
ar
X

iv
:0

90
5.

18
27

v1
  [

co
nd

-m
at

.s
ta

t-
m

ec
h]

  1
2 

M
ay

 2
00

9

Boundary-induced heterogeneous absorbing
states

Juan A. Bonachela and Miguel A. Muñoz

Departamento de Electromagnetismo y Física de la Materia and
Instituto de Física Teórica y Computacional Carlos I, Facultad de Ciencias, Universidad de

Granada, 18071 Granada, Spain

Abstract. We study two different types of systems with many absorbing states (with and without a
conservation law) and scrutinize the effect of walls/boundaries (either absorbing or reflecting) into
them. In some cases, non-trivial structured absorbing configurations (characterized by a background
field) develop around the wall. We study such structures using a mean-field approach as well as
computer simulations. The main results are: i) for systems in the directed percolation class, a very
fast (exponential) convergence of the background to its bulk value is observed; ii) for systems with
a conservation law, power-law decaying landscapes are induced by both types of walls: while for
absorbing walls this effect is already present in the mean-field approximation, for reflecting walls
the structured background is a noise-induced effect. The landscapes are shown to converge to their
asymptotic bulk values with an exponent equal to the inverseof the bulk correlation length exponent.
Finally, the implications of these results in the context ofself-organizing systems are discussed.
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INTRODUCTION: BOUNDARIES IN SYSTEMS WITH
ABSORBING STATES

Systems with absorbing states played a dominant role in the development of non-
equilibrium statistical physics [1]. Directed percolation, the contact process, or the
Domany-Kinzel automaton, among many other similar models,have been studied pro-
fusely. They all exhibit a phase transition from an active phase, with indefinitely sus-
tained non-trivial dynamics, to an absorbing phase in whichthe system falls with cer-
tainty into a frozen state in which all dynamics ceases. Applications run from epidemics,
to flow in porous media, auto-catalytic reactions, self-organization, damage spreading,
population dynamics, turbulence, etc.

The critical behavior of most of these systems yields into the very robust directed per-
colation (DP) universality class [2], described at a coarse-grained level by the Reggeon
field theory or Gribov process [1]. An experimental realization of DP has been recently
obtained, in a breakthrough work, by Takeuchi et al. [3]. It is only in the presence of
extra symmetries, long-range interactions, or conservation laws, that critical behavior
different from DP can be observed [1, 11].

There are important physical situations in which the numberof absorbing configura-
tions grows exponentially with system size, being infinite in the thermodynamic limit.
Two main universality classes of such systems are:

1. Thedirected percolation class with many AS[4]. Defined by models as the pair
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contact process, the threshold transfer process, and models of catalytic surface
reactions [5], this class has no extra symmetry/conservation-law with respect to
DP. Its corresponding Langevin equation is:

∂tρ(x, t) = aρ −bρ2+ γρΨ(x, t)+∇2ρ +σ
√

ρη(x, t)
∂tΨ(x, t) = αρ −βΨρ +D∇2ρ (1)

wherea,b,γ,α andβ are constants andη is a Gaussian white noise. Despite the
non-trivial absorbing phase, characterized by the non-diffusive background-field
Ψ(x, t), it exhibits DP-like (bulk) criticality (see [4] for more details).

2. TheC-DPclass, introduced to describe the criticality of stochastic sandpiles, as the
Mannaor theOslo one [6, 7, 8], is represented by a Langevin equation with an
extra conservation law, rendering it different from DP [9, 10, 11]:

∂tρ(x, t) = aρ −bρ2+ωρE(x, t)+∇2ρ +σ
√

ρη(x, t)
∂tE(x, t) = D∇2ρ . (2)

a, b, D and ω are parameters andE(x, t) is the (conserved and non-diffusive)
background, usually calledenergy field. Higher order, irrelevant, terms have been
omitted.

It has been claimed, and confirmed in various ways, that the prototypical models of
self-organized criticality (SOC), i.e.sandpiles[6], fluctuate around a critical point owing
to the combined effect of slow driving (addition of energy) and open boundaries (energy
dissipation), and that such a critical point is in the C-DP class, owing to the conserved
nature of the (bulk) redistribution dynamics [9, 12].

