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Abstract
In this paper, the existence of at least one nontrivial solution for a class of fourth-order
elliptic equations with the Navier boundary value conditions is established by using
the linking methods.
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1 Introduction
Consider the following Navier boundary value problem:

⎧⎨
⎩

�u(x) + l�u = f (x,u), in �;

u = �u =  on ∂�,
(.)

where � is the biharmonic operator, l ∈ R and � is a bounded smooth domain in R
N

(N > ).
The conditions imposed on f (x, t) are as follows:

(H) f ∈ C(� ×R,R), and there are constants C,C ≥  such that

∣∣f (x, t)∣∣ ≤ C +C|t|s–, ∀x ∈ �,∀t ∈ R, s ∈ (
,p*

)
(N > ),

where p* = N
N– ;

(H) f (x, t) = ◦(|t|), |t| → , uniformly on �;
(H) lim|t|→∞ f (x,t)

t = +∞ uniformly on �;
(H) There is a constant θ ≥  such that for all (x, t) ∈ � × R and s ∈ [, ],

θ
(
f (x, t)t – F(x, t)

) ≥ (
sf (x, st)t – F(x, st)

)
,

where F(x, t) =
∫ t
 f (x, s)ds;

(H) For some δ > , either

F(x, t)≥ , for |t| ≤ δ,x ∈ �,
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or

F(x, t)≤ , for |t| ≤ δ,x ∈ �.

This fourth-order semilinear elliptic problem has been studied by many authors. In [],
there was a survey of results obtained in this direction. In [], Micheletti and Pistoia
showed that (.) admits at least two solutions by a variation of linking if f (x,u) is sub-
linear. And in [], the authors proved that the problem (.) has at least three solutions
by a variational reduction method and a degree argument. In [], Zhang and Li showed
that (.) admits at least two nontrivial solutions by the Morse theory and local linking if
f (x,u) is superlinear and subcritical on u. In [], Zhang andWei obtained the existence of
infinitely many solutions for the problem (.) where the nonlinearity involves a combi-
nation of superlinear and asymptotically linear terms. As far as the problem (.) is con-
cerned, existence results of sign-changing solutions were also obtained. See, e.g., [, ] and
the references therein.
We will use linking methods to give the existence of at least one nontrivial solution for

(.).
Let X be a Banach space with a direct sum decomposition

X = X ⊕X.

The function I ∈ C(X,R) has a local linking at , with respect to (X,X) if for some r > ,

I(u) ≥ , u ∈ X,‖u‖ ≤ r, (.)

I(u) ≤ , u ∈ X,‖u‖ ≤ r. (.)

It is clear that  is a critical point of I .
The notion of local linking generalizes the notions of local minimum and local maxi-

mum. When  is a non-degenerate critical point of a functional of class C defined on a
Hilbert space and I() = , I has local linking at .
The condition of local linking was introduced in [] under stronger assumptions

I(u) ≥ c > , u ∈ X,‖u‖ = r,dimX < ∞.

Under those assumptions, the existence of nontrivial critical points was proved for func-
tionals which are
(a) bounded below [],
(b) superquadratic [] and
(c) asymptotically quadratic [].
The cases (a), (b) and (c) were considered in [] with only conditions (.) and (.),

and three theorems about critical points were proved. Using these theorems, the author
in [] proved the existence of at least one nontrivial solution for the second-order ellip-
tic boundary value problem with the Dirichlet boundary value condition. In the present
paper, we also use the three theorems in [] and the linking technique to give the exis-
tence of at least one nontrivial solution for the biharmonic problem (.) under a weaker
condition. The main results are as follows.
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Theorem . Assume the conditions (H)-(H) hold. If l is an eigenvalue of –� (with the
Dirichlet boundary condition), assume also (H). Then the problem (.) has at least one
nontrivial solution.

We also consider asymptotically quadratic functions.
Let  < λ < λ < · · · < λk < · · · be the eigenvalues of (–�,H

(�)). Then μj (j ∈N+) is the
eigenvalue of (� + l�,H(�)∩H

(�)), where μj = λj(λj – l). We assume that

(H) f (x,u) = f∞u + ◦(|u|), |u| → ∞, uniformly in �, and μk < f∞ < μk+.

Theorem . Assume the conditions (H), (H) and one of the following conditions:

(A) λj < l < λj+, j = k;
(A) λj = l < λj+, j = k, for some δ > ,

F(x,u)≥ , for |u| > δ,x ∈ �;

(A) λj < l = λj+, j = k, for some δ > ,

F(x,u)≥ , for |u| ≤ δ,x ∈ �.

Then the problem (.) has at least one nontrivial solution.

2 Preliminaries
Let X be a Banach space with a direct sum decomposition

X = X ⊕X.

Consider two sequences of a subspace:

X
 ⊂ X

 ⊂ · · · ⊂ X, X
 ⊂ X

 ⊂ · · · ⊂ X

such that

Xj =
⋃
n∈N

Xj
n, j = , .

For every multi-index α = (α,α) ∈ N, let Xα = Xα ⊕Xα . We know that

α ≤ β ⇔ α ≤ β, α ≤ β.

