RESEARCH

Open Access

Three-point boundary value problems for nonlinear second-order impulsive *q*-difference equations

Jessada Tariboon^{1*} and Sotiris K Ntouyas²

*Correspondence: jessadat@kmutnb.ac.th ¹Department of Mathematics, Faculty of Applied Science, King Mongkut's University of Technology North Bangkok, Bangkok, Thailand Full list of author information is available at the end of the article

Abstract

The quantum calculus on finite intervals was studied recently by the authors in Adv. Differ. Equ. 2013:282, 2013, where the concepts of q_k -derivative and q_k -integral of a function $f : J_k := [t_k, t_{k+1}] \rightarrow \mathbb{R}$ have been introduced. In this paper, we prove existence and uniqueness results for nonlinear second-order impulsive q_k -difference three-point boundary value problems, by using Banach's contraction mapping principle and Krasnoselskii's fixed-point theorem. **MSC:** 26A33; 39A13; 34A37

Keywords: q_k -derivative; q_k -integral; impulsive q_k -difference equation; existence; uniqueness; three-point boundary conditions; fixed-point theorems

1 Introduction

In this article, we investigate the nonlinear second-order impulsive q_k -difference equation with three-point boundary conditions

$$\begin{cases} D_{q_k}^2 x(t) = f(t, x(t)), & t \in J := [0, T], t \neq t_k, \\ \Delta x(t_k) = I_k(x(t_k)), & k = 1, 2, \dots, m, \\ D_{q_k} x(t_k^+) - D_{q_{k-1}} x(t_k) = I_k^*(x(t_k)), & k = 1, 2, \dots, m, \\ x(0) = 0, & x(T) = x(\eta), \end{cases}$$
(1.1)

where $0 = t_0 < t_1 < t_2 < \cdots < t_k < \cdots < t_m < t_{m+1} = T, f : J \times \mathbb{R} \to \mathbb{R}$ is a continuous function, $I_k, I_k^* \in C(\mathbb{R}, \mathbb{R}), \Delta x(t_k) = x(t_k^+) - x(t_k)$ for $k = 1, 2, \dots, m, x(t_k^+) = \lim_{h \to 0} x(t_k + h), \eta \in (t_j, t_{j+1})$ a constant for some $j \in \{0, 1, 2, \dots, m\}$ and $0 < q_k < 1$ for $k = 0, 1, 2, \dots, m$.

The theory of quantum calculus on finite intervals was developed recently by the authors in [1]. In [1] the concepts of q_k -derivative and q_k -integral of a function $f : J_k := [t_k, t_{k+1}] \rightarrow \mathbb{R}$, are defined and their basic properties proved. As applications, existence and uniqueness results for initial value problems for first- and second-order impulsive q_k -difference equations are proved.

The book by Kac and Cheung [2] covers many of the fundamental aspects of the quantum calculus. In recent years, the topic of q-calculus has attracted the attention of several researchers and a variety of new results can be found in the papers [3–15] and the references cited therein.

©2014 Tariboon and Ntouyas; licensee Springer. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Impulsive differential equations, that is, differential equations involving an impulse effect, appear as a natural description of observed evolution phenomena of several realworld problems. For some monographs on impulsive differential equations we refer to [16–18].

In the present paper we prove existence and uniqueness results for the impulsive boundary value problem (1.1) by using Banach's contraction mapping principle and Krasnoselskii's fixed-point theorem. The rest of this paper is organized as follows: In Section 2 we present the notions of q_k -derivative and q_k -integral on finite intervals and collect their properties. The main results are proved in Section 3, while examples illustrating the results are presented in Section 4.

2 Preliminaries

In this section we present the notions of q_k -derivative and q_k -integral on finite intervals. For a fixed $k \in \mathbb{N} \cup \{0\}$ let $J_k := [t_k, t_{k+1}] \subset \mathbb{R}$ be an interval and $0 < q_k < 1$ be a constant. We define q_k -derivative of a function $f : J_k \to \mathbb{R}$ at a point $t \in J_k$ as follows.

Definition 2.1 Assume $f : J_k \to \mathbb{R}$ is a continuous function and let $t \in J_k$. Then the expression

$$D_{q_k}f(t) = \frac{f(t) - f(q_k t + (1 - q_k)t_k)}{(1 - q_k)(t - t_k)}, \quad t \neq t_k, \qquad D_{q_k}f(t_k) = \lim_{t \to t_k} D_{q_k}f(t), \tag{2.1}$$

is called the q_k -derivative of function f at t.

We say that *f* is q_k -differentiable on J_k provided $D_{q_k}f(t)$ exists for all $t \in J_k$. Note that if $t_k = 0$ and $q_k = q$ in (2.1), then $D_{q_k}f = D_qf$, where D_q is the well-known *q*-derivative of the function f(t) defined by

$$D_q f(t) = \frac{f(t) - f(qt)}{(1 - q)t}.$$
(2.2)

In addition, we should define the higher q_k -derivative of functions.

Definition 2.2 Let $f : J_k \to \mathbb{R}$ is a continuous function, we call the second-order q_k derivative $D_{q_k}^2 f$ provided $D_{q_k} f$ is q_k -differentiable on J_k with $D_{q_k}^2 f = D_{q_k}(D_{q_k} f) : J_k \to \mathbb{R}$. Similarly, we define the higher-order q_k -derivative $D_{q_k}^n : J_k \to \mathbb{R}$.

The properties of the q_k -derivative are summarized in the following theorem.

Theorem 2.3 Assume $f,g:J_k \to \mathbb{R}$ are q_k -differentiable on J_k . Then: (i) The sum $f + g:J_k \to \mathbb{R}$ is q_k -differentiable on J_k with

$$D_{q_k}(f(t) + g(t)) = D_{q_k}f(t) + D_{q_k}g(t).$$

(ii) For any constant α , $\alpha f : J_k \to \mathbb{R}$ is q_k -differentiable on J_k with

$$D_{q_k}(\alpha f)(t) = \alpha D_{q_k} f(t).$$

(iii) The product $fg: J_k \to \mathbb{R}$ is q_k -differentiable on J_k with

$$\begin{aligned} D_{q_k}(fg)(t) &= f(t) D_{q_k} g(t) + g \big(q_k t + (1 - q_k) t_k \big) D_{q_k} f(t) \\ &= g(t) D_{q_k} f(t) + f \big(q_k t + (1 - q_k) t_k \big) D_{q_k} g(t). \end{aligned}$$

(iv) If $g(t)g(q_kt + (1 - q_k)t_k) \neq 0$, then $\frac{f}{g}$ is q_k -differentiable on J_k with

$$D_{q_k}\left(\frac{f}{g}\right)(t) = \frac{g(t)D_{q_k}f(t) - f(t)D_{q_k}g(t)}{g(t)g(q_kt + (1 - q_k)t_k)}.$$

