =

t
[
ΠC(I – tF)G(xt) – (I – tF)G(xt) –

(
(I – tF)xt – (I – tF)G(xt)

)]
.

For any z ∈ Ω , utilizing the nonexpansivity of G, we obtain that

〈
xt –G(xt), J(xt – z)

〉
=

〈
(I –G)xt – (I –G)z, J(xt – z)

〉 ≥ ,

and hence,

〈
F(xt), J(xt – z)

〉
=

t
〈
ΠC(I – tF)G(xt) – (I – tF)G(xt), J(xt – z)

〉

–

t
〈(
(I – tF)xt – (I – tF)G(xt)

)
, J(xt – z)

〉

≤ –

t
〈(
(I – tF)xt – (I – tF)G(xt)

)
, J(xt – z)

〉

= –

t
〈
xt –G(xt), J(xt – z)

〉
+

〈
F(xt) – F

(
G(xt)

)
, J(xt – z)

〉

≤ 〈
F(xt) – F

(
G(xt)

)
, J(xt – z)

〉
.

Therefore,

〈
F(xt), J(xt – z)

〉 ≤ 〈
F(xt) – F

(
G(xt)

)
, J(xt – z)

〉
. (.)

Since F is α-strongly accretive, we have

 ≤ α‖xt – z‖ ≤ 〈
F(xt) – F(z), J(xt – z)

〉
.

It follows that

〈
F(z), J(xt – z)

〉 ≤ 〈
F(xt), J(xt – z)

〉
. (.)

Combining (.) and (.), we get

〈
F(z), J(xt – z)

〉 ≤ 〈
F(xt) – F

(
G(xt)

)
, J(xt – z)

〉
. (.)

Now, replacing t in (.) with tn and letting n → ∞, noticing that xtn → x̃ and xtn –
G(xtn ) →  as n→ ∞, we derive

〈
F(z), J(x̃ – z)

〉 ≤ , ∀z ∈ Ω ,

which is equivalent to its dual variational inequality (see Lemma .)

〈
F(x̃), J(x̃ – z)

〉 ≤ , ∀z ∈ Ω . (.)

http://www.fixedpointtheoryandapplications.com/content/2013/1/258
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That is, x̃ ∈ Ω is a solution of VIP (.). Now, we show that the solution set of VIP (.)
is a singleton. As a matter of fact, we assume that x̄ ∈ Ω is another solution of VIP (.).
Then, we have

〈
F(x̄), J(x̄ – x̃)

〉 ≤ .

From (.), we have

〈
F(x̃), J(x̃ – x̄)

〉 ≤ .

So,

〈
F(x̄), J(x̄ – x̃)

〉
+

〈
F(x̃), J(x̃ – x̄)

〉 ≤ 

⇒ 〈
F(x̄) – F(x̃), J(x̄ – x̃)

〉 ≤ 

⇒ α‖x̄ – x̃‖ ≤ .

Therefore, x̄ = x̃. In summary, we have shown that each (strong) cluster point of the net
{xt} (as t → ) equals to x̃. Therefore, xt → x̃ as t → . This completes the proof. �

4 Explicit iterative schemes
In this section, we propose explicit iterative schemes which are the discretization of the
implicit iterative schemes, and show the strong convergence theorems.

Algorithm . Let C be a nonempty closed convex subset of a real smooth Banach
space X. Let ΠC be a sunny nonexpansive retraction from X onto C. Let B,B : C → X be
two nonlinear mappings. Let f ∈ ΞC and F : C → X be α-strongly accretive and λ-strictly
pseudocontractive. For arbitrarily given x ∈ C, let the sequence {xn} be generated itera-
tively by

xn+ = βnf (xn) + ( – βn)ΠC(I – γnF)ΠC(I –μB)ΠC(I –μB)xn, ∀n≥ , (.)

where {βn} ⊂ (, ), {γn} ⊂ [, ) and μ, μ are two positive numbers.
In particular, if B = B = A, then (.) reduces to the following:

xn+ = βnf (xn) + ( – βn)ΠC(I – γnF)ΠC(I –μA)ΠC(I –μA)xn, ∀n≥ . (.)