A sequence (αn) ⊂N is admissible if for every α ∈N, there ism ∈N such that n≥ m ⇒
αn ≥ α. For every I : X → R, we denote by Iα the function I restricted Xα .

Definition . Let I be locally Lipschitz on X and c ∈ R. The functional I satisfies the (C)*c
condition if every sequence (uαn ) such that (αn) is admissible and

uαn ∈ Xαn , I(uαn )→ c,
(
 + ‖uαn‖

)
I ′(uαn ) → 

contains a subsequence which converges to a critical point of I .
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Definition . Let I be locally Lipschitz on X and c ∈ R. The functional I satisfies the (C)*

condition if every sequence (uαn ) such that (αn) is admissible and

uαn ∈ Xαn , sup
n

I(uαn ) ≤ c,
(
 + ‖uαn‖

)
I ′(uαn ) → 

contains a subsequence which converges to a critical point of I .

Remark .
. The (C)* condition implies the (C)*c condition for every c ∈ R.
. When the (C)*c sequence is bounded, then the sequence is a (PS)*c sequence (see []).
. Without loss of generality, we assume that the norm in X satisfies

‖u + u‖ = ‖u‖ + ‖u‖, uj ∈ Xj, j = , .

Definition . Let X be a Banach space with a direct sum decomposition

X = X ⊕X.

The function I ∈ C(X,R) has a local linking at , with respect to (X,X), if for some
r > ,

I(u) ≥ , u ∈ X,‖u‖ ≤ r,

I(u) ≤ , u ∈ X,‖u‖ ≤ r.

Lemma . (see []) Suppose that I ∈ C(X,R) satisfies the following assumptions:

(B) I has a local linking at  and X = {};
(B) I satisfies (PS)*;
(B) I maps bounded sets into bounded sets;
(B) for every m ∈ N , I(u) → –∞, ‖u‖ → ∞, u ∈ X = X

m ⊕ X. Then I has at least two
critical points.

Remark . Assume I satisfies the (C)*c condition. Then this theorem still holds.

Let X be a real Hilbert space and let I ∈ C(X,R). The gradient of I has the form

∇I(u) = Au + B(u),

where A is a bounded self-adjoint operator,  is not the essential spectrum of A, and B is
a nonlinear compact mapping.
We assume that there exist an orthogonal decomposition,

X = X +X,

and two sequences of finite-dimensional subspaces,

X
 ⊂ X

 ⊂ X
 ⊂ · · · ⊂ X, X

 ⊂ X
 ⊂ · · · ⊂ X,
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such that

Xj =
⋃
n∈N

Xj
n, j = , ,

AXj
n ⊂ Xj

n, j = , ,n ∈N .

For every multi-index α = (α,α) ∈ N, we denote by Xα the space

X
α ⊕X

α ,

by pα : X → Xα the orthogonal projector onto Xα , and by M–(L) the Morse index of a
self-adjoint operator L.

Lemma . (see []) I satisfies the following assumptions:
(i) I has a local linking at  with respect to (X,X);
(ii) there exists a compact self-adjoint operator B∞ such that

B(u) = B∞(u) + ◦(‖u‖), ‖u‖ → ∞;

(iii) A + B∞ is invertible;
(iv) for infinitely many multiple-indices α := (n,n),

M–((A + PαB∞)|Xα

) = dimX
n .

Then I has at least two critical points.

3 The proof of main results

Proof of Theorem . () We shall apply Lemma . to the functional

I(u) =



∫
�

(|�u| – l|∇u|)dx –
∫

�

F(x,u)dx

defined on X =H
(�)∩H(�). We consider only the case l = λj, and

F(x,u)≤ , for |u| ≤ δ,x ∈ �. (.)

Then other case is similar and simple.
Let X be the finite dimensional space spanned by the eigenfunctions corresponding to

negative eigenvalues of –� + l� and let X be its orthogonal complement in X. Choose a
Hilbertian basis en (n≥ ) for X and define

X
n = span(e, e, . . . , en), n ∈N ;

X
n = X, n ∈N ;

X =
⋃
n∈N

X
n.
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By the condition (H) and Sobolev inequalities, it is easy to see that the functional I belongs
to C(X,R) and maps bounded sets to bounded sets.
() We claim that I has a local linking at  with respect to (X,X). Decompose X into

V +W when V = ker(–� + l�),W = (X +V )⊥. Also, set u = v+w, u ∈ X, v ∈ V , w ∈W .
By the equivalence of norm in the finite-dimensional space, there exists C >  such that

‖v‖∞ ≤ C‖v‖X , ∀v ∈ V . (.)

It follows from (H) and (H) that for any ε > , there exists Cε such that

∣∣F(x,u)∣∣ ≤ εu +Cε |u|s. (.)

Hence, we obtain

I(u) ≤ 


∫
�

(|�u| – l|∇u|)dx + ε

∫
�

u dx + c‖u‖s+X

≤ –m‖u‖ + ε

∫
�

u dx + c*‖u‖s+X ,

wherem > , c* is a constant and hence, for r >  small enough,

I(u) ≤ , u ∈ X,‖u‖X ≤ r.