Definition 2.4 Assume $f : J_k \to \mathbb{R}$ is a continuous function. Then the q_k -integral is defined by

$$\int_{t_k}^t f(s) \, d_{q_k} s = (1 - q_k)(t - t_k) \sum_{n=0}^{\infty} q_k^n f\left(q_k^n t + (1 - q_k^n)t_k\right),\tag{2.3}$$

for $t \in J_k$. Moreover, if $a \in (t_k, t)$ then the definite q_k -integral is defined by

$$\begin{split} \int_{a}^{t} f(s) \, d_{q_{k}} s &= \int_{t_{k}}^{t} f(s) \, d_{q_{k}} s - \int_{t_{k}}^{a} f(s) \, d_{q_{k}} s \\ &= (1 - q_{k})(t - t_{k}) \sum_{n=0}^{\infty} q_{k}^{n} f\left(q_{k}^{n} t + (1 - q_{k}^{n}) t_{k}\right) \\ &- (1 - q_{k})(a - t_{k}) \sum_{n=0}^{\infty} q_{k}^{n} f\left(q_{k}^{n} a + (1 - q_{k}^{n}) t_{k}\right). \end{split}$$

Note that if $t_k = 0$ and $q_k = q$, then (2.3) reduces to the *q*-integral of a function f(t), defined by $\int_0^t f(s) d_q s = (1-q)t \sum_{n=0}^{\infty} q^n f(q^n t)$ for $t \in [0, \infty)$.

Theorem 2.5 For $t \in J_k$, the following formulas hold:

(i) $D_{q_k} \int_{t_k}^t f(s) d_{q_k} s = f(t);$ (ii) $\int_{t_k}^t D_{q_k} f(s) d_{q_k} s = f(t);$ (iii) $\int_a^t D_{q_k} f(s) d_{q_k} s = f(t) - f(a) \text{ for } a \in (t_k, t).$

3 Main results

Let J = [0, T], $J_0 = [t_0, t_1]$, $J_k = (t_k, t_{k+1}]$ for k = 1, 2, ..., m. Let $PC(J, \mathbb{R}) = \{x : J \to \mathbb{R} : x(t) \text{ is continuous everywhere except for some } t_k \text{ at which } x(t_k^+) \text{ and } x(t_k^-) \text{ exist and } x(t_k^-) = x(t_k), k = 1, 2, ..., m\}$. $PC(J, \mathbb{R})$ is a Banach space with the norm $||x||_{PC} = \sup\{|x(t)|; t \in J\}$.

Lemma 3.1 The unique solution of problem (1.1) is given by

$$\begin{aligned} x(t) &= -t \sum_{k=1}^{j} \left(\int_{t_{k-1}}^{t_{k}} f(s, x(s)) \, d_{q_{k-1}}s + I_{k}^{*}(x(t_{k})) \right) \\ &- \frac{t}{T - \eta} \sum_{k=j+1}^{m} \left(\int_{t_{k-1}}^{t_{k}} \int_{t_{k-1}}^{s} f(\sigma, x(\sigma)) \, d_{q_{k-1}}\sigma \, d_{q_{k-1}}s + I_{k}(x(t_{k})) \right) \end{aligned}$$

$$-\frac{t}{T-\eta}\sum_{k=j+1}^{m} \left(\int_{t_{k-1}}^{t_{k}} f(s,x(s)) d_{q_{k-1}}s + I_{k}^{*}(x(t_{k})) \right) (T-t_{k}) \\ + \frac{t}{T-\eta} \int_{t_{j}}^{\eta} \int_{t_{j}}^{s} f(\sigma,x(\sigma)) d_{q_{j}}\sigma d_{q_{j}}s \\ - \frac{t}{T-\eta} \int_{t_{m}}^{T} \int_{t_{m}}^{s} f(\sigma,x(\sigma)) d_{q_{m}}\sigma d_{q_{m}}s \\ + \sum_{0 < t_{k} < t} \left(\int_{t_{k-1}}^{t_{k}} \int_{t_{k-1}}^{s} f(\sigma,x(\sigma)) d_{q_{k-1}}\sigma d_{q_{k-1}}s + I_{k}(x(t_{k})) \right) \\ + \sum_{0 < t_{k} < t} \left(\int_{t_{k-1}}^{t_{k}} f(s,x(s)) d_{q_{k-1}}s + I_{k}^{*}(x(t_{k})) \right) (t-t_{k}) \\ + \int_{t_{k}}^{t} \int_{t_{k}}^{s} f(\sigma,x(\sigma)) d_{q_{k}}\sigma d_{q_{k}}s,$$
(3.1)

with $\sum_{0<0}(\cdot) = 0$.

Proof For $t \in J_0$, taking the q_0 -integral for the first equation of (1.1), we get

$$D_{q_0}x(t) = D_{q_0}x(0) + \int_0^t f(s, x(s)) d_{q_0}s,$$
(3.2)

which yields

$$D_{q_0}x(t_1) = D_{q_0}x(0) + \int_0^{t_1} f(s, x(s)) d_{q_0}s.$$
(3.3)

For $t \in J_0$ we obtain by q_0 -integrating (3.2),

$$\begin{aligned} x(t) &= x(0) + D_{q_0} x(0) t + \int_0^t \int_0^s f(\sigma, x(\sigma)) \, d_{q_0} \sigma \, d_{q_0} s \\ &:= A + Bt + \int_0^t \int_0^s f(\sigma, x(\sigma)) \, d_{q_0} \sigma \, d_{q_0} s \quad (x(0) = A, D_{q_0} x(0) = B). \end{aligned}$$

In particular, for $t = t_1$

$$x(t_1) = A + Bt_1 + \int_0^{t_1} \int_0^s f(\sigma, x(\sigma)) d_{q_0} \sigma d_{q_0} s.$$
(3.4)

For $t \in J_1 = (t_1, t_2]$, q_1 -integrating (1.1), we have

$$D_{q_1}x(t) = D_{q_1}x(t_1^+) + \int_{t_1}^t f(s, x(s)) d_{q_1}s.$$

Using the third condition of (1.1) with (3.3), it follows that

$$D_{q_1}x(t) = B + \int_0^{t_1} f(s, x(s)) d_{q_0}s + I_1^*(x(t_1)) + \int_{t_1}^t f(s, x(s)) d_{q_1}s.$$
(3.5)

Taking the q_1 -integral to (3.5) for $t \in J_1$, we obtain

$$x(t) = x(t_1^+) + \left[B + \int_0^{t_1} f(s, x(s)) d_{q_0}s + I_1^*(x(t_1))\right](t - t_1) + \int_{t_1}^t \int_{t_1}^s f(\sigma, x(\sigma)) d_{q_1}\sigma d_{q_1}s.$$
(3.6)

