
Tariboon and Ntouyas Advances in Difference Equations 2014, 2014:31
http://www.advancesindifferenceequations.com/content/2014/1/31

RESEARCH Open Access

Three-point boundary value problems for
nonlinear second-order impulsive
q-difference equations
Jessada Tariboon1* and Sotiris K Ntouyas2

*Correspondence:
jessadat@kmutnb.ac.th
1Department of Mathematics,
Faculty of Applied Science, King
Mongkut’s University of Technology
North Bangkok, Bangkok, Thailand
Full list of author information is
available at the end of the article

Abstract
The quantum calculus on finite intervals was studied recently by the authors in Adv.
Differ. Equ. 2013:282, 2013, where the concepts of qk-derivative and qk-integral of a
function f : Jk := [tk , tk+1]→R have been introduced. In this paper, we prove existence
and uniqueness results for nonlinear second-order impulsive qk-difference
three-point boundary value problems, by using Banach’s contraction mapping
principle and Krasnoselskii’s fixed-point theorem.
MSC: 26A33; 39A13; 34A37

Keywords: qk-derivative; qk-integral; impulsive qk-difference equation; existence;
uniqueness; three-point boundary conditions; fixed-point theorems

1 Introduction
In this article, we investigate the nonlinear second-order impulsive qk-difference equation
with three-point boundary conditions

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

D
qk x(t) = f (t,x(t)), t ∈ J := [,T], t �= tk ,

�x(tk) = Ik(x(tk)), k = , , . . . ,m,

Dqkx(t
+
k ) –Dqk–x(tk) = I∗k (x(tk)), k = , , . . . ,m,

x() = , x(T) = x(η),

(.)

where  = t < t < t < · · · < tk < · · · < tm < tm+ = T , f : J ×R→R is a continuous function,
Ik , I∗k ∈ C(R,R), �x(tk) = x(t+k ) – x(tk) for k = , , . . . ,m, x(t+k ) = limh→ x(tk +h), η ∈ (tj, tj+)
a constant for some j ∈ {, , , . . . ,m} and  < qk <  for k = , , , . . . ,m.
The theory of quantumcalculus on finite intervals was developed recently by the authors

in []. In [] the concepts of qk-derivative and qk-integral of a function f : Jk := [tk , tk+] →
R, are defined and their basic properties proved. As applications, existence and unique-
ness results for initial value problems for first- and second-order impulsive qk-difference
equations are proved.
The book by Kac and Cheung [] covers many of the fundamental aspects of the quan-

tum calculus. In recent years, the topic of q-calculus has attracted the attention of several
researchers and a variety of new results can be found in the papers [–] and the refer-
ences cited therein.
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Impulsive differential equations, that is, differential equations involving an impulse ef-
fect, appear as a natural description of observed evolution phenomena of several real-
world problems. For some monographs on impulsive differential equations we refer to
[–].
In the present paper we prove existence and uniqueness results for the impulsive bound-

ary value problem (.) by using Banach’s contraction mapping principle and Krasnosel-
skii’s fixed-point theorem. The rest of this paper is organized as follows: In Section  we
present the notions of qk-derivative and qk-integral on finite intervals and collect their
properties. The main results are proved in Section , while examples illustrating the re-
sults are presented in Section .

2 Preliminaries
In this section we present the notions of qk-derivative and qk-integral on finite intervals.
For a fixed k ∈N∪ {} let Jk := [tk , tk+] ⊂R be an interval and  < qk <  be a constant. We
define qk-derivative of a function f : Jk →R at a point t ∈ Jk as follows.

Definition . Assume f : Jk → R is a continuous function and let t ∈ Jk . Then the ex-
pression

Dqk f (t) =
f (t) – f (qkt + ( – qk)tk)

( – qk)(t – tk)
, t �= tk , Dqk f (tk) = lim

t→tk
Dqk f (t), (.)

is called the qk-derivative of function f at t.

We say that f is qk-differentiable on Jk provided Dqk f (t) exists for all t ∈ Jk . Note that if
tk =  and qk = q in (.), then Dqk f =Dqf , where Dq is the well-known q-derivative of the
function f (t) defined by

Dqf (t) =
f (t) – f (qt)
( – q)t

. (.)