Theorem . Let C be a nonempty closed convex subset of a real -uniformly smooth Ba-
nach space X. Let ΠC be a sunny nonexpansive retraction from X onto C. Let the mapping
Bi : C → X be αi-inverse-strongly accretive for i = , . Let f ∈ ΞC with coefficient ρ ∈ (, ),
and let F : C → X be α-strongly accretive and λ-strictly pseudocontractive with α + λ ≥ .
Assume that  < μi ≤ αi

κ
for i = , . Let Ω �= ∅, and assume that

(i) βn →  and
∑∞

n= βn =∞;
(ii) limn→∞ γn/βn = ;
(iii)

∑∞
n= |βn – βn–| <∞ or limn→∞ βn–/βn = ;

(iv)
∑∞

n= |γn – γn–| < ∞ or limn→∞ |γn – γn–|/βn = .

http://www.fixedpointtheoryandapplications.com/content/2013/1/258


Latif et al. Fixed Point Theory and Applications 2013, 2013:258 Page 15 of 22
http://www.fixedpointtheoryandapplications.com/content/2013/1/258

Then the sequence {xn} generated by scheme (.) converges strongly to Q(f ), where Q :
ΞC → Ω is defined by (.).

Proof For each n≥ , let Sn be defined by

Snx =ΠC(I – γnF)ΠC(I –μB)ΠC(I –μB)x, ∀x ∈ C.

Then we know that
(i) the scheme (.) is rewritten as

xn+ = βnf (xn) + ( – βn)Snxn, ∀n≥ ; (.)

(ii) Sn is nonexpansive by the similar argument to that of the nonexpansivity of St
in (.);

(iii) Snp =ΠC(I – γnF)p for all p ∈ Ω .
Thus, we deduce that for p ∈ Ω ,

‖xn+ – p‖
=

∥∥βn
(
f (xn) – p

)
+ ( – βn)(Snxn – p)

∥∥
≤ βn

∥∥f (xn) – p
∥∥ + ( – βn)‖Snxn – p‖

≤ βn
(∥∥f (xn) – f (p)

∥∥ +
∥∥f (p) – p

∥∥)
+ ( – βn)

(‖Snxn – Snp‖ + ‖Snp – p‖)
≤ βnρ‖xn – p‖ + βn

∥∥f (p) – p
∥∥ + ( – βn)

(‖xn – p‖ + ∥∥ΠC(I – γnF)p –ΠCp
∥∥)

≤ (
 – βn( – ρ)

)‖xn – p‖ + βn
∥∥f (p) – p

∥∥ + γn
∥∥F(p)∥∥. (.)

Because limn→∞ γn/βn = , we may assume without loss of generality that γn ≤ βn for all
n≥ . Hence, from (.), we get

‖xn+ – p‖ ≤ βn
(∥∥f (p) – p

∥∥ +
∥∥F(p)∥∥)

+
(
 – βn( – ρ)

)‖xn – p‖, ∀n≥ .

By induction, we conclude that

‖xn – p‖ ≤max

{‖f (p) – p‖ + ‖F(p)‖
 – ρ

,‖x – p‖
}
, ∀n≥ . (.)

Therefore, {xn} is bounded, so are the sequences {f (xn)}, {G(xn)}, {Snxn} and {F(G(xn))}.
Also, from (.), we have

∥∥xn+ –G(xn)
∥∥ ≤ βn

∥∥f (xn) –G(xn)
∥∥ + ( – βn)

∥∥Snxn –G(xn)
∥∥

= βn
∥∥f (xn) –G(xn)

∥∥ + ( – βn)
∥∥ΠC(I – γnF)G(xn) –ΠCG(xn)

∥∥
≤ βn

∥∥f (xn) –G(xn)
∥∥ + ( – βn)γn

∥∥F(
G(xn)

)∥∥
≤ βn

∥∥f (xn) –G(xn)
∥∥ + γn

∥∥F(
G(xn)

)∥∥,
which together with βn →  and γn → , implies that

lim
n→∞

∥∥xn+ –G(xn)
∥∥ = . (.)
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Now, we note that

xn+ – xn = βnf (xn) + ( – βn)Snxn – βn–f (xn) – ( – βn–)Sn–xn–

= (βn – βn–)
(
f (xn–) – Sn–xn–

)
+ βn

(
f (xn) – f (xn–)

)
+ ( – βn)(Snxn – Snxn–) + ( – βn)(Snxn– – Sn–xn–).