Applying the second equation of (1.1) with (3.4) and (3.6), we get

$$\begin{aligned} x(t) &= A + Bt_1 + \int_0^{t_1} \int_0^s f(\sigma, x(\sigma)) \, d_{q_0} \sigma \, d_{q_0} s + I_1(x(t_1)) \\ &+ \left[B + \int_0^{t_1} f(s, x(s)) \, d_{q_0} s + I_1^*(x(t_1)) \right] (t - t_1) \\ &+ \int_{t_1}^t \int_{t_1}^s f(\sigma, x(\sigma)) \, d_{q_1} \sigma \, d_{q_1} s \\ &= A + Bt + \int_0^{t_1} \int_0^s f(\sigma, x(\sigma)) \, d_{q_0} \sigma \, d_{q_0} s + I_1(x(t_1)) \\ &+ \left[\int_0^{t_1} f(s, x(s)) \, d_{q_0} s + I_1^*(x(t_1)) \right] (t - t_1) \\ &+ \int_{t_1}^t \int_{t_1}^s f(\sigma, x(\sigma)) \, d_{q_1} \sigma \, d_{q_1} s. \end{aligned}$$

Repeating the above process, for $t \in J$, we get

$$x(t) = A + Bt$$

$$+ \sum_{0 < t_k < t} \left(\int_{t_{k-1}}^{t_k} \int_{t_{k-1}}^{s} f(\sigma, x(\sigma)) d_{q_{k-1}} \sigma d_{q_{k-1}} s + I_k(x(t_k)) \right)$$

$$+ \sum_{0 < t_k < t} \left(\int_{t_{k-1}}^{t_k} f(s, x(s)) d_{q_{k-1}} s + I_k^*(x(t_k)) \right) (t - t_k)$$

$$+ \int_{t_k}^{t} \int_{t_k}^{s} f(\sigma, x(\sigma)) d_{q_k} \sigma d_{q_k} s.$$
(3.7)

The first boundary condition of (1.1) implies A = 0. The second boundary condition of (1.1) yields

$$\sum_{k=1}^{m} \left(\int_{t_{k-1}}^{t_{k}} \int_{t_{k-1}}^{s} f(\sigma, x(\sigma)) d_{q_{k-1}} \sigma d_{q_{k-1}} s + I_{k}(x(t_{k})) \right)$$

+
$$\sum_{k=1}^{m} \left(\int_{t_{k-1}}^{t_{k}} f(s, x(s)) d_{q_{k-1}} s + I_{k}^{*}(x(t_{k})) \right) (T - t_{k})$$

+
$$\int_{t_{m}}^{T} \int_{t_{m}}^{s} f(\sigma, x(\sigma)) d_{q_{m}} \sigma d_{q_{m}} s + BT$$

=
$$\sum_{k=1}^{j} \left(\int_{t_{k-1}}^{t_{k}} \int_{t_{k-1}}^{s} f(\sigma, x(\sigma)) d_{q_{k-1}} \sigma d_{q_{k-1}} s + I_{k}(x(t_{k})) \right)$$

$$+ \sum_{k=1}^{j} \left(\int_{t_{k-1}}^{t_{k}} f(s, x(s)) d_{q_{k-1}} s + I_{k}^{*}(x(t_{k})) \right) (\eta - t_{k}) \\ + \int_{t_{j}}^{\eta} \int_{t_{j}}^{s} f(\sigma, x(\sigma)) d_{q_{j}} \sigma d_{q_{j}} s + B\eta,$$

which implies

$$\begin{split} B &= -\sum_{k=1}^{j} \left(\int_{t_{k-1}}^{t_{k}} f(s, x(s)) \, d_{q_{k-1}}s + I_{k}^{*}(x(t_{k})) \right) \\ &- \frac{1}{T - \eta} \sum_{k=j+1}^{m} \left(\int_{t_{k-1}}^{t_{k}} \int_{t_{k-1}}^{s} f(\sigma, x(\sigma)) \, d_{q_{k-1}}\sigma \, d_{q_{k-1}}s + I_{k}(x(t_{k})) \right) \\ &- \frac{1}{T - \eta} \sum_{k=j+1}^{m} \left(\int_{t_{k-1}}^{t_{k}} f(s, x(s)) \, d_{q_{k-1}}s + I_{k}^{*}(x(t_{k})) \right) (T - t_{k}) \\ &+ \frac{1}{T - \eta} \int_{t_{j}}^{\eta} \int_{t_{j}}^{s} f(\sigma, x(\sigma)) \, d_{q_{j}}\sigma \, d_{q_{j}}s - \frac{1}{T - \eta} \int_{t_{m}}^{T} \int_{t_{m}}^{s} f(\sigma, x(\sigma)) \, d_{q_{m}}\sigma \, d_{q_{m}}s. \end{split}$$

Substituting the constant B into (3.7), we obtain (3.1) as required.

In view of Lemma 3.1, we define an operator $\mathcal{A} : PC(J, \mathbb{R}) \to PC(J, \mathbb{R})$ by

$$(\mathcal{A}x)(t) = -t \sum_{k=1}^{j} \left(\int_{t_{k-1}}^{t_{k}} f(s, x(s)) d_{q_{k-1}}s + I_{k}^{*}(x(t_{k})) \right)$$

$$- \frac{t}{T - \eta} \sum_{k=j+1}^{m} \left(\int_{t_{k-1}}^{t_{k}} \int_{t_{k-1}}^{s} f(\sigma, x(\sigma)) d_{q_{k-1}}\sigma d_{q_{k-1}}s + I_{k}(x(t_{k})) \right)$$

$$- \frac{t}{T - \eta} \sum_{k=j+1}^{m} \left(\int_{t_{k-1}}^{t_{k}} f(s, x(s)) d_{q_{k-1}}s + I_{k}^{*}(x(t_{k})) \right) (T - t_{k})$$

$$+ \frac{t}{T - \eta} \int_{t_{j}}^{\eta} \int_{t_{j}}^{s} f(\sigma, x(\sigma)) d_{q_{j}}\sigma d_{q_{j}}s$$

$$- \frac{t}{T - \eta} \int_{t_{m}}^{T} \int_{t_{m}}^{s} f(\sigma, x(\sigma)) d_{q_{m}}\sigma d_{q_{m}}s$$

$$+ \sum_{0 < t_{k} < t} \left(\int_{t_{k-1}}^{t_{k}} \int_{t_{k-1}}^{s} f(\sigma, x(\sigma)) d_{q_{k-1}}\sigma d_{q_{k-1}}s + I_{k}(x(t_{k})) \right)$$

$$+ \sum_{0 < t_{k} < t} \left(\int_{t_{k-1}}^{t_{k}} f(s, x(s)) d_{q_{k-1}}s + I_{k}^{*}(x(t_{k})) \right) (t - t_{k})$$

$$+ \int_{t_{k}}^{t} \int_{t_{k}}^{s} f(\sigma, x(\sigma)) d_{q_{k}}\sigma d_{q_{k}}s.$$
(3.8)

It should be noticed that problem (1.1) has solutions if and only if the operator ${\cal A}$ has fixed points.

