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Abstract
In (Rocky Mt. J. Math. 38:801-807, 2008), we proved a theorem dealing with an
application of quasi-σ -power increasing sequences. In the present paper, we prove
that theorem under less and more weaker conditions. This theorem also includes
some new and known results.
MSC: 40D15; 40F05; 40G99; 46A45

Keywords: Hölder’s inequality; sequence spaces; absolute summability; increasing
sequences

1 Introduction
A positive sequence (bn) is said to be almost increasing if there exists a positive increas-
ing sequence cn and two positive constants A and B such that Acn ≤ bn ≤ Bcn (see []).
A sequence (λn) is said to be of bounded variation, denoted by (λn) ∈ BV , if

∑∞
n= |�λn| =∑∞

n= |λn – λn+| < ∞. A positive sequence X = (Xn) is said to be a quasi-σ -power increas-
ing sequence if there exists a constant K = K(σ ,X) ≥  such that KnσXn ≥ mσXm holds
for all n ≥ m ≥ . It should be noted that every almost increasing sequence is a quasi-σ -
power increasing sequence for any nonnegative σ , but the conversemay not be true as can
be seen by taking an example, say Xn = n–σ for σ >  (see []). Let (ϕn) be a sequence of
complex numbers and let

∑
an be a given infinite series with partial sums (sn). We denote

by zα
n and tαn the nth Cesàro means of order α, with α > –, of the sequences (sn) and (nan),

respectively, that is,

zα
n =


Aα
n

n∑
v=

Aα–
n–vsv, ()

tαn =

Aα
n

n∑
v=

Aα–
n–vvav, ()

where

Aα
n =

(
n + α

n

)
=
(α + )(α + ) · · · (α + n)

n!
=O

(
nα

)
, Aα

–n =  for n > . ()

The series
∑

an is said to be summable ϕ – |C,α|k , k ≥  and α > –, if (see [])

∞∑
n=

∣∣ϕn
(
zα
n – zα

n–
)∣∣k = ∞∑

n=

n–k
∣∣ϕntαn

∣∣k < ∞. ()
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In the special case, if we take ϕn = n–

k , then ϕ – |C,α|k summability is the same as |C,α|k

summability (see []). Also, if we take ϕn = nδ+– 
k , then ϕ – |C,α|k summability reduces to

|C,α; δ|k summability (see []).

2 Known result
In [], we have proved the following theorem.

Theorem A Let (λn) ∈ BV and let (Xn) be a quasi-σ -power increasing sequence for some
σ ( < σ < ). Suppose also that there exist sequences (βn) and (λn) such that

|�λn| ≤ βn, ()

βn →  as n→ ∞, ()
∞∑
n=

n|�βn|Xn < ∞, ()

|λn|Xn =O() as n→ ∞. ()

If there exists an ε >  such that the sequence (nε–k|ϕn|k) is non-increasing and if the se-
quence (wα

n) defined by (see [])

wα
n =

⎧⎨
⎩|tαn |, α = ,

max≤v≤n |tαv |,  < α < ,
()

satisfies the condition

m∑
n=

(|ϕn|wα
n)k

nk
=O(Xm) as m → ∞, ()

then the series
∑

anλn is summable ϕ – |C,α|k , k ≥ ,  < α ≤  and kα + ε > .

It should be remarked that we have added the condition ‘(λn) ∈ BV ’ in the statement of
Theorem A because it is necessary.

3 Themain result
The aim of this paper is to prove Theorem A under less and weaker conditions. Now, we
will prove the following theorem.

Theorem Let (Xn) be a quasi-σ -power increasing sequence for some σ ( < σ < ). If there
exists an ε >  such that the sequence (nε–k|ϕn|k) is non-increasing and if the conditions
from () to () are satisfied and if the condition

m∑
n=

(|ϕn|wα
n)k

nkXk–
n

=O(Xm) as m → ∞ ()

is satisfied, then the series
∑

anλn is summable ϕ – |C,α|k , k ≥ ,  < α ≤ , and k(α – ) +
ε > .
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Remark It should be noted that condition () is the same as condition () when k = .
When k > , condition () is weaker than condition (), but the converse is not true. As
in [] we can show that if () is satisfied, then we get that

m∑
n=

(|ϕn|wα
n)k

nkXk–
n

=O
(


Xk–


) m∑
n=

(|ϕn|wα
n)k

nk
=O(Xm).

If () is satisfied, then for k >  we obtain that

m∑
n=

(|ϕn|wα
n)k

nk
=

m∑
n=

Xk–
n

(|ϕn|wα
n)k

nkXk–
n

=O
(
Xk–
m

) m∑
n=

(|ϕn|wα
n)k

nkXk–
n

=O
(
Xk
m
) �=O(Xm).

Also, it should be noted that the condition ‘(λn) ∈ BV ’ has been removed.