In addition, we should define the higher qk-derivative of functions.

Definition . Let f : Jk → R is a continuous function, we call the second-order qk-
derivative D

qk f provided Dqk f is qk-differentiable on Jk with D
qk f = Dqk (Dqk f ) : Jk → R.

Similarly, we define the higher-order qk-derivative Dn
qk : Jk →R.

The properties of the qk-derivative are summarized in the following theorem.

Theorem . Assume f , g : Jk → R are qk-differentiable on Jk . Then:
(i) The sum f + g : Jk →R is qk-differentiable on Jk with

Dqk
(
f (t) + g(t)

)
=Dqk f (t) +Dqk g(t).

(ii) For any constant α, αf : Jk →R is qk-differentiable on Jk with

Dqk (αf )(t) = αDqk f (t).

http://www.advancesindifferenceequations.com/content/2014/1/31
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(iii) The product fg : Jk →R is qk-differentiable on Jk with

Dqk (fg)(t) = f (t)Dqk g(t) + g
(
qkt + ( – qk)tk

)
Dqk f (t)

= g(t)Dqk f (t) + f
(
qkt + ( – qk)tk

)
Dqk g(t).

(iv) If g(t)g(qkt + ( – qk)tk) �= , then f
g is qk-differentiable on Jk with

Dqk

(
f
g

)
(t) =

g(t)Dqk f (t) – f (t)Dqk g(t)
g(t)g(qkt + ( – qk)tk)

.

Definition . Assume f : Jk → R is a continuous function. Then the qk-integral is de-
fined by

∫ t

tk
f (s)dqk s = ( – qk)(t – tk)

∞∑
n=

qnk f
(
qnk t +

(
 – qnk

)
tk

)
, (.)

for t ∈ Jk . Moreover, if a ∈ (tk , t) then the definite qk-integral is defined by

∫ t

a
f (s)dqk s =

∫ t

tk
f (s)dqk s –

∫ a

tk
f (s)dqk s

= ( – qk)(t – tk)
∞∑
n=

qnk f
(
qnk t +

(
 – qnk

)
tk

)

– ( – qk)(a – tk)
∞∑
n=

qnk f
(
qnka +

(
 – qnk

)
tk

)
.

Note that if tk =  and qk = q, then (.) reduces to the q-integral of a function f (t),
defined by

∫ t
 f (s)dqs = ( – q)t

∑∞
n= qnf (qnt) for t ∈ [,∞).

Theorem . For t ∈ Jk , the following formulas hold:
(i) Dqk

∫ t
tk
f (s)dqk s = f (t);

(ii)
∫ t
tk
Dqk f (s)dqk s = f (t);

(iii)
∫ t
a Dqk f (s)dqk s = f (t) – f (a) for a ∈ (tk , t).

3 Main results
Let J = [,T], J = [t, t], Jk = (tk , tk+] for k = , , . . . ,m. Let PC(J ,R) = {x : J → R :
x(t) is continuous everywhere except for some tk at which x(t+k ) and x(t

–
k ) exist and x(t

–
k ) =

x(tk),k = , , . . . ,m}. PC(J ,R) is a Banach space with the norm ‖x‖PC = sup{|x(t)|; t ∈ J}.

Lemma . The unique solution of problem (.) is given by

x(t) = –t
j∑

k=

(∫ tk

tk–
f
(
s,x(s)

)
dqk–s + I∗k

(
x(tk)

))

–
t

T – η

m∑
k=j+

(∫ tk

tk–

∫ s

tk–
f
(
σ ,x(σ )

)
dqk–σ dqk–s + Ik

(
x(tk)

))
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–
t

T – η

m∑
k=j+

(∫ tk

tk–
f
(
s,x(s)

)
dqk–s + I∗k

(
x(tk)

))
(T – tk)

+
t

T – η

∫ η

tj

∫ s

tj
f
(
σ ,x(σ )

)
dqjσ dqj s

–
t

T – η

∫ T

tm

∫ s

tm
f
(
σ ,x(σ )

)
dqmσ dqms

+
∑
<tk<t

(∫ tk

tk–

∫ s

tk–
f
(
σ ,x(σ )

)
dqk–σ dqk–s + Ik

(
x(tk)

))

+
∑
<tk<t

(∫ tk

tk–
f
(
s,x(s)

)
dqk–s + I∗k

(
x(tk)

))
(t – tk)

+
∫ t

tk

∫ s

tk
f
(
σ ,x(σ )

)
dqkσ dqk s, (.)

with
∑

<(·) = .