For convenience, we set

$$\Phi_k = \left[(t_k - t_{k-1})(T - t_k) + \frac{(t_k - t_{k-1})^2}{1 + q_{k-1}} \right] M_1 + M_2 + (T - t_k) M_3,$$
(3.9)

$$\Psi_{k} = \left[(t_{k} - t_{k-1})(T - t_{k}) + \frac{(t_{k} - t_{k-1})^{2}}{1 + q_{k-1}} \right] L_{1} + L_{2} + (T - t_{k})L_{3},$$
(3.10)

for k = 1, ..., m.

Theorem 3.2 Assume that:

- (H₁) The function $f : [0, T] \times \mathbb{R} \to \mathbb{R}$ is a continuous and there exists a constant $L_1 > 0$ such that $|f(t, x) f(t, y)| \le L_1 |x y|$, for each $t \in J$ and $x, y \in \mathbb{R}$.
- (H₂) The functions $I_k, I_k^* : \mathbb{R} \to \mathbb{R}$ are continuous and there exist constants $L_2, L_3 > 0$ such that $|I_k(x) I_k(y)| \le L_2|x y|$ and $|I_k^*(x) I_k^*(y)| \le L_3|x y|$ for each $x, y \in \mathbb{R}$, k = 1, 2, ..., m.

If

$$\Lambda := T \sum_{k=1}^{j} \left[(t_k - t_{k-1})L_1 + L_3 \right] + \frac{T}{T - \eta} \sum_{k=j+1}^{m} \Psi_k + \frac{TL_1}{T - \eta} \left(\frac{(\eta - t_j)^2}{1 + q_j} + \frac{(T - t_m)^2}{1 + q_m} \right) + \sum_{k=1}^{m} \Psi_k + \frac{(T - t_m)^2}{1 + q_m} L_1 \le \delta < 1,$$
(3.11)

then the impulsive q_k -difference boundary value problem (1.1) has a unique solution on J.

Proof First, we transform the problem (1.1) into a fixed-point problem, x = Ax, where the operator A is defined by (3.8). By using Banach's contraction principle, we shall show that A has a fixed point which is the unique solution of problem (1.1).

Set $\sup_{t \in J} |f(t,0)| = M_1 < \infty$, $\sup\{|I_k(0)| : k = 1, 2, ..., m\} = M_2 < \infty$, $\sup\{|I_k^*(0)| : k = 1, 2, ..., m\} = M_3 < \infty$ and a constant

$$\rho = T \sum_{k=1}^{j} \left[(t_k - t_{k-1})M_1 + M_3 \right] + \frac{T}{T - \eta} \sum_{k=j+1}^{m} \Phi_k$$

+ $\frac{TM_1}{T - \eta} \left(\frac{(\eta - t_j)^2}{1 + q_j} + \frac{(T - t_m)^2}{1 + q_m} \right)$
+ $\sum_{k=1}^{m} \Phi_k + \frac{(T - t_m)^2}{1 + q_m} M_1.$ (3.12)

Choosing $r \ge \frac{\rho}{1-\varepsilon}$, where $\delta \le \varepsilon < 1$, we show that $AB_r \subset B_r$, where $B_r = \{x \in PC(J, \mathbb{R}) : \|x\| \le r\}$. For $x \in B_r$, we have

$$\|\mathcal{A}x\|$$

 $\leq \sup_{t\in J} \left\{ t \sum_{k=1}^{j} \left(\int_{t_{k-1}}^{t_{k}} |f(s, x(s))| d_{q_{k-1}}s + |I_{k}^{*}(x(t_{k}))| \right) \right\}$

$$\begin{split} &+ \frac{t}{T - \eta} \sum_{k=j+1}^{m} \left(\int_{t_{k-1}}^{t_{k}} \int_{t_{k-1}}^{s} \left| f(\sigma, x(\sigma)) \right| d_{q_{k-1}} \sigma d_{q_{k-1}} s + \left| l_{k}(x(t_{k})) \right| \right) \right) \\ &+ \frac{t}{T - \eta} \sum_{k=j+1}^{m} \left(\int_{t_{k-1}}^{t_{k}} \left| f(s, x(\sigma)) \right| d_{q_{j}} \sigma d_{q_{j}} s + \frac{t}{T - \eta} \int_{t_{m}}^{T} \int_{t_{j}}^{s} \left| f(\sigma, x(\sigma)) \right| d_{q_{m}} \sigma d_{q_{m}} s \\ &+ \sum_{0 < t_{k} < t} \left(\int_{t_{k-1}}^{t_{k}} \int_{t_{k-1}}^{s} \left| f(\sigma, x(\sigma)) \right| d_{q_{k} < 1} \sigma d_{q_{k-1}} s + \left| l_{k}(x(t_{k})) \right| \right) \\ &+ \sum_{0 < t_{k} < t_{k}} \left(\int_{t_{k-1}}^{t_{k}} \int_{t_{k-1}}^{s} \left| f(\sigma, x(\sigma)) \right| d_{q_{k} < 1} \sigma d_{q_{k-1}} s + \left| l_{k}(x(t_{k})) \right| \right) \\ &+ \sum_{0 < t_{k} < t_{k}} \left(\int_{t_{k-1}}^{t_{k}} \left| f(s, x(s)) \right| d_{q_{k} < 1} s + \left| l_{k}^{*}(x(t_{k})) \right| \right) (t - t_{k}) \\ &+ \int_{t_{k}}^{t} \int_{t_{k}}^{s} \left| f(\sigma, x(\sigma)) \right| d_{q_{k}} \sigma d_{q_{k}} s \right| \\ &\leq T \sum_{k=1}^{j} \left(\int_{t_{k-1}}^{t_{k}} \left(\left| f(s, x(s)) - f(s, 0) \right| + \left| f(s, 0) \right| \right) d_{q_{k-1}} s + \left| l_{k}^{*}(x(t_{k})) - l_{k}^{*}(0) \right| + \left| l_{k}^{*}(0) \right| \right) \\ &+ \frac{T}{T - \eta} \sum_{k=j+1}^{m} \left(\int_{t_{k-1}}^{t_{k}} \left(\left| f(s, x(s)) - f(s, 0) \right| + \left| f(s, 0) \right| \right) d_{q_{k-1}} s d_{q_{k-1}} s \right. \\ &+ \left| l_{k}(x(t_{k})) - l_{k}(0) \right| + \left| l_{k}(0) \right| \right) \\ &+ \frac{T}{T - \eta} \sum_{k=j+1}^{m} \left(\int_{t_{k-1}}^{t_{k}} \left(\left| f(s, x(\sigma)) - f(\sigma, 0) \right| + \left| f(\sigma, 0) \right| \right) d_{q_{k}} d_{q_{j}} s \right. \\ &+ \left| l_{k}(x(t_{k})) - l_{k}^{*}(0) \right| + \left| l_{k}^{*}(0) \right| \right) (T - t_{k}) \\ &+ \frac{T}{T - \eta} \int_{t_{j}}^{m} \int_{t_{j}}^{t_{j}} \left(\left| f(\sigma, x(\sigma)) - f(\sigma, 0) \right| + \left| f(\sigma, 0) \right| \right) d_{q_{k}} \sigma d_{q_{m}} s \right. \\ &+ \left| l_{k}(x(t_{k})) - l_{k}(0) \right| + \left| l_{k}(0) \right| \right) \\ &+ \sum_{k=1}^{m} \left(\int_{t_{k-1}}^{t_{k}} \left(\left| f(s, x(\sigma)) - f(\sigma, 0) \right| + \left| f(s, 0) \right| \right) d_{q_{k-1}} s \right. \\ &+ \left| l_{k}(x(t_{k})) - l_{k}(0) \right| + \left| l_{k}(0) \right| \right) \\ &+ \sum_{k=1}^{m} \left(\int_{t_{k-1}}^{t_{k}} \left(\left| f(s, x(\sigma)) - f(\sigma, 0) \right| + \left| f(s, 0) \right| \right) d_{q_{k-1}} s \right. \\ &+ \left| l_{k}(x(t_{k})) - l_{k}(0) \right| + \left| l_{k}(0) \right| \right) \\ &+ \sum_{k=1}^{m} \left(\int_{t_{k-1}}^{t_{k}} \left(\left| f(s, x(\sigma)) - f(\sigma, 0) \right| + \left| f(s, 0) \right| \right) d_{q_{k-1}} s \right. \\ \\ &+ \left| l_{k}(x(t_{k})) - l_{k}(0) \right| + \left| l_{k}(0) \right$$