A key issue to fully clarify this connection is to elucidate whether the heterogeneity
introduced by open walls in self-organizing systems plays any relevant role far away
from the wall, i.e. whether the boundaries induce long-range effects that might even-
tually alter the bulk dynamics, affecting (bulk) universalcritical properties. Actually, if
this was the case, then the understanding of SOC in terms of standard non-equilibrium
(bulk) phase transitions into absorbing states [9] would bein jeopardize.

It is well known that, owing to the presence of diverging correlations, walls induce
non-trivial effects in critical phenomena, i.esurface critical phenomena[13]. For in-
stance, in systems with a single absorbing state in the DP class, spreading exponents [1]
are known to differ from their bulk counterparts if initial seeds of activity are localized
in the neighborhood of a wall [14]. However, the universality class of the bulk transition
remains unaltered.

As we will show, in systems with a non-trivial background field (i.e. systems with
many absorbing states) walls can induce long-range modifications of this field deep into
the bulk (similar situations have been addressed in the context of directed/anisotropic
sandpiles [15]), opening the possibility for relevant changes in the bulk dynamics to
occur.

In what follows, we analyze the effect of walls (both absorbing and reflecting) in both
Eq.(1) and Eq.(2) inone dimensionalsystems. First, we perform mean-field analyses and
second we study the full problem employing computer simulations. Finally, we discuss
the previous issues using the new insight.



MEAN FIELD RESULTS

In mean field approximation the noise can be neglected (i.e.σ = 0), but in order
to explore spatial structures we keep the Laplacian terms. Absorbing boundaries are
implemented as

ρ(0, t) = 0, Φ(0, t) = 0 (3)

while reflecting ones correspond to

∇(ρ(0, t)) = 0, ∇(Φ(0, t)) = 0 (4)

(i.e. Dirichlet and Neumann conditions, respectively), where Φ stands for the back-
ground field:Ψ or E. All the forthcoming discussions assume implicitly that a well-
defined stationary state exists. For this reason, we approach the critical point from the
active phase (to avoid getting trapped into absorbing configurations, which prevents the
system from relaxing to a true self-averaging steady state).

DP class with many AS: The analysis of Eq.(1) withσ = 0 becomes trivial if
one subtracts the second equation from the first one (multiplied by D) and assumes
stationarity. In this way, the discretized Laplacian terms(either at the wall or away
from it) cancel out and one obtains a site-independent equation, leading to spatially
homogeneous solutions for either absorbing and reflecting boundaries.

Note that we have analyzed Eq.(1), which includes explicitly a ∇2ρ(x, t) term in the
equation for the background field. Such a term, present at thecoarse-grained Langevin
theory [4], is neglected in many studies interested only in critical properties. Actually, it
can be argued to be irrelevant in the renormalization group sense; still, as we have seen,
it is important to study spatial properties.

C-DP: Imposing (Neumann) reflecting conditions, and proceeding as above (i.e.
subtracting one equation from the other to get rid of the Laplacians) it is straightforward
to see that the only possible steady state is a flat one, as in the DP case.

On the other hand, considering absorbing boundaries, the problem becomes more sub-
tle. Integrating the background equation in space, the total amount of energy decreases
as−∇ρ(0, t)< 0 , which implies that there is a “leakage of energy” at the open boundary
and, hence, the only true steady state is the trivial oneρ(x) = E(x) = 0.

However, for long but finite times and starting from a flat initial state, there is a
non-trivial profile matching the two boundaries:E(0, t) = 0 andE(∞, t) = 1 = Ebulk,
whereEbulk corresponds to the initial condition. A simple calculationallows to derive
the shape of this landscape. We look for a solution using the following ansatz:E(x, t) =
Ebulk− x−αF (x2/t), whereα is some exponent andF (x2/t) an unknown function of
the scaling variablex2/t. As the linear coefficient for the activity equation is linear in E,
we can try a solution of the formρ(x, t) = ρbulk− x−αG (x2/t). Plugging this into the
equation for the activity at the bulk critical point,a = −w Ebulk (for which ρbulk = 0)
and equating the lowest orders, it follows thatα = 2 and thatG (x2/t) needs to be of the

form x2

t F (x2/t) for a solution to exist. For asymptotically large times the leading order
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FIGURE 1. Background field for the C-DP equations, Eq.(2), with an absorbing (left) and a reflecting
boundary (right), respectively. The main plots correspondto the numerical integration of the full set of
equations; in both cases a power-law decay is observed for|E(x, t)−Ebulk|. The two smaller insets show
mean field results: a structured background in the absorbingcase (left) and a flat one for reflecting walls
(right). The large inset in the left figure, illustrates the power-law decay of|E(x, t)−Ebulk| in the mean
field solution for absorbing walls at a finite time.