Proof For t ∈ J, taking the q-integral for the first equation of (.), we get

Dqx(t) =Dqx() +
∫ t


f
(
s,x(s)

)
dqs, (.)

which yields

Dqx(t) =Dqx() +
∫ t


f
(
s,x(s)

)
dqs. (.)

For t ∈ J we obtain by q-integrating (.),

x(t) = x() +Dqx()t +
∫ t



∫ s


f
(
σ ,x(σ )

)
dqσ dqs

:= A + Bt +
∫ t



∫ s


f
(
σ ,x(σ )

)
dqσ dqs

(
x() = A,Dqx() = B

)
.

In particular, for t = t

x(t) = A + Bt +
∫ t



∫ s


f
(
σ ,x(σ )

)
dqσ dqs. (.)

For t ∈ J = (t, t], q-integrating (.), we have

Dqx(t) =Dqx
(
t+

)
+

∫ t

t
f
(
s,x(s)

)
dqs.

Using the third condition of (.) with (.), it follows that

Dqx(t) = B +
∫ t


f
(
s,x(s)

)
dqs + I∗

(
x(t)

)
+

∫ t

t
f
(
s,x(s)

)
dqs. (.)

http://www.advancesindifferenceequations.com/content/2014/1/31
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Taking the q-integral to (.) for t ∈ J, we obtain

x(t) = x
(
t+

)
+

[
B +

∫ t


f
(
s,x(s)

)
dqs + I∗

(
x(t)

)]
(t – t)

+
∫ t

t

∫ s

t
f
(
σ ,x(σ )

)
dqσ dqs. (.)

Applying the second equation of (.) with (.) and (.), we get

x(t) = A + Bt +
∫ t



∫ s


f
(
σ ,x(σ )

)
dqσ dqs + I

(
x(t)

)

+
[
B +

∫ t


f
(
s,x(s)

)
dqs + I∗

(
x(t)

)]
(t – t)

+
∫ t

t

∫ s

t
f
(
σ ,x(σ )

)
dqσ dqs

= A + Bt +
∫ t



∫ s


f
(
σ ,x(σ )

)
dqσ dqs + I

(
x(t)

)

+
[∫ t


f
(
s,x(s)

)
dqs + I∗

(
x(t)

)]
(t – t)

+
∫ t

t

∫ s

t
f
(
σ ,x(σ )

)
dqσ dqs.

Repeating the above process, for t ∈ J , we get

x(t) = A + Bt

+
∑
<tk<t

(∫ tk

tk–

∫ s

tk–
f
(
σ ,x(σ )

)
dqk–σ dqk–s + Ik

(
x(tk)

))

+
∑
<tk<t

(∫ tk

tk–
f
(
s,x(s)

)
dqk–s + I∗k

(
x(tk)

))
(t – tk)

+
∫ t

tk

∫ s

tk
f
(
σ ,x(σ )

)
dqkσ dqk s. (.)

The first boundary condition of (.) implies A = . The second boundary condition of
(.) yields

m∑
k=

(∫ tk

tk–

∫ s

tk–
f
(
σ ,x(σ )

)
dqk–σ dqk–s + Ik

(
x(tk)

))

+
m∑
k=

(∫ tk

tk–
f
(
s,x(s)

)
dqk–s + I∗k

(
x(tk)

))
(T – tk)

+
∫ T

tm

∫ s

tm
f
(
σ ,x(σ )

)
dqmσ dqms + BT

=
j∑

k=

(∫ tk

tk–

∫ s

tk–
f
(
σ ,x(σ )

)
dqk–σ dqk–s + Ik

(
x(tk)