Thus, it follows that

‖xn+ – xn‖
≤ |βn – βn–|

∥∥f (xn–) – Sn–xn–
∥∥ + βn

∥∥f (xn) – f (xn–)
∥∥ + ( – βn)‖Snxn – Snxn–‖

+ ( – βn)‖Snxn– – Sn–xn–‖
≤ |βn – βn–|

∥∥f (xn–) – Sn–xn–
∥∥ + βnρ‖xn – xn–‖ + ( – βn)‖xn – xn–‖

+
∥∥ΠC(I – γnF)G(xn–) –ΠC(I – γn–F)G(xn–)

∥∥
≤M|βn – βn–| + βnρ‖xn – xn–‖ + ( – βn)‖xn – xn–‖
+ |γn – γn–|

∥∥F(
G(xn–)

)∥∥
=

(
 – βn( – ρ)

)‖xn – xn–‖ +M
(|βn – βn–| + |γn – γn–|

)
,

where supn≥{‖f (xn) – Snxn‖ + ‖F(G(xn))‖} ≤ M for someM > . So, utilizing Lemma .,
we obtain that

lim
n→∞‖xn+ – xn‖ = .

This together with (.) implies that

lim
n→∞

∥∥xn –G(xn)
∥∥ = . (.)

Let us show that

lim sup
n→∞

〈
x̃ – f (x̃), J(x̃ – xn)

〉 ≤ , (.)

where x̃ =Q(f ). Indeed we can write

xt – xn = t
(
f (xt) – xn

)
+ ( – t)(Stxt – xn).

Putting

an(t) =
(∥∥G(xn) – xn

∥∥ + θt
∥∥F(

G(xn)
)∥∥)[

‖xt – xn‖ +
∥∥G(xn) – xn

∥∥ + θt
∥∥F(

G(xn)
)∥∥]

,

and using Lemma ., we obtain

‖xt – xn‖ ≤ ( – t)‖Stxt – xn‖ + t
〈
f (xt) – xn, J(xt – xn)

〉
≤ ( – t)

(‖Stxt – Stxn‖ + ‖Stxn – xn‖
)
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+ t
〈
f (xt) – xt , J(xt – xn)

〉
+ t‖xt – xn‖

≤ ( – t)
(‖xt – xn‖ +

∥∥ΠC(I – θtF)G(xn) –ΠCxn
∥∥)

+ t
〈
f (xt) – xt , J(xt – xn)

〉
+ t‖xt – xn‖

≤ ( – t)
(‖xt – xn‖ +

∥∥G(xn) – xn
∥∥ + θt

∥∥F(
G(xn)

)∥∥)
+ t

〈
f (xt) – xt , J(xt – xn)

〉
+ t‖xt – xn‖

≤ ( – t)‖xt – xn‖ + an(t)

+ t
〈
f (xt) – xt , J(xt – xn)

〉
+ t‖xt – xn‖.

The last inequality implies that

〈
xt – f (xt), J(xt – xn)

〉 ≤ t

‖xt – xn‖ + 

t
an(t). (.)

Note that

lim sup
n→∞


t
an(t) = lim sup

n→∞

t

(∥∥G(xn) – xn
∥∥ + θt

∥∥F(
G(xn)

)∥∥)

× [
‖xt – xn‖ +

∥∥G(xn) – xn
∥∥ + θt

∥∥F(
G(xn)

)∥∥]

=
θt

t
lim sup
n→∞

∥∥F(
G(xn)

)∥∥[
‖xt – xn‖ + θt

∥∥F(
G(xn)

)∥∥]

≤ θt

t
lim sup
n→∞

∥∥F(
G(xn)

)∥∥[
‖xt – xn‖ + 

∥∥F(
G(xn)

)∥∥]

≤ θt

t
M

,

whereM >  is a constant such thatM ≥ ‖F(G(xn))‖+‖xt –xn‖ for all n ≥  and t ∈ (, ).
It follows from (.) that

lim sup
n→∞

〈
xt – f (xt), J(xt – xn)

〉 ≤ t

M

 +
θt

t
M

. (.)