of such a calculation gives rather straightforwardly

ρ(x, t) = t−1
F (x2/t) (5)

E(x, t)−Ebulk = x−2
F (x2/t) (6)

where F is a degenerate hypergeometric function. In conclusion: there is a non-
stationary structured background for any finite time. It consists of a power-law with
exponentα = 2 converging asymptotically in the bulk to the closed-boundaries initial
valueEbulk, multiplied by a scaling function ofx2/t (see Eq.(6)).

The exponentα = 2 can also be derived using naïve power-counting arguments.As
said above, the background field contributes linearly to thecoefficient of the linear term
in the activity equation, it behaves as the distance to the critical point and, therefore, it
scales with the inverse of the correlation length critical exponent,ν, which in mean-field
approximation isν = 1/2 [1], entailingα = 2.

Numerical integration of Eq.(2) withσ =0 (i.e. in its noiseless version) confirms these
conclusions (see the insets of Fig.1a and Fig. 1b, for absorbing and reflecting conditions,
respectively).

BEYOND MEAN FIELD

In order to go beyond mean field approximation, we switch-on back the noise term
both in Eq.(1) and Eq.(2). Analytical solutions do not existanymore and we need to
resort to numerical simulations in one-dimensional discretized lattices. Absorbing and
reflecting boundaries correspond, respectively to:f (−1) = f (0) = 0 and f (−1) = f (1)
(where f stand for eitherρ ,Ψ, or E). Using this, the discretized Laplacian operator,
∇2 f (x) = f (x+1)+ f (x−1)−2 f (x) can be replaced, at the wall, by∇2 = ∇− I (where
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FIGURE 2. Left: Collapsed background fields,|E(x)−Ebulk|xα , as a function ofx/L for a system
into the C-DP universality class, with an absorbing boundary, at criticality, and for different sizes. Using
α = 0.80(5) all curves collapse into a unique one. Right: Stationary background field for the same C-DP
system at criticality, for different values ofL. The inset shows a plot of the area below the different curves,
normalized by system size, as a function ofL.

I is the identity) for absorbing walls, and∇2 = 2∇ for reflecting ones. Integration is
performed by using the scheme proposed recently by Dornic etal [16], which allows to
integrate square-root noise stochastic equations in an efficient way. We consider systems
of different sizesL (from 28 to 212).

For each of them we determine numerically the critical point(its location is slightly
affected by finite size effects). Contrarily to the mean fieldcase, now, the activity can
reach the absorbing stateρ(x) = 0 in finite time and, hence, a steady state for the
background field exists for both absorbing or reflecting boundaries, as we will illustrate.
In numerics, a steady state is achieved by perturbing with some small amount of activity
the background field, leaving the system relax to a new absorbing configuration, and
iterating this procedure as much as needed.

DP class with many AS: Numerical integration of Eq.(1) shows results qualitatively
similar to those obtained in the mean-field approach. For both absorbing and reflecting
walls there is an extremely fast convergence (it involves only a few sites) fromE(0) = 0
to E = Ebulk (results not shown).

C-DP: Figure 1(main plots) shows results for the stationary backgrounds coming
out of a numerical integration of Eq.(2) for absorbing and reflecting walls respectively
(L = 4096). Both log-log plots show a power-law convergence to the bulk value. In the
absorbing case there is an under-density nearby the wall, while in the reflecting case
there is an over-density.

One might wonder why arguments as those presented in the previous section to
discard the possibility of structured backgrounds in the reflecting case fail here. More
specifically: if the background field is to be stationary on average, then∇2ρ cannot
have any structure on average (see Eq.(2)). From this simplerelation, in mean-field



approximation we concluded that there cannot be a non-trivial structure neither forρ
nor for E(x). Instead, in the presence of fluctuations, even ifρ(x) does not have any
non-trivial spatial structure (i.e. even if∇2ρ vanishes on average),ρ2(x),

√

ρ(x)) and
E(x) can have one and actually, we have verified in numerical simulations that they do
have one. In other words; even if the first moment ofρ is structureless, the second one
and the average of its square-root take different values at different sites, having therefore
a non-trivial structure. This can happen only for fluctuating variables implying that the
non-trivial structure in this case is anoise-induced one.

