Evans et al. Journal of Translational Medicine 2012, **10**(Suppl 3):P49 http://www.translational-medicine.com/content/10/S3/P49

JOURNAL OF TRANSLATIONAL MEDICINE

POSTER PRESENTATION

TNF-inhibitor drugs regulate human pathogenic Th17 cells through induction of IL-10

Hayley G Evans^{1*}, Nicola J Gullick², Gina J Walter¹, Urmas Roostalu¹, Klaus S Frederiksen³, Jens G Gerwien³, Andrew P Cope^{1,4}, Frederic Geissmann¹, Bruce W Kirkham⁴, Leonie S Taams¹

From 7th European Workshop on Immune-Mediated Inflammatory Diseases Noordwijk aan Zee, the Netherlands. 28-30 November 2012

Background

TNF- α inhibitor (TNFi) therapy has revolutionized the treatment of immune-mediated inflammatory diseases, including rheumatoid arthritis (RA). IL-17-producing CD4 + T-cells (Th17 cells) are considered important contributors to the pathogenesis of RA. Here we investigated the effects of TNFi drugs on the function and plasticity of human Th17 cells.

Methods

The frequency of cytokine-expressing cells was assessed by flow cytometry. For functional studies, CD4+ T-cells and autologous CD14+ monocytes were co-cultured with anti-CD3 mAb in the absence or presence of different TNFi drugs. Cytokine secretion assays were used to resort cytokine-producing CD4+ T-cells.

Results

Ex vivo analysis of patients with RA on TNFi therapy revealed an enrichment of Th17 cells in peripheral blood compared to those on disease-modifying anti-rheumatic drugs or healthy controls. However, we also found an increase in IL-10-producing CD4+ T-cells. The enrichment in IL-17+ and IL-10+ CD4+ T-cells, including IL-17+IL-10+ co-expressing CD4+ T-cells, was recapitulated *in vitro* by the addition of TNFi drugs (adalimumab, infliximab, etanercept, and certolizumab) to human monocyte/CD4+ T-cell co-cultures. IL-10 induction was independent of Fc γ R binding, IL-10 and CD4+CD25+ Tregs. TNFi-induced Th17 cells were functionally distinct as shown by an ability to modulate CD14+ monocytes in an IL-10-dependent manner. We report the identification of a transcription factor that is strongly

 $^1\mathrm{Centre}$ for Molecular & Cellular Biology of Inflammation (CMCBI), King's College London, UK

Full list of author information is available at the end of the article

associated with IL-10 expression in TNFi-induced IL-17+ CD4+ T-cells, and show that overexpression of this transcription factor drives IL-10 expression in primary CD4+ T-cells.

Conclusions

TNFi drugs may exert their anti-inflammatory role, at least in part, by promoting Th17 plasticity through the induction of IL-10 expression in pathogenic Th17 cells.

Author details

¹Centre for Molecular & Cellular Biology of Inflammation (CMCBI), King's College London, UK. ²Dept Rheumatology, King's College Hospital, London, UK. ³Novo Nordisk A/S, Biopharmaceuticals Research Unit, Inflammation Biology, Måløv, Denmark. ⁴Dept Rheumatology, Guy's & St Thomas' NHS Foundation Trust, London, UK.

Published: 28 November 2012

doi:10.1186/1479-5876-10-S3-P49 Cite this article as: Evans et al.: TNF-inhibitor drugs regulate human pathogenic Th17 cells through induction of IL-10. Journal of Translational Medicine 2012 10(Suppl 3):P49.

Submit your next manuscript to BioMed Central and take full advantage of:

- Convenient online submission
- Thorough peer review
- No space constraints or color figure charges
- Immediate publication on acceptance
- Inclusion in PubMed, CAS, Scopus and Google Scholar
- Research which is freely available for redistribution

BioMed Central

Submit your manuscript at www.biomedcentral.com/submit

© 2012 Evans et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.