$$\begin{aligned} &+ \frac{T}{T - \eta} \sum_{k=j+1}^{m} \left(\frac{(t_k - t_{k-1})^2}{1 + q_{k-1}} (L_1 r + M_1) + L_2 r + M_2 \right) \\ &+ \frac{T}{T - \eta} \sum_{k=j+1}^{m} \left((t_k - t_{k-1}) (L_1 r + M_1) + L_3 r + M_3 \right) (T - t_k) \\ &+ \frac{T}{T - \eta} \left(\frac{(\eta - t_j)^2}{1 + q_j} + \frac{(T - t_m)^2}{1 + q_m} \right) (L_1 r + M_1) \\ &+ \sum_{k=1}^{m} \left(\frac{(t_k - t_{k-1})^2}{1 + q_{k-1}} (L_1 r + M_1) + L_2 r + M_2 \right) \\ &+ \sum_{k=1}^{m} \left((t_k - t_{k-1}) (L_1 r + M_1) + L_3 r + M_3 \right) (T - t_k) + \frac{(T - t_m)^2}{1 + q_m} (L_1 r + M_1) \\ &= r\Lambda + \rho \le (\delta + 1 - \varepsilon) r \le r. \end{aligned}$$

It follows that $AB_r \subset B_r$.

For $x, y \in PC(J, \mathbb{R})$ and for each $t \in J$, we have

$$\begin{split} \|\mathcal{A}x - \mathcal{A}y\| \\ &\leq \sup_{t \in J} \left\{ t \sum_{k=1}^{j} \left(\int_{t_{k-1}}^{t_{k}} |f(s, x(s)) - f(s, y(s))| \, d_{q_{k-1}}s + |I_{k}^{*}(x(t_{k})) - I_{k}^{*}(y(t_{k}))| \right) \right. \\ &+ \frac{t}{T - \eta} \sum_{k=j+1}^{m} \left(\int_{t_{k-1}}^{t_{k}} \int_{t_{k-1}}^{s} |f(\sigma, x(\sigma)) - f(\sigma, y(\sigma))| \, d_{q_{k-1}}\sigma \, d_{q_{k-1}}s \right. \\ &+ \left| I_{k}(x(t_{k})) - I_{k}(y(t_{k})) \right| \right) \\ &+ \frac{t}{T - \eta} \sum_{k=j+1}^{m} \left(\int_{t_{k-1}}^{t_{k}} |f(s, x(s)) - f(s, y(s))| \, d_{q_{k-1}}s + |I_{k}^{*}(x(t_{k})) - I_{k}^{*}(y(t_{k}))| \right) (T - t_{k}) \\ &+ \frac{t}{T - \eta} \int_{t_{j}}^{\eta} \int_{t_{j}}^{s} |f(\sigma, x(\sigma)) - f(\sigma, y(\sigma))| \, d_{q_{j}}\sigma \, d_{q_{j}}s \\ &+ \frac{t}{T - \eta} \int_{t_{m}}^{T} \int_{t_{k-1}}^{s} |f(\sigma, x(\sigma)) - f(\sigma, y(\sigma))| \, d_{q_{k-1}}\sigma \, d_{q_{k-1}}s + |I_{k}(x(t_{k})) - I_{k}(y(t_{k}))| \Big) \\ &+ \sum_{0 < t_{k} < t} \left(\int_{t_{k-1}}^{t_{k}} \int_{t_{k-1}}^{s} |f(\sigma, x(\sigma)) - f(\sigma, y(\sigma))| \, d_{q_{k-1}}\sigma \, d_{q_{k-1}}s + |I_{k}(x(t_{k})) - I_{k}(y(t_{k}))| \right) \\ &+ \sum_{0 < t_{k} < t} \left(\int_{t_{k-1}}^{t_{k}} |f(s, x(s)) - f(s, y(s))| \, d_{q_{k-1}}s + |I_{k}^{*}(x(t_{k})) - I_{k}^{*}(y(t_{k}))| \right) (t - t_{k}) \\ &+ \int_{t_{k}}^{t} \int_{t_{k}}^{s} |f(\sigma, x(\sigma)) - f(\sigma, y(\sigma))| \, d_{q_{k}}\sigma \, d_{q_{k}}s \right\} \\ &\leq T \|x - y\| \sum_{k=1}^{j} [(t_{k} - t_{k-1})L_{1} + L_{3}] + \frac{T \|x - y\|}{T - \eta} \sum_{k=j+1}^{m} \left(\frac{(t_{k} - t_{k-1})^{2}}{1 + q_{k-1}} L_{1} + L_{2} \right) \\ &+ \frac{T \|x - y\|}{T - \eta} \sum_{k=j+1}^{m} ((t_{k} - t_{k-1})L_{1} + L_{3}) (T - t_{k}) \end{split}$$

$$\begin{split} &+ \frac{T \|x - y\|}{T - \eta} \left(\frac{(\eta - t_j)^2}{1 + q_j} + \frac{(T - t_m)^2}{1 + q_m} \right) L_1 \\ &+ \sum_{k=1}^m \left(\frac{(t_k - t_{k-1})^2}{1 + q_{k-1}} L_1 + L_2 \right) \|x - y\| + \sum_{k=1}^m ((t_k - t_{k-1})L_1 + L_3)(T - t_k) \|x - y\| \\ &+ \frac{(T - t_m)^2}{1 + q_m} L_1 \|x - y\| \\ &= \Lambda \|x - y\|. \end{split}$$

As $\Lambda < 1$, A is a contraction. Hence, by Banach's contraction mapping principle, we find that A has a fixed point which is the unique solution of problem (1.1).