Fig.2a illustrates that, in the absorbing case, the backgrounds for different sizes
collapse into a unique scaling curve by assuming|Ebulk(L)−E(x)| ∼ x−αF (x/L) with
α = 0.80(5). Using scaling arguments as the mean-field ones above,α should coincide
with 1/ν. ν is known from previous work (and our own direct measurements) to be
ν ≈ 1.33(5) [11], implyingα ≈ 0.75(5), compatible with our previous estimation. Note
that this solution coincides qualitatively with Eq.(6), but the exponentα takes the value
1/ν = 2 in mean-field and its renormalized value 1/ν ≈ 0.75 here.

In Fig.2b we plot the deviation of the background field from its asymptotic bulk value,
|E(x)−Ebulk|, as a function ofx/L. For all values ofL, the decay exhibits a fat tail.
However, as shown in the inset of Fig.2b, the global deviation from the bulk value,
defined as the spatial integral of|Ebulk−E(x)| divided byL, decays exponentially fast
to 0 asL is increased, i.e.

∫

dx|Ebulk−E(x)| is sub-extensive. In other words,the global
effect of an absorbing boundary on the bulk dynamics becomesarbitrarily small for
sufficiently large system sizes; this guarantees the existence of a well defined bulk in the
thermodynamic limit. In other words, the bulk behavior in the thermodynamic limit can
be systematically approached by considering a sequence of finite-size open-boundaries
systems with larger and larger sizes. Identical results areobtained in the reflecting case
(not shown).

DISCUSSION AND CONCLUSIONS

The summary of the previous findings is as follows. Models in the DP class have a mostly
non-structured background field at criticality both for absorbing and reflecting walls.
This result is obtained in a mean field calculation as well as in numerical simulations.
Walls in the DP class affect boundary/surface properties, but not bulk ones.

On the other hand, systems with a conservation-law (in the C-DP class) exhibit, for
both absorbing and reflecting walls, a power-law convergence to their corresponding
bulk value of the background field. This stems from the purelydiffusive and conserved
nature of the corresponding background-field equation.

The absorbing case is qualitatively well described by our mean-field (noiseless) ap-
proach (which leads to a local under-density nearby the wall, converging as a power law
to the bulk value), even if with an exponent different from the mean-field one.

Instead, in the reflecting case, the mean-field calculation does not lead to any non-
trivial structure. This is so because the derivative of the background field at the boundary
is fixed to 0 and this leads ineluctably to a flat background. Instead, in the presence
of fluctuations, locally non-vanishing derivatives of the field appear at the boundary;
these are then amplified, a local over-density of the background field is generated, and



(in the long time limit) a power-law decaying stationary background structure sets in.
Therefore, once fluctuations are switched on, anoise-induced non-trivial background
structure emerges.

For both absorbing and reflecting backgrounds the spatial convergence to the corre-
sponding bulk value is described by a power law with an exponent α equal to the inverse
of the (bulk) correlation length exponent.

Finally, let us emphasize that a well defined bulk exits in allcases owing to the
fact that the global deviation of the averaged background field with respect to its bulk
value converges exponentially fast to zero in the large system size limit (as illustrated
in Fig.2b). It is important to underline that this does not imply that boundary critical
exponentscannot be affected by the presence of walls, and actually they typically
are [17]. For instance, it is well known that walls change thesurviving probability
for the propagation of activity from a localized seed nearbythe boundary, affecting
spreading exponents. Instead, bulk properties are not affected in any case, despite of
the power-law convergence of the background reported above. The global effect of the
wall on bulk properties can be made as small as wanted by enlarging the system size,
implying the existence of a well defined bulk in the thermodynamic limit. This provides
further conceptual support for the understanding of self-organizing sandpiles (with open
boundaries) from the perspective of standard phase bulk transitions in systems with
many absorbing states and a conservation law [9].
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