))

http://www.advancesindifferenceequations.com/content/2014/1/31
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+
j∑

k=

(∫ tk

tk–
f
(
s,x(s)

)
dqk–s + I∗k

(
x(tk)

))
(η – tk)

+
∫ η

tj

∫ s

tj
f
(
σ ,x(σ )

)
dqjσ dqj s + Bη,

which implies

B = –
j∑

k=

(∫ tk

tk–
f
(
s,x(s)

)
dqk–s + I∗k

(
x(tk)

))

–


T – η

m∑
k=j+

(∫ tk

tk–

∫ s

tk–
f
(
σ ,x(σ )

)
dqk–σ dqk–s + Ik

(
x(tk)

))

–


T – η

m∑
k=j+

(∫ tk

tk–
f
(
s,x(s)

)
dqk–s + I∗k

(
x(tk)

))
(T – tk)

+


T – η

∫ η

tj

∫ s

tj
f
(
σ ,x(σ )

)
dqjσ dqj s –


T – η

∫ T

tm

∫ s

tm
f
(
σ ,x(σ )

)
dqmσ dqms.

Substituting the constant B into (.), we obtain (.) as required. �

In view of Lemma ., we define an operatorA : PC(J ,R) → PC(J ,R) by

(Ax)(t) = –t
j∑

k=

(∫ tk

tk–
f
(
s,x(s)

)
dqk–s + I∗k

(
x(tk)

))

–
t

T – η

m∑
k=j+

(∫ tk

tk–

∫ s

tk–
f
(
σ ,x(σ )

)
dqk–σ dqk–s + Ik

(
x(tk)

))

–
t

T – η

m∑
k=j+

(∫ tk

tk–
f
(
s,x(s)

)
dqk–s + I∗k

(
x(tk)

))
(T – tk)

+
t

T – η

∫ η

tj

∫ s

tj
f
(
σ ,x(σ )

)
dqjσ dqj s

–
t

T – η

∫ T

tm

∫ s

tm
f
(
σ ,x(σ )

)
dqmσ dqms

+
∑
<tk<t

(∫ tk

tk–

∫ s

tk–
f
(
σ ,x(σ )

)
dqk–σ dqk–s + Ik

(
x(tk)

))

+
∑
<tk<t

(∫ tk

tk–
f
(
s,x(s)

)
dqk–s + I∗k

(
x(tk)

))
(t – tk)

+
∫ t

tk

∫ s

tk
f
(
σ ,x(σ )

)
dqkσ dqk s. (.)

It should be noticed that problem (.) has solutions if and only if the operatorA has fixed
points.

http://www.advancesindifferenceequations.com/content/2014/1/31
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For convenience, we set

�k =
[
(tk – tk–)(T – tk) +

(tk – tk–)

 + qk–

]
M +M + (T – tk)M, (.)

�k =
[
(tk – tk–)(T – tk) +

(tk – tk–)

 + qk–

]
L + L + (T – tk)L, (.)

for k = , . . . ,m.

Theorem . Assume that:

(H) The function f : [,T]×R →R is a continuous and there exists a constant L >  such
that |f (t,x) – f (t, y)| ≤ L|x – y|, for each t ∈ J and x, y ∈R.

(H) The functions Ik , I∗k : R → R are continuous and there exist constants L,L >  such
that |Ik(x) – Ik(y)| ≤ L|x – y| and |I∗k (x) – I∗k (y)| ≤ L|x – y| for each x, y ∈ R, k =
, , . . . ,m.

If

� := T
j∑

k=

[
(tk – tk–)L + L

]
+

T
T – η

m∑
k=j+

�k +
TL
T – η

(
(η – tj)

 + qj
+
(T – tm)

 + qm

)

+
m∑
k=

�k +
(T – tm)

 + qm
L ≤ δ < , (.)

then the impulsive qk-difference boundary value problem (.) has a unique solution on J .