Our next result is based on Krasnoselskii's fixed-point theorem.

Lemma 3.3 (Krasnoselskii's fixed-point theorem) [19] Let M be a closed, bounded, convex and nonempty subset of a Banach space X. Let A, B be the operators such that (a) $Ax + By \in$ M whenever $x, y \in M$; (b) A is compact and continuous; (c) B is a contraction mapping. Then there exists $z \in M$ such that z = Az + Bz.

Further, we use the notation

$$\theta_{1} = T \sum_{k=1}^{j} (t_{k} - t_{k-1}) + \frac{T}{T - \eta} \sum_{k=j+1}^{m} \frac{(t_{k} - t_{k-1})^{2}}{1 + q_{k-1}} + \frac{T}{T - \eta} \sum_{k=j+1}^{m} (T - t_{k})(t_{k} - t_{k-1}) + \frac{T(\eta - t_{j})^{2}}{(T - \eta)(1 + q_{j})} + \frac{T(T - t_{m})^{2}}{(T - \eta)(1 + q_{m})} + \sum_{k=1}^{m+1} \frac{(t_{k} - t_{k-1})^{2}}{1 + q_{k-1}} + \sum_{k=1}^{m} (T - t_{k})(t_{k} - t_{k-1}),$$
(3.13)

and

$$\theta_2 = jTN_2 + \frac{(m-j)TN_1}{T-\eta} + mN_1 + N_2 \sum_{k=1}^m (T-t_k) + \frac{TN_2}{T-\eta} \sum_{j+1}^m (T-t_k).$$
(3.14)

Theorem 3.4 Let $f : J \times \mathbb{R} \to \mathbb{R}$ be a continuous function. Assume that (H_2) holds and in addition suppose that:

- (H₃) $|f(t,x)| \le \mu(t), \forall (t,x) \in J \times \mathbb{R}, and \mu \in C(J, \mathbb{R}^+).$
- (H₄) There exist constants $N_1, N_2 > 0$ such that $|I_k(x)| \le N_1$ and $|I_k^*(x)| \le N_2$ for all $x \in \mathbb{R}$, for k = 1, 2, ..., m.

Then the impulsive q_k -difference boundary value problem (1.1) has at least one solution on J provided that

$$jTL_3 + mL_2 + \frac{T(m-j)L_2}{T-\eta} + L_3 \sum_{k=1}^m (T-t_k) < 1.$$
(3.15)

Proof Firstly, we define $\sup_{t \in J} |\mu(t)| = ||\mu||$. Choosing a suitable ball $B_R = \{x \in PC(J, \mathbb{R}) : ||x|| \le R\}$, where

$$R \ge \|\mu\|\theta_1 + \theta_2,\tag{3.16}$$

and θ_1 , θ_2 are defined by (3.13), (3.14), respectively, we define the operators S_1 and S_2 on B_R by

$$(S_{1}x)(t) = -t \sum_{k=1}^{j} \int_{t_{k-1}}^{t_{k}} f(s,x(s)) d_{q_{k-1}}s - \frac{t}{T-\eta} \sum_{k=j+1}^{m} \int_{t_{k-1}}^{t_{k}} \int_{t_{k-1}}^{s} f(\sigma,x(\sigma)) d_{q_{k-1}}\sigma d_{q_{k-1}}s - \frac{t}{T-\eta} \sum_{k=j+1}^{m} (T-t_{k}) \int_{t_{k-1}}^{t_{k}} f(s,x(s)) d_{q_{k-1}}s + \frac{t}{T-\eta} \int_{t_{j}}^{\eta} \int_{t_{j}}^{s} f(\sigma,x(\sigma)) d_{q_{j}}\sigma d_{q_{j}}s - \frac{t}{T-\eta} \int_{t_{m}}^{T} \int_{t_{m}}^{s} f(\sigma,x(\sigma)) d_{q_{m}}\sigma d_{q_{m}}s + \sum_{0 < t_{k} < t} \int_{t_{k-1}}^{t_{k}} f(\sigma,x(\sigma)) d_{q_{k-1}}\sigma d_{q_{k-1}}s + \sum_{0 < t_{k} < t} (t-t_{k}) \int_{t_{k-1}}^{t_{k}} f(s,x(s)) d_{q_{k-1}}s + \int_{t_{k}}^{t} \int_{t_{k}}^{s} f(\sigma,x(\sigma)) d_{q_{k}}\sigma d_{q_{k}}s, \quad t \in [0,T],$$

and

$$(\mathcal{S}_{2}x)(t) = -t\sum_{k=1}^{j} I_{k}^{*}(x(t_{k})) - \frac{t}{T-\eta} \sum_{k=j+1}^{m} I_{k}(x(t_{k})) - \frac{t}{T-\eta} \sum_{k=j+1}^{m} (T-t_{k}) I_{k}^{*}(x(t_{k})) + \sum_{0 < t_{k} < t} I_{k}(x(t_{k})) + \sum_{0 < t_{k} < t} (t-t_{k}) I_{k}^{*}(x(t_{k})), \quad t \in [0, T].$$

For any $x, y \in B_R$, we have

$$\begin{split} \|\mathcal{S}_{1}x + \mathcal{S}_{2}y\| &\leq \|\mu\| \left[T\sum_{k=1}^{j} (t_{k} - t_{k-1}) + \frac{T}{T - \eta} \sum_{k=j+1}^{m} \frac{(t_{k} - t_{k-1})^{2}}{1 + q_{k-1}} \right. \\ &+ \frac{T}{T - \eta} \sum_{k=j+1}^{m} (T - t_{k})(t_{k} - t_{k-1}) + \frac{T(\eta - t_{j})^{2}}{(T - \eta)(1 + q_{j})} \\ &+ \frac{T(T - t_{m})^{2}}{(T - \eta)(1 + q_{m})} + \sum_{k=1}^{m+1} \frac{(t_{k} - t_{k-1})^{2}}{1 + q_{k-1}} + \sum_{k=1}^{m} (T - t_{k})(t_{k} - t_{k-1}) \right] \\ &+ jTN_{2} + \frac{(m - j)TN_{1}}{T - \eta} + mN_{1} + N_{2} \sum_{k=1}^{m} (T - t_{k}) + \frac{TN_{2}}{T - \eta} \sum_{j+1}^{m} (T - t_{k}) \\ &= \|\mu\|\theta_{1} + \theta_{2} \\ &\leq R. \end{split}$$

Hence, $S_1x + S_2y \in B_R$.