We need the following lemmas for the proof of our theorem.

Lemma  [] If  < α ≤  and ≤ v ≤ n, then

∣∣∣∣∣
v∑

p=

Aα–
n–pap

∣∣∣∣∣ ≤ max
≤m≤v

∣∣∣∣∣
m∑
p=

Aα–
m–pap

∣∣∣∣∣. ()

Lemma  [] Under the conditions on (Xn), (βn) and (λn), as expressed in the statement of
the theorem, we have the following:

nβnXn =O() as n→ ∞, ()
∞∑
n=

βnXn <∞. ()

4 Proof of the theorem
Let (Tα

n ) be the nth (C,α), with  < α ≤ , mean of the sequence (nanλn). Then, by (), we
have

Tα
n =


Aα
n

n∑
v=

Aα–
n–vvavλv. ()

First, applying Abel’s transformation and then using Lemma , we get that

Tα
n =


Aα
n

n–∑
v=

�λv

v∑
p=

Aα–
n–ppap +

λn

Aα
n

n∑
v=

Aα–
n–vvav,

∣∣Tα
n
∣∣ ≤ 

Aα
n

n–∑
v=

|�λv|
∣∣∣∣∣

v∑
p=

Aα–
n–ppap

∣∣∣∣∣ + |λn|
Aα
n

∣∣∣∣∣
n∑
v=

Aα–
n–vvav

∣∣∣∣∣
≤ 

Aα
n

n–∑
v=

Aα
v w

α
v |�λv| + |λn|wα

n

= Tα
n, + Tα

n,.
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To complete the proof of the theorem, by Minkowski’s inequality, it is sufficient to show
that

∞∑
n=

n–k
∣∣ϕnTα

n,r
∣∣k < ∞ for r = , .

Now, when k > , applying Hölder’s inequality with indices k and k′, where 
k +


k′ = , we

get that

m+∑
n=

n–k
∣∣ϕnTα

n,
∣∣k ≤

m+∑
n=

n–k
(
Aα
n
)–k|ϕn|k

{ n–∑
v=

Aα
v w

α
v |�λv|

}k

≤
m+∑
n=

n–kn–αk|ϕn|k
n–∑
v=

vαk(wα
v
)k|�λv|k ×

{ n–∑
v=



}k–

= O()
m∑
v=

vαk(wα
v
)k(βv)k

m+∑
n=v+

nε–k|ϕn|k
nk(α–)+ε+

= O()
m∑
v=

vαk(wα
v
)k

βv(βv)k–vε–k|ϕv|k
m+∑
n=v+


nk(α–)+ε+

= O()
m∑
v=

vαk(wα
v
)k

βv(βv)k–vε–k|ϕv|k
∫ ∞

v

dx
xk(α–)+ε+

= O()
m∑
v=

βv(βv)k–
(
wα
v |ϕv|

)k

= O()
m∑
v=

βv

(


vXv

)k–(
wα
v |ϕv|

)k

= O()
m–∑
v=

�(vβv)
v∑
r=

(|ϕr|wα
r )k

rkXk–
r

+O()mβm

m∑
v=

(|ϕv|wα
v )k

vkXk–
v

= O()
m–∑
v=

∣∣�(vβv)
∣∣Xv +O()mβmXm

= O()
m–∑
v=

∣∣(v + )�βv – βv
∣∣Xv +O()mβmXm

= O()
m–∑
v=

v|�βv|Xv +O()
m–∑
v=

βvXv +O()mβmXm

= O() asm → ∞

by virtue of the hypotheses of the theorem and Lemma . Finally, we have that

m∑
n=

n–k
∣∣ϕnTα

n,
∣∣k = m∑

n=

|λn||λn|k–n–k
(
wα
n |ϕn|

)k

= O()
m∑
n=

|λn|
(


Xn

)k–

n–k
(
wα
n |ϕn|

)k
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= O()
m–∑
n=

�|λn|
m∑
n=

(|ϕn|wα
n)k

nkXk–
n

+O()|λm|
m∑
n=

(|ϕn|wα
n)k

nkXk–
n

= O()
m–∑
n=

|�λn|Xn +O()|λm|Xm

= O()
m–∑
n=

βnXn +O()|λm|Xm =O() asm → ∞,

by virtue of the hypotheses of the theorem and Lemma . This completes the proof of the
theorem. If we take ε =  and ϕn = n–


k (resp. ε = , α =  and ϕn = n–


k ), then we get a

new result dealing with |C,α|k (resp. |C, |k) summability factors. Also, if we set ε =  and
ϕn = nδ+– 

k , then we get another new result concerning the |C,α; δ|k summability factors.
Finally, if we take (Xn) as an almost increasing sequence, then we get the result of Bor and
Seyhan under weaker conditions (see []).
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