Let u = v +w ∈ X be such that ‖u‖X ≤ r = δ
C and let

� =
{
x ∈ � :

∣∣w(x)∣∣ ≤ δ



}
,

� = � \ �.

From (.), we have

∣∣v(x)∣∣ ≤ ‖v‖∞ ≤ C‖v‖ ≤ δ



for all ‖u‖ ≤ r and x ∈ �. On the one hand, one has |u(x)| ≤ |v(x)|+ |w(x)| ≤ ‖v‖∞ + δ
 ≤ δ

for all x ∈ �. Hence, from (H), we obtain

∫
�

F(x,u)dx ≤ .

On the other hand, we have

∣∣u(x)∣∣ ≤ ∣∣v(x)∣∣ + ∣∣w(x)∣∣ ≤ δ


+

∣∣w(x)∣∣ ≤ 
∣∣w(x)∣∣

for all x ∈ �. It follows from (.) that

F(x,u)≤ εu +Cε |u|s+ ≤ εw + s+Cε |w|s+

http://www.boundaryvalueproblems.com/content/2012/1/154
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for all x ∈ � and all u ∈ X with ‖u‖ ≤ r, which implies that

∫
�

F(x,u)dx ≤ ε

∫
�

w dx +
∫

�

s+Cε |w|s+ dx

≤ (C)ε‖w‖ + (C)λ+Cε‖w‖s+,

where C is a constant. Hence, there exist positive constants C**, C and C such that

I(u) =


‖w‖ – 



∫
�

l|∇w| dx –
∫

�

F(x,u)dx –
∫

�

F(x,u)dx

≥ C**‖w‖ – (C)ε‖w‖ – (C)λ+Cε‖w‖s+ –
∫

�

G(x,u)dx

≥ C‖w‖ –C‖w‖s+

for all u ∈ X with ‖u‖ ≤ r, which implies that

I(u) ≥ , ∀u ∈ X with ‖u‖ ≤ r

for  < r small enough.
()We claim that I satisfies (C)*c. Consider a sequence (uαn ) such that (uαn ) is admissible

and

uαn ∈ Xαn , I(uαn )→ c,
(
 + ‖uαn‖

)
I ′(uαn ) →  (.)

and

lim
n→∞

∫
�

(


f (x,uαn )uαn – F(x,uαn )

)
dx = c. (.)

Let wαn = ‖uαn‖–uαn . Up to a subsequence, we have

wαn ⇀ w in X, wαn → w in L, wαn (x)→ w(x) a.e. x ∈ �.

If w = , we choose a sequence {tn} ⊂ [, ] such that

I(tnuαn ) = max
t∈[,]

I(tuαn ).

For anym > , let vαn = 
√
mwαn . By the Sobolev imbedded theory, we have

lim
n→∞

∫
�

F(x, vαn )dx = .

So, for n large enough, 
√
m‖uαn‖– ∈ (, ), and combining Ehrling-Nirenberg-Gagliardo

inequality, we have

I(tnuαn ) ≥ I(vαn ) ≥ m – ε ≥ m

, (.)

where ε is a small enough constant.

http://www.boundaryvalueproblems.com/content/2012/1/154
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That is, I(tnuαn ) → ∞. Now, I() = , I(uαn ) → c, we know that tn ∈ [, ] and

∫
�

(∣∣�(tnuαn )
∣∣ – l

∣∣∇(tnuαn )
∣∣)dx –

∫
�

f (x, tnuαn )tnuαn dx

= tn
d
dt

∣∣∣∣
t=tn

I(tuαn ) = . (.)

Therefore, using (H), we have

∫
�



f (x,uαn )uαn – F(x,uαn )dx

≥ 
θ

∫
�

(


f (x, tnuαn )tnuαn – F(x, tnuαn )

)
dx → +∞.

This contradicts (.).
If w = , then the set � = {x ∈ � : w(x) = } has a positive Lebesgue measure. For x ∈ �,

we have |uαn (x)| → ∞. Hence, by (H), we have

f (x,uαn (x))uαn (x)
|uαn (x)|

∣∣wαn (x)
∣∣ dx→ ∞. (.)

From (.), we obtain

 – ◦() ≥
(∫

w =
+

∫
w=

)
f (x,uαn (x))uαn (x)

|uαn (x)|
∣∣wαn (x)

∣∣ dx. (.)

By (.), the right-hand side of (.) → +∞. This is a contradiction.
In any case, we obtain a contradiction. Therefore, {uαn} is bounded.
Finally, we claim that for everym ∈N ,

I(u) → –∞ as ‖u‖ → ∞,u ∈ X
m ⊕X.

By (H) and (H), there exists large enoughM such that

F(x, t)≥ Mt –C, x ∈ �, t ∈R.

So, for any u ∈ X
m ⊕X, we have

I(tu) =


t

∫
�

(|�u| – l|∇u|)dx –
∫

�

F(x, tu)dx

≤ 

t

∫
�

(|�u| – l|∇u|)dx –Mt
∫

�

u dx +C|�| → –∞ as t → +∞.

Hence, our claim holds. �

Proof of Theorem . We omit the proof which depends on Lemma . and is similar to
the preceding one. �
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