To show that S_2 is a contraction, for $x, y \in PC(J, \mathbb{R})$, we have

$$\begin{split} \|\mathcal{S}_{2}x - \mathcal{S}_{2}y\| &\leq T \sum_{k=1}^{j} \left| I_{k}^{*}(x(t_{k})) - I_{k}^{*}(y(t_{k})) \right| + \frac{T}{T - \eta} \sum_{k=j+1}^{m} \left| I_{k}(x(t_{k})) - I_{k}(y(t_{k})) \right| \\ &+ \sum_{k=1}^{m} \left| I(x(t_{k})) - I_{k}(y(t_{k})) \right| + \sum_{k=1}^{m} (t - t_{k}) \left| I_{k}^{*}(x(t_{k})) - I_{k}^{*}(y(t_{k})) \right| \\ &\leq \left[jTL_{3} + mL_{2} + \frac{T(m - j)L_{2}}{T - \eta} + L_{3} \sum_{k=1}^{m} (T - t_{k}) \right] \|x - y\|. \end{split}$$

From (3.15), it follows that S_2 is a contraction.

Next, the continuity of f implies that the operator S_1 is continuous. Further, S_1 is uniformly bounded on B_R by

$$\|\mathcal{S}_1 x\| \le \|\mu\|\theta_1.$$

Now we shall prove the compactness of S_1 . Setting $\sup_{(t,x)\in J\times B_R} |f(t,x)| = f^* < \infty$, then for each $\tau_1, \tau_2 \in (t_l, t_{l+1})$ for some $l \in \{0, 1, ..., m\}$ with $\tau_2 > \tau_1$, we have

$$\begin{split} |(S_{1}x)(\tau_{2}) - (S_{1}x)(\tau_{1})| \\ &\leq |\tau_{2} - \tau_{1}| \sum_{k=1}^{j} \int_{t_{k-1}}^{t_{k}} |f(s,x(s))| \, d_{q_{k-1}}s \\ &+ \frac{|\tau_{2} - \tau_{1}|}{T - \eta} \sum_{k=j+1}^{m} \int_{t_{k-1}}^{t_{k}} \int_{t_{k-1}}^{s} |f(\sigma,x(\sigma))| \, d_{q_{k-1}}\sigma \, d_{q_{k-1}}s \\ &+ \frac{|\tau_{2} - \tau_{1}|}{T - \eta} \sum_{k=j+1}^{m} (T - t_{k}) \int_{t_{k-1}}^{t_{k}} |f(s,x(s))| \, d_{q_{k-1}}s \\ &+ \frac{|\tau_{2} - \tau_{1}|}{T - \eta} \int_{t_{j}}^{\eta} \int_{t_{j}}^{s} |f(\sigma,x(\sigma))| \, d_{q_{j}}\sigma \, d_{q_{j}}s \\ &+ \frac{|\tau_{2} - \tau_{1}|}{T - \eta} \int_{t_{m}}^{T} \int_{t_{m}}^{s} |f(\sigma,x(\sigma))| \, d_{q_{m}}\sigma \, d_{q_{m}}s + |\tau_{2} - \tau_{1}| \sum_{k=1}^{l} \int_{t_{k-1}}^{t_{k}} |f(s,x(s))| \, d_{q_{k-1}}s \\ &+ \left| \int_{t_{l}}^{\tau_{2}} \int_{t_{l}}^{s} |f(\sigma,x(\sigma))| \, d_{q_{l}}\sigma \, d_{q_{l}}s - \int_{t_{l}}^{\tau_{1}} \int_{t_{l}}^{t_{l}} |f(\sigma,x(\sigma))| \, d_{q_{l}}\sigma \, d_{q_{l}}s \right| \\ &\leq |\tau_{2} - \tau_{1}| f^{*} \left[\sum_{k=1}^{j} (t_{k} - t_{k-1}) + \frac{1}{T - \eta} \sum_{k=j+1}^{m} \frac{(t_{k} - t_{k-1})^{2}}{1 + q_{k-1}} + \frac{(\eta - t_{j})^{2}}{(T - \eta)(1 + q_{j})} \right| \\ &+ \frac{(T - t_{m})^{2}}{(T - \eta)(1 + q_{m})} + \frac{1}{T - \eta} \sum_{k=j+1}^{m} (T - t_{k})(t_{k} - t_{k-1}) \\ &+ \sum_{k=1}^{l} (t_{k} - t_{k-1}) + \frac{(\tau_{1} + \tau_{2} + 2t_{l})}{1 + q_{l}} \right]. \end{split}$$

As $\tau_1 \rightarrow \tau_2$, the right hand side above (which is independent of *x*) tends to zero. Therefore, the operator S_1 is equicontinuous. Since S_1 maps bounded subsets into relatively compact

subsets, it follows that S_1 is relative compact on B_R . Hence, by the Arzelá-Ascoli theorem, S_1 is compact on B_R . Thus all the assumptions of Lemma 3.3 are satisfied. Hence, by the conclusion of Lemma 3.3, the impulsive q_k -difference boundary value problem (1.1) has at least one solution on J.

4 Examples

Example 4.1 Consider the following nonlinear second-order impulsive q_k -difference equation with three-point boundary condition:

$$\begin{cases} D_{\frac{4}{5+k}}^2 x(t) = \frac{e^{-\cos^2 t} |x(t)|}{(6+t)^2 (1+|x(t)|)}, & t \in J = [0,1], t \neq t_k = \frac{k}{10}, \\ \Delta x(t_k) = \frac{|x(t_k)|}{8(7+|x(t_k)|)}, & k = 1, 2, \dots, 9, \\ D_{\frac{4}{5+k}} x(t_k^+) - D_{\frac{4}{4+k}} x(t_k) = \frac{1}{6} \tan^{-1}(\frac{1}{8}x(t_k)), & k = 1, 2, \dots, 9, \\ x(0) = 0, & x(1) = x(\frac{1}{4}). \end{cases}$$

$$(4.1)$$

Here $q_k = 4/(5+k)$ for k = 0, 1, 2, ..., 9, m = 9, T = 1, $\eta = 1/4$, j = 2, $f(t,x) = (e^{-\cos^2 t} |x|)/((6+t)^2(1+|x|))$, $I_k(x) = |x|/(8(7+|x|))$ and $I_k^*(x) = (1/6) \tan^{-1}(x/8)$. Since

$$|f(t,x) - f(t,y)| \le (1/36)|x - y|,$$

 $|I_k(x) - I_k(y)| \le (1/56)|x - y|$ and $|I_k^*(x) - I_k^*(y)| \le (1/48)|x - y|,$

then (H_1) and (H_2) are satisfied with $L_1 = (1/36)$, $L_2 = (1/56)$, $L_3 = (1/48)$. We can show that

$$\Lambda \approx 0.5730986482 < 1.$$

Hence, by Theorem 3.2, the three-point impulsive q_k -difference boundary value problem (4.1) has a unique solution on [0, 1].