Taking the lim sup as t →  in (.), and noticing the fact that the two limits are inter-
changeable due to the fact that the duality map J is norm-to-norm uniformly continuous
on bounded sets of X, we obtain (.).
Finally, we show that xn → x̃. Write

xn+ – x̃ = βn
(
f (xn) – x̃

)
+ ( – βn)(Snxn – x̃),

and apply Lemma . to get

‖xn+ – x̃‖ ≤ ( – βn)‖Snxn – x̃‖ + βn
〈
f (xn) – x̃, J(xn+ – x̃)

〉
≤ ( – βn)

(‖Snxn – Snx̃‖ + ‖Snx̃ – x̃‖) + βn
〈
f (xn) – x̃, J(xn+ – x̃)

〉
≤ ( – βn)

(‖xn – x̃‖ + ∥∥ΠC(I – γnF)x̃ – x̃
∥∥) + βn

〈
f (xn) – x̃, J(xn+ – x̃)

〉
≤ ( – βn)

(‖xn – x̃‖ + γn
∥∥F(x̃)∥∥) + βn

〈
f (xn) – f (x̃), J(xn+ – x̃)

〉
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+ βn
〈
f (x̃) – x̃, J(xn+ – x̃)

〉
≤ ( – βn)‖xn – x̃‖ + γn

∥∥F(x̃)∥∥(
‖xn – x̃‖ + γn

∥∥F(x̃)∥∥)
+ βnρ‖xn – x̃‖‖xn+ – x̃‖ + βn

〈
f (x̃) – x̃, J(xn+ – x̃)

〉
≤ ( – βn)‖xn – x̃‖ + γn

∥∥F(x̃)∥∥(
‖xn – x̃‖ + ∥∥F(x̃)∥∥)

+ ρβn
(‖xn – x̃‖ + ‖xn+ – x̃‖) + βn

〈
f (x̃) – x̃, J(xn+ – x̃)

〉
.

It then follows that

‖xn+ – x̃‖ ≤  – ( – ρ)βn + β
n

 – ρβn
‖xn – x̃‖

+
βn

 – ρβn

[
γn

βn

∥∥F(x̃)∥∥(
‖xn – x̃‖ + ∥∥F(x̃)∥∥)

+ 
〈
f (x̃) – x̃, J(xn+ – x̃)

〉]

=
(
 –

( – ρ)βn

 – ρβn

)
‖xn – x̃‖

+
( – ρ)βn

 – ρβn
· 
( – ρ)

[
γn

βn

∥∥F(x̃)∥∥(
‖xn – x̃‖ + ∥∥F(x̃)∥∥)

+ βn‖xn – x̃‖ + 
〈
f (x̃) – x̃, J(xn+ – x̃)

〉]
.

Put

α̃n =
( – ρ)βn

 – ρβn

and

β̃n =


( – ρ)

[
γn

βn

∥∥F(x̃)∥∥(
‖xn – x̃‖ + ∥∥F(x̃)∥∥)

+ βn‖xn – x̃‖ + 
〈
f (x̃) – x̃, J(xn+ – x̃)

〉]
.

It follows that

‖xn+ – x̃‖ ≤ ( – α̃n)‖xn – x̃‖ + α̃nβ̃n. (.)

Observe that

lim sup
n→∞

〈
f (x̃) – x̃, J(xn+ – x̃)

〉

= lim sup
n→∞

(〈
f (x̃) – x̃, J(xn – x̃)

〉
+

〈
f (x̃) – x̃, J(xn+ – x̃) – J(xn – x̃)

〉)

= lim sup
n→∞

〈
f (x̃) – x̃, J(xn – x̃)

〉 ≤ 

due to (.). It is easily seen from conditions (i), (ii) that

α̃n → ,
∞∑
n=

α̃n =∞ and lim sup
n→∞

β̃n ≤ .