Proof First, we transform the problem (.) into a fixed-point problem, x =Ax, where the
operatorA is defined by (.). By using Banach’s contraction principle, we shall show that
A has a fixed point which is the unique solution of problem (.).
Set supt∈J |f (t, )| = M < ∞, sup{|Ik()| : k = , , . . . ,m} = M < ∞, sup{|I∗k ()| : k =

, , . . . ,m} =M < ∞ and a constant

ρ = T
j∑

k=

[
(tk – tk–)M +M

]
+

T
T – η

m∑
k=j+

�k

+
TM

T – η

(
(η – tj)

 + qj
+
(T – tm)

 + qm

)

+
m∑
k=

�k +
(T – tm)

 + qm
M. (.)

Choosing r ≥ ρ

–ε
, where δ ≤ ε < , we show that ABr ⊂ Br , where Br = {x ∈ PC(J ,R) :

‖x‖ ≤ r}. For x ∈ Br , we have

‖Ax‖

≤ sup
t∈J

{
t

j∑
k=

(∫ tk

tk–

∣∣f (s,x(s))∣∣dqk–s + ∣∣I∗k (x(tk))∣∣
)

http://www.advancesindifferenceequations.com/content/2014/1/31
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+
t

T – η

m∑
k=j+

(∫ tk

tk–

∫ s

tk–

∣∣f (σ ,x(σ ))∣∣dqk–σdqk–s + ∣∣Ik(x(tk))∣∣
)

+
t

T – η

m∑
k=j+

(∫ tk

tk–

∣∣f (s,x(s))∣∣dqk–s + ∣∣I∗k (x(tk))∣∣
)
(T – tk)

+
t

T – η

∫ η

tj

∫ s

tj

∣∣f (σ ,x(σ ))∣∣dqjσ dqj s +
t

T – η

∫ T

tm

∫ s

tm

∣∣f (σ ,x(σ ))∣∣dqmσ dqms

+
∑
<tk<t

(∫ tk

tk–

∫ s

tk–

∣∣f (σ ,x(σ ))∣∣dqk–σ dqk–s +
∣∣Ik(x(tk))∣∣

)

+
∑
<tk<t

(∫ tk

tk–

∣∣f (s,x(s))∣∣dqk–s + ∣∣I∗k (x(tk))∣∣
)
(t – tk)

+
∫ t

tk

∫ s

tk

∣∣f (σ ,x(σ ))∣∣dqkσ dqk s

}

≤ T
j∑

k=

(∫ tk

tk–

(∣∣f (s,x(s)) – f (s, )
∣∣ + ∣∣f (s, )∣∣)dqk–s + ∣∣I∗k (x(tk)) – I∗k ()

∣∣ + ∣∣I∗k ()∣∣
)

+
T

T – η

m∑
k=j+

(∫ tk

tk–

∫ s

tk–

(∣∣f (σ ,x(σ )) – f (σ , )
∣∣ + ∣∣f (σ , )∣∣)dqk–σ dqk–s

+
∣∣Ik(x(tk)) – Ik()

∣∣ + ∣∣Ik()∣∣
)

+
T

T – η

m∑
k=j+

(∫ tk

tk–

(∣∣f (s,x(s)) – f (s, )
∣∣ + ∣∣f (s, )∣∣)dqk–s

+
∣∣I∗k (x(tk)) – I∗k ()

∣∣ + ∣∣I∗k ()∣∣
)
(T – tk)

+
T

T – η

∫ η

tj

∫ s

tj

(∣∣f (σ ,x(σ )) – f (σ , )
∣∣ + ∣∣f (σ , )∣∣)dqjσ dqj s

+
T

T – η

∫ T

tm

∫ s

tm

(∣∣f (σ ,x(σ )) – f (σ , )
∣∣ + ∣∣f (σ , )∣∣)dqmσdqms

+
m∑
k=

(∫ tk

tk–

∫ s

tk–

(∣∣f (σ ,x(σ )) – f (σ , )
∣∣ + ∣∣f (σ , )∣∣)dqk–σ dqk–s

+
∣∣Ik(x(tk)) – Ik()

∣∣ + ∣∣Ik()∣∣
)

+
m∑
k=

(∫ tk

tk–

(∣∣f (s,x(s)) – f (s, )
∣∣ + ∣∣f (s, )∣∣)dqk–s

+
∣∣I∗k (x(tk)) – I∗k ()