Example 4.2 Consider the following nonlinear second-order impulsive q_k -difference equation with three-point boundary condition:

$$\begin{cases} D_{\frac{3}{6+k}}^{2} x(t) = \frac{\sin^{2}(\pi t)}{(t+4)^{2}} \frac{|x(t)|}{(1+|x(t)|)}, & t \in J = [0,1], t \neq t_{k} = \frac{k}{10}, \\ \Delta x(t_{k}) = \frac{|x(t_{k})|}{9(7+|x(t_{k})|)}, & k = 1, 2, \dots, 9, \\ D_{\frac{3}{6+k}} x(t_{k}^{+}) - D_{\frac{3}{5+k}} x(t_{k}) = \frac{|x(t_{k})|}{4(5+|x(t_{k})|)}, & k = 1, 2, \dots, 9, \\ x(0) = 0, & x(1) = x(\frac{9}{20}). \end{cases}$$

$$(4.2)$$

Set $q_k = 3/(6+k)$ for k = 0, 1, 2, ..., 9, m = 9, T = 1, $\eta = 9/20$, j = 4, $f(t, x) = (\sin^2(\pi t)|x|)/((t+4)^2(1+|x|))$, $I_k(x) = |x|/(9(7+|x|))$ and $I_k^*(x) = |x|/(4(5+|x|))$. Since

$$|I_k(x) - I_k(y)| \le (1/63)|x - y|$$
 and $|I_k^*(x) - I_k^*(y)| \le (1/20)|x - y|$,

then (H₂) is satisfied with $L_2 = (1/63)$, $L_3 = (1/20)$. It is easy to verify that $|f(t,x)| \le \mu(t) \equiv 1$, $I_k(x) \le N_1 = 1/9$ and $I_k^*(x) \le N_2 = 1/4$ for all $t \in [0,1]$, $x \in \mathbb{R}$, k = 1, ..., m. Thus (H₃) and (H₄) are satisfied. We can show that

$$jTL_3 + mL_2 + \frac{T(m-j)L_2}{T-\eta} + L_3 \sum_{k=1}^m (T-t_k) = \frac{19741}{27720} < 1.$$

Hence, by Theorem 3.3, the three-point impulsive q_k -difference boundary value problem (4.2) has at least one solution on [0,1].

Competing interests

The authors declare that they have no competing interests.

Authors' contributions

Both authors contributed equally in this article. They read and approved the final manuscript.

Author details

¹Department of Mathematics, Faculty of Applied Science, King Mongkut's University of Technology North Bangkok, Bangkok, Thailand. ²Department of Mathematics, University of Ioannina, Ioannina, 451 10, Greece.

Authors' information

Sotiris K Ntouyas is a member of Nonlinear Analysis and Applied Mathematics (NAAM)-Research Group at King Abdulaziz University, Jeddah, Saudi Arabia.

Acknowledgements

This research of J Tariboon is supported by King Mongkut's University of Technology North Bangkok, Thailand.

Received: 11 November 2013 Accepted: 7 January 2014 Published: 27 Jan 2014

References

- 1. Tariboon, J, Ntouyas, SK: Quantum calculus on finite intervals and applications to impulsive difference equations. Adv. Differ. Equ. **2013**, 282 (2013)
- 2. Kac, V, Cheung, P: Quantum Calculus. Springer, New York (2002)
- 3. Bangerezako, G: Variational q-calculus. J. Math. Anal. Appl. 289, 650-665 (2004)
- 4. Dobrogowska, A, Odzijewicz, A: Second order *q*-difference equations solvable by factorization method. J. Comput. Appl. Math. **193**, 319-346 (2006)
- 5. Gasper, G, Rahman, M: Some systems of multivariable orthogonal *q*-Racah polynomials. Ramanujan J. **13**, 389-405 (2007)
- Ismail, MEH, Simeonov, P: q-Difference operators for orthogonal polynomials. J. Comput. Appl. Math. 233, 749-761 (2009)
- 7. Bohner, M, Guseinov, GS: The h-Laplace and q-Laplace transforms. J. Math. Anal. Appl. 365, 75-92 (2010)
- 8. El-Shahed, M, Hassan, HA: Positive solutions of q-difference equation. Proc. Am. Math. Soc. 138, 1733-1738 (2010)
- Ahmad, B: Boundary-value problems for nonlinear third-order q-difference equations. Electron. J. Differ. Equ. 94, 1-7 (2011)
- Ahmad, B, Alsaedi, A, Ntouyas, SK: A study of second-order q-difference equations with boundary conditions. Adv. Differ. Equ. 2012, 35 (2012)
- 11. Ahmad, B, Ntouyas, SK, Purnaras, IK: Existence results for nonlinear *q*-difference equations with nonlocal boundary conditions. Commun. Appl. Nonlinear Anal. **19**, 59-72 (2012)
- Ahmad, B, Nieto, JJ: On nonlocal boundary value problems of nonlinear *q*-difference equations. Adv. Differ. Equ. 2012, 81 (2012)
- Ahmad, B, Ntouyas, SK: Boundary value problems for q-difference inclusions. Abstr. Appl. Anal. 2011, Article ID 292860 (2011)
- Zhou, W, Liu, H: Existence solutions for boundary value problem of nonlinear fractional q-difference equations. Adv. Differ. Equ. 2013, 113 (2013)
- 15. Yu, C, Wang, J: Existence of solutions for nonlinear second-order *q*-difference equations with first-order *q*-derivatives. Adv. Differ. Equ. **2013**, 124 (2013)
- 16. Lakshmikantham, V, Bainov, DD, Simeonov, PS: Theory of Impulsive Differential Equations. World Scientific, Singapore (1989)
- 17. Samoilenko, AM, Perestyuk, NA: Impulsive Differential Equations. World Scientific, Singapore (1995)
- Benchohra, M, Henderson, J, Ntouyas, SK: Impulsive Differential Equations and Inclusions, vol. 2. Hindawi Publishing Corporation, New York (2006)
- 19. Krasnoselskii, MA: Two remarks on the method of successive approximations. Usp. Mat. Nauk 10, 123-127 (1955)

10.1186/1687-1847-2014-31

Cite this article as: Tariboon and Ntouyas: **Three-point boundary value problems for nonlinear second-order impulsive** *q*-difference equations. *Advances in Difference Equations* **2014**, **2014**:31