Finally, apply Lemma . to (.) to conclude that xn → x̃. �
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Algorithm . Let C be a nonempty closed convex subset of a real smooth Banach
space X. Let ΠC be a sunny nonexpansive retraction from X onto C. Let B,B : C → X
be two nonlinear mappings. Let F : C → X be α-strongly accretive and λ-strictly pseudo-
contractive. For arbitrarily given x ∈ C, let the sequence {xn} be generated iteratively by

xn+ = βnxn + ( – βn)ΠC(I – αnF)ΠC(I –μB)ΠC(I –μB)xn, ∀n≥ , (.)

where {αn} and {βn} are two sequences in [, ] and μ, μ are two positive numbers.
In particular, if B = B = A, then (.) reduces to the following:

xn+ = βnxn + ( – βn)ΠC(I – αnF)ΠC(I –μA)ΠC(I –μA)xn, ∀n≥ . (.)

Theorem . Let C be a nonempty closed convex subset of a -uniformly smooth Banach
space X with weakly sequentially continuous duality mapping J . Let ΠC be a sunny non-
expansive retraction from X onto C. Let the mapping Bi : C → X be αi-inverse-strongly
accretive with  < μi ≤ αi

κ
for i = , . Let F : C → X be α-strongly accretive and λ-strictly

pseudocontractive with α+λ > . LetΩ �= ∅, and let {xn} be the sequence generated by (.).
Assume that the sequences {αn} and {βn} satisfy the following conditions:

(i) limn→∞ αn =  and
∑∞

n= αn =∞;
(ii)  < lim infn→∞ βn ≤ lim supn→∞ βn < .

Then the sequence {xn} converges strongly to the unique solution x̃ ∈ Ω of VIP (.).

Proof Take a fixed p ∈ Ω arbitrarily. Then G(p) = p due to Lemma .. By Lemma ., we
have

∥∥G(xn) – p
∥∥ =

∥∥G(xn) –G(p)
∥∥ ≤ ‖xn – p‖, ∀n≥ .

Hence, it follows from Proposition .(ii) that

‖xn+ – p‖
=

∥∥βn(xn – p) + ( – βn)
(
ΠC(I – αnF)G(xn) – p

)∥∥
≤ βn‖xn – p‖ + ( – βn)

∥∥(I – αnF)G(xn) – p
∥∥

= βn‖xn – p‖ + ( – βn)
∥∥(I – αnF)G(xn) – (I – αnF)G(p) + (I – αnF)G(p) – p

∥∥
≤ βn‖xn – p‖ + ( – βn)

[∥∥(I – αnF)G(xn) – (I – αnF)G(p)
∥∥ +

∥∥(I – αnF)p – p
∥∥]

≤ βn‖xn – p‖ + ( – βn)
[
( – αnγ̄ )‖xn – p‖ + αn

∥∥F(p)∥∥]

=
(
 – ( – βn)αnγ̄

)‖xn – p‖ + ( – βn)αnγ̄
‖F(p)‖

γ̄
,

where γ̄ =  –
√

–α
λ
. By induction, we deduce that

‖xn+ – p‖ ≤max

{
‖x – p‖, ‖F(p)‖

γ̄

}
.

Therefore, {xn} is bounded. Hence, {G(xn)} and {F(G(xn))} are also bounded. Now, set
vn = ΠC(I – αnF)G(xn) for all n ≥ . Then xn+ = βnxn + ( – βn)vn for n ≥ . Hence, it
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follows that

‖vn+ – vn‖ =
∥∥ΠC(I – αn+F)G(xn+) –ΠC(I – αnF)G(xn)

∥∥
≤ ∥∥(I – αn+F)G(xn+) – (I – αnF)G(xn)

∥∥
=

∥∥G(xn+) –G(xn) – αn+F
(
G(xn+)

)
+ αnF

(
G(xn)

)∥∥
≤ ∥∥G(xn+) –G(xn)

∥∥ + αn+
∥∥F(

G(xn+)
)∥∥ + αn

∥∥F(
G(xn)

)∥∥
≤ ‖xn+ – xn‖ + αn+

∥∥F(
G(xn+)

)∥∥ + αn
∥∥F(

G(xn)
)∥∥,

which together with αn →  and the boundedness of {F(G(xn))} implies that

lim sup
n→∞

(‖vn+ – vn‖ – ‖xn+ – xn‖
) ≤ .