∣∣ + ∣∣I∗k ()∣∣
)
(T – tk)

+
∫ T

tm

∫ s

tm

(∣∣f (σ ,x(σ )) – f (σ , )
∣∣ + ∣∣f (σ , )∣∣)dqmσ dqms

≤ T
j∑

k=

(
(tk – tk–)(Lr +M) + Lr +M

)

http://www.advancesindifferenceequations.com/content/2014/1/31
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+
T

T – η

m∑
k=j+

(
(tk – tk–)

 + qk–
(Lr +M) + Lr +M

)

+
T

T – η

m∑
k=j+

(
(tk – tk–)(Lr +M) + Lr +M

)
(T – tk)

+
T

T – η

(
(η – tj)

 + qj
+
(T – tm)

 + qm

)
(Lr +M)

+
m∑
k=

(
(tk – tk–)

 + qk–
(Lr +M) + Lr +M

)

+
m∑
k=

(
(tk – tk–)(Lr +M) + Lr +M

)
(T – tk) +

(T – tm)

 + qm
(Lr +M)

= r� + ρ ≤ (δ +  – ε)r ≤ r.

It follows thatABr ⊂ Br .
For x, y ∈ PC(J ,R) and for each t ∈ J , we have

‖Ax –Ay‖

≤ sup
t∈J

{
t

j∑
k=

(∫ tk

tk–

∣∣f (s,x(s)) – f
(
s, y(s)

)∣∣dqk–s + ∣∣I∗k (x(tk)) – I∗k
(
y(tk)

)∣∣)

+
t

T – η

m∑
k=j+

(∫ tk

tk–

∫ s

tk–

∣∣f (σ ,x(σ )) – f
(
σ , y(σ )

)∣∣dqk–σ dqk–s

+
∣∣Ik(x(tk)) – Ik

(
y(tk)

)∣∣)

+
t

T – η

m∑
k=j+

(∫ tk

tk–

∣∣f (s,x(s)) – f
(
s, y(s)

)∣∣dqk–s + ∣∣I∗k (x(tk)) – I∗k
(
y(tk)

)∣∣)(T – tk)

+
t

T – η

∫ η

tj

∫ s

tj

∣∣f (σ ,x(σ )) – f
(
σ , y(σ )

)∣∣dqjσ dqj s

+
t

T – η

∫ T

tm

∫ s

tm

∣∣f (σ ,x(σ )) – f
(
σ , y(σ )

)∣∣dqmσ dqms

+
∑
<tk<t

(∫ tk

tk–

∫ s

tk–

∣∣f (σ ,x(σ )) – f
(
σ , y(σ )

)∣∣dqk–σ dqk–s +
∣∣Ik(x(tk)) – Ik

(
y(tk)

)∣∣)

+
∑
<tk<t

(∫ tk

tk–

∣∣f (s,x(s)) – f
(
s, y(s)

)∣∣dqk–s + ∣∣I∗k (x(tk)) – I∗k
(
y(tk)

)∣∣)(t – tk)

+
∫ t

tk

∫ s

tk

∣∣f (σ ,x(σ )) – f
(
σ , y(σ )

)∣∣dqkσ dqk s

}

≤ T‖x – y‖
j∑

k=

[
(tk – tk–)L + L

]
+
T‖x – y‖
T – η

m∑
k=j+

(
(tk – tk–)

 + qk–
L + L

)

+
T‖x – y‖
T – η

m∑
k=j+

(
(tk – tk–)L + L

)
(T – tk)
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+
T‖x – y‖
T – η

(
(η – tj)

 + qj
+
(T – tm)

 + qm

)
L

+
m∑
k=

(
(tk – tk–)

 + qk–
L + L

)
‖x – y‖ +

m∑
k=

(
(tk – tk–)L + L

)
(T – tk)‖x – y‖

+
(T – tm)

 + qm
L‖x – y‖

=�‖x – y‖.

As � < , A is a contraction. Hence, by Banach’s contraction mapping principle, we find
that A has a fixed point which is the unique solution of problem (.). �

Our next result is based on Krasnoselskii’s fixed-point theorem.

