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1 Introduction

A positive sequence (b)) is said to be almost increasing if there exists a positive increas-
ing sequence ¢, and two positive constants A and B such that Ac, < b, < Bc, (see [1]).
A sequence (1,) is said to be of bounded variation, denoted by (&,,) € BV, if > 07, |AA,| =
Zz‘il [Ay = Aus1| < 00. A positive sequence X = (X,,) is said to be a quasi-o -power increas-
ing sequence if there exists a constant K = K(o,X) > 1 such that Kn’ X,, > m°X,, holds
for all n > m > 1. It should be noted that every almost increasing sequence is a quasi-o -
power increasing sequence for any nonnegative o, but the converse may not be true as can
be seen by taking an example, say X,, = n° for o > 0 (see [2]). Let (¢,) be a sequence of
complex numbers and let ) a, be a given infinite series with partial sums (s,,). We denote
by z% and ¢ the nth Cesaro means of order «, with « > —1, of the sequences (s,,) and (na,),
respectively, that is,

n
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1 n
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n
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The series Y _ a,, is said to be summable ¢ — |C, |, k > 1 and & > -1, if (see [3])
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1
In the special case, if we take ¢, = ', then ¢ — | C, &|;, summability is the same as |C, |

S+1-1

summability (see [4]). Also, if we take ¢, = n°" ", then ¢ — |C, o[, summability reduces to

|C, a; 8|, summability (see [5]).

2 Known result

In [6], we have proved the following theorem.

Theorem A Let (1,) € BY and let (X,,) be a quasi-o -power increasing sequence for some
o (0 <o <1). Suppose also that there exist sequences (8,,) and (),,) such that

[AAy| < By (5)
B,— 0 asn— oo, (6)
> nlABIX, < o0, (7)
n=1

L. X, =0Q1) asn— oo. 8)

If there exists an € > 0 such that the sequence (n“*|p,|*) is non-increasing and if the se-
quence (W3) defined by (see [7])

o |tz |’ a=1,
" )
maxj<y<p |t3|; O<ac< 1,
satisfies the condition
m
wo k
Z M =0X,,) asm— oo, (10)
n
n=1

then the series Y ayh, is summable ¢ — |C, o), k >1,0 <o <1 and ka + € > 1.

It should be remarked that we have added the condition ‘(1,,) € BV’ in the statement of
Theorem A because it is necessary.

3 The main result
The aim of this paper is to prove Theorem A under less and weaker conditions. Now, we
will prove the following theorem.

Theorem Let (X,,) be a quasi-o -power increasing sequence for some o (0 < o < 1). If there
exists an € > 0 such that the sequence (n*|p,|¥) is non-increasing and if the conditions
from (5) to (8) are satisfied and if the condition

(| we)E

E —— = 0X,,) asm—> o0 (11)
K yk—

—~ nX; 1

is satisfied, then the series Y a,\, is summable ¢ — |C,a|;, k >1,0 <a <1, and k(e — 1) +
e>1.
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Remark It should be noted that condition (11) is the same as condition (10) when k = 1.
When k > 1, condition (11) is weaker than condition (10), but the converse is not true. As
in [8] we can show that if (10) is satisfied, then we get that

m m
(I W)k 1 (I W)
n :O L ZOXm.
Lo o) e o

If (11) is satisfied, then for k > 1 we obtain that

(1 S (P 70 1y v (W) ‘
DT S T = 0 o = O() 7 0L
n=1 n=1 n=1

Also, it should be noted that the condition ‘(A,,) € BV’ has been removed.
We need the following lemmas for the proof of our theorem.

Lemmal [9] IfO<a <landl<v<wn,then

14 m

A%Llg | < max E A% g ). 12
Z n—p=pP| — 1<m<v m—p~P ( )
p=0 p=0

Lemma 2 [2] Under the conditions on (X,,), (B,) and (A,), as expressed in the statement of
the theorem, we have the following:

1B X, =01) asn— oo, (13)
> BuXu < 0. (14)
n=1

4 Proof of the theorem
Let (T%) be the nth (C,«), with 0 < @ <1, mean of the sequence (n4,1,). Then, by (2), we

have

n

1
T¢ = — > A% vah,. (15)

o
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First, applying Abel’s transformation and then using Lemma 1, we get that

n

1 n-1 v B )\n o
Ty = e Z A, ZA‘;‘_ppap t ZA‘,’,‘_VmV,
-1

noy=1 P noy=1
-1 v n
1< [l
o a-1 n a-1
T¢| < =D 1AM A pa,| + ==Y AL va,
Ae A
v=1 p=1 no|y=1
1 n-1
< — ) ATWE AR + R | W
noy=1

_Ta o
- Tn,l + Tn,2'


http://www.journalofinequalitiesandapplications.com/content/2013/1/69

Bor Journal of Inequalities and Applications 2013, 2013:69
http://www.journalofinequalitiesandapplications.com/content/2013/1/69

To complete the proof of the theorem, by Minkowski’s inequality, it is sufficient to show

that

00
2o
n=1

Now, when k > 1, applying Holder’s inequality with indices k and k', where %
get that
m+1 m+l . n-1 k
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by virtue of the hypotheses of the theorem and Lemma 2. Finally, we have that
m ) -
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n=1

m-1
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n=1

by virtue of the hypotheses of the theorem and Lemma 2. This completes the proof of the
theorem. If we take € =1 and ¢, = nl_% (resp. € =1, @ =1 and ¢, = nl_%), then we get a

new result dealing with |C, «|; (resp. |C,1|;) summability factors. Also, if we set € =1 and
1

@n = 1’17, then we get another new result concerning the |C, «; 8|, summability factors.

Finally, if we take (X},) as an almost increasing sequence, then we get the result of Bor and

Seyhan under weaker conditions (see [10]).
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