So, by Lemma . we get

lim
n→∞‖vn – xn‖ = .

Consequently,

lim
n→∞‖xn+ – xn‖ = lim

n→∞( – βn)‖vn – xn‖ = .

At the same time, we note that

∥∥vn –G(xn)
∥∥ =

∥∥ΠC(I – αnF)G(xn) –G(xn)
∥∥

=
∥∥ΠC(I – αnF)G(xn) –ΠCG(xn)

∥∥
≤ αn

∥∥F(
G(xn)

)∥∥
→ .

It follows from ‖vn – xn‖ →  that

lim
n→∞

∥∥xn –G(xn)
∥∥ = .

Since vn =ΠC(I – αnF)G(xn) for all n≥ , by Lemma . we have

∥∥vn –G(vn)
∥∥ ≤ ‖vn – xn‖ +

∥∥xn –G(xn)
∥∥ +

∥∥G(xn) –G(vn)
∥∥

≤ ‖vn – xn‖ +
∥∥xn –G(xn)

∥∥ + ‖xn – vn‖
≤ ‖vn – xn‖ +

∥∥xn –G(xn)
∥∥

→ . (.)

Next, we show that

lim sup
n→∞

〈
F(x̃), J(x̃ – vn)

〉 ≤ , (.)

where x̃ ∈ Ω is the unique solution of VIP (.).
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To see this, we choose a subsequence {vnj} of {vn} such that

lim sup
n→∞

〈
F(x̃), J(x̃ – vn)

〉
= lim

j→∞
〈
F(x̃), J(x̃ – vnj )

〉
.

We may also assume that vnj ⇀ z ∈ C. Note that z ∈ Ω in terms of Lemma . and (.).
Therefore, it follows from VIP (.) and the weakly sequential continuity of J that

lim sup
n→∞

〈
F(x̃), J(x̃ – vn)

〉
= lim

j→∞
〈
F(x̃), J(x̃ – vnj )

〉
=

〈
F(x̃), J(x̃ – z)

〉 ≤ .

Since vn =ΠC(I – αnF)G(xn), according to Lemma ., we have

〈
(I – αnF)G(xn) –ΠC(I – αnF)G(xn), J(x̃ – vn)

〉 ≤ . (.)

From (.), we have

‖vn – x̃‖

=
〈
ΠC(I – αnF)G(xn) – x̃, J(vn – x̃)

〉
=

〈
ΠC(I – αnF)G(xn) – (I – αnF)G(xn), J(vn – x̃)

〉
+

〈
(I – αnF)G(xn) – x̃, J(vn – x̃)

〉
≤ 〈

(I – αnF)G(xn) – x̃, J(vn – x̃)
〉

=
〈
(I – αnF)G(xn) – (I – αnF)G(x̃), J(vn – x̃)

〉
+

〈
(I – αnF)x̃ – x̃, J(vn – x̃)

〉
≤ ( – αnγ̄ )‖xn – x̃‖‖vn – x̃‖ + αn

〈
F(x̃), J(x̃ – vn)

〉

≤ ( – αnγ̄ )


‖xn – x̃‖ + 


‖vn – x̃‖ + αn

〈
F(x̃), J(x̃ – vn)

〉
.

It follows that

‖vn – x̃‖ ≤ ( – αnγ̄ )‖xn – x̃‖ + αn
〈
F(x̃), J(x̃ – vn)

〉
≤ ( – αnγ̄ )‖xn – x̃‖ + αn

〈
F(x̃), J(x̃ – vn)

〉
. (.)

Finally, we prove that xn → x̃ as n→ ∞. From (.) and (.),

‖xn+ – x̃‖

≤ βn‖xn – x̃‖ + ( – βn)‖vn – x̃‖
≤ βn‖xn – x̃‖ + ( – βn)( – αnγ̄ )‖xn – x̃‖ + αn( – βn)

〈
F(x̃), J(x̃ – vn)

〉

=
[
 – αn( – βn)γ̄

]‖xn – x̃‖ + αn( – βn)γ̄
{

γ

〈
F(x̃), J(x̃ – vn)

〉}
. (.)

We apply Lemma . to the relation (.) and conclude that xn → x̃ as n → ∞. This
completes the proof. �
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