Lemma . (Krasnoselskii’s fixed-point theorem) [] LetM be a closed, bounded, convex
and nonempty subset of a Banach space X. Let A, B be the operators such that (a) Ax+By ∈
M whenever x, y ∈ M; (b) A is compact and continuous; (c) B is a contraction mapping.
Then there exists z ∈ M such that z = Az + Bz.

Further, we use the notation

θ = T
j∑

k=

(tk – tk–) +
T

T – η

m∑
k=j+

(tk – tk–)

 + qk–

+
T

T – η

m∑
k=j+

(T – tk)(tk – tk–) +
T(η – tj)

(T – η)( + qj)

+
T(T – tm)

(T – η)( + qm)
+

m+∑
k=

(tk – tk–)

 + qk–
+

m∑
k=

(T – tk)(tk – tk–), (.)

and

θ = jTN +
(m – j)TN

T – η
+mN +N

m∑
k=

(T – tk) +
TN

T – η

m∑
j+

(T – tk). (.)

Theorem . Let f : J ×R →R be a continuous function. Assume that (H) holds and in
addition suppose that:

(H) |f (t,x)| ≤ μ(t), ∀(t,x) ∈ J ×R, and μ ∈ C(J ,R+).
(H) There exist constants N,N >  such that |Ik(x)| ≤ N and |I∗k (x)| ≤ N for all x ∈ R,

for k = , , . . . ,m.

Then the impulsive qk-difference boundary value problem (.) has at least one solution
on J provided that

jTL +mL +
T(m – j)L

T – η
+ L

m∑
k=

(T – tk) < . (.)
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Proof Firstly, we define supt∈J |μ(t)| = ‖μ‖. Choosing a suitable ball BR = {x ∈ PC(J ,R) :
‖x‖ ≤ R}, where

R ≥ ‖μ‖θ + θ, (.)

and θ, θ are defined by (.), (.), respectively, we define the operators S and S on
BR by

(Sx)(t)

= –t
j∑

k=

∫ tk

tk–
f
(
s,x(s)

)
dqk–s –

t
T – η

m∑
k=j+

∫ tk

tk–

∫ s

tk–
f
(
σ ,x(σ )

)
dqk–σ dqk–s

–
t

T – η

m∑
k=j+

(T – tk)
∫ tk

tk–
f
(
s,x(s)

)
dqk–s +

t
T – η

∫ η

tj

∫ s

tj
f
(
σ ,x(σ )

)
dqjσ dqj s

–
t

T – η

∫ T

tm

∫ s

tm
f
(
σ ,x(σ )

)
dqmσ dqms +

∑
<tk<t

∫ tk

tk–

∫ s

tk–
f
(
σ ,x(σ )

)
dqk–σ dqk–s

+
∑
<tk<t

(t – tk)
∫ tk

tk–
f
(
s,x(s)

)
dqk–s +

∫ t

tk

∫ s

tk
f
(
σ ,x(σ )

)
dqkσ dqk s, t ∈ [,T],

and

(Sx)(t) = –t
j∑

k=

I∗k
(
x(tk)

)
–

t
T – η

m∑
k=j+

Ik
(
x(tk)

)
–

t
T – η

m∑
k=j+

(T – tk)I∗k
(
x(tk)

)

+
∑
<tk<t

Ik
(
x(tk)

)
+

∑
<tk<t

(t – tk)I∗k
(
x(tk)

)
, t ∈ [,T].

For any x, y ∈ BR, we have

‖Sx + Sy‖ ≤ ‖μ‖
[
T

j∑
k=

(tk – tk–) +
T

T – η

m∑
k=j+

(tk – tk–)

 + qk–

+
T

T – η

m∑
k=j+

(T – tk)(tk – tk–) +
T(η – tj)

(T – η)( + qj)

+
T(T – tm)

(T – η)( + qm)
+

m+∑
k=

(tk – tk–)

 + qk–
+

m∑
k=

(T – tk)(tk – tk–)

]

+ jTN +
(m – j)TN

T – η
+mN +N

m∑
k=

(T – tk) +
TN

T – η

m∑
j+

(T – tk)

= ‖μ‖θ + θ

≤ R.

Hence, Sx + Sy ∈ BR.
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To show that S is a contraction, for x, y ∈ PC(J ,R), we have

‖Sx – Sy‖ ≤ T
j∑

k=

∣∣I∗k (x(tk)) – I∗k
(
y(tk)

)∣∣ + T
T – η

m∑
k=j+

∣∣Ik(x(tk)) – Ik
(
y(tk)

)∣∣

+
m∑
k=

∣∣I(x(tk)) – Ik
(
y(tk)

)∣∣ + m∑
k=

(t – tk)
∣∣I∗k (x(tk)) – I∗k

(
y(tk)

)∣∣

≤
[
jTL +mL +

T(m – j)L
T – η

+ L
m∑
k=

(T – tk)

]
‖x – y‖.

From (.), it follows that S is a contraction.
Next, the continuity of f implies that the operator S is continuous. Further, S is uni-

formly bounded on BR by

‖Sx‖ ≤ ‖μ‖θ.

Now we shall prove the compactness of S. Setting sup(t,x)∈J×BR |f (t,x)| = f ∗ < ∞, then for
each τ, τ ∈ (tl, tl+) for some l ∈ {, , . . . ,m} with τ > τ, we have

∣∣(Sx)(τ) – (Sx)(τ)
∣∣

≤ |τ – τ|
j∑

k=

∫ tk

tk–

∣∣f (s,x(s))∣∣dqk–s

+
|τ – τ|
T – η

m∑
k=j+

∫ tk

tk–

∫ s

tk–

∣∣f (σ ,x(σ ))∣∣dqk–σ dqk–s

+
|τ – τ|
T – η

m∑
k=j+

(T – tk)
∫ tk

tk–

∣∣f (s,x(s))∣∣dqk–s
+

|τ – τ|
T – η

∫ η

tj

∫ s

tj

∣∣f (σ ,x(σ ))∣∣dqjσ dqj s

+
|τ – τ|
T – η

∫ T

tm

∫ s

tm

∣∣f (σ ,x(σ ))∣∣dqmσ dqms + |τ – τ|
l∑

k=

∫ tk

tk–

∣∣f (s,x(s))∣∣dqk–s
+

∣∣∣∣
∫ τ

tl

∫ s

tl

∣∣f (σ ,x(σ ))∣∣dqlσ dql s –
∫ τ

tl

∫ s

tl

∣∣f (σ ,x(σ ))∣∣dqlσ dql s
∣∣∣∣

≤ |τ – τ|f ∗
[ j∑

k=

(tk – tk–) +


T – η

m∑
k=j+

(tk – tk–)

 + qk–
+

(η – tj)

(T – η)( + qj)

+
(T – tm)

(T – η)( + qm)
+


T – η

m∑
k=j+

(T – tk)(tk – tk–)

+
l∑

k=

(tk – tk–) +
(τ + τ + tl)

 + ql

]
.

As τ → τ, the right hand side above (which is independent of x) tends to zero. Therefore,
the operator S is equicontinuous. Since S maps bounded subsets into relatively compact
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subsets, it follows that S is relative compact on BR. Hence, by the Arzelá-Ascoli theorem,
S is compact on BR. Thus all the assumptions of Lemma . are satisfied. Hence, by the
conclusion of Lemma ., the impulsive qk-difference boundary value problem (.) has at
least one solution on J . �

4 Examples
Example . Consider the following nonlinear second-order impulsive qk-difference
equation with three-point boundary condition:

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

D


+k
x(t) = e– cos

 t |x(t)|
(+t)(+|x(t)|) , t ∈ J = [, ], t �= tk = k

 ,

�x(tk) = |x(tk )|
(+|x(tk )|) , k = , , . . . , ,

D 
+k

x(t+k ) –D 
+k

x(tk) = 
 tan

–( x(tk)), k = , , . . . , ,

x() = , x() = x(  ).

(.)

Here qk = /( + k) for k = , , , . . . , , m = , T = , η = /, j = , f (t,x) = (e– cos t|x|)/
(( + t)( + |x|)), Ik(x) = |x|/(( + |x|)) and I∗k (x) = (/) tan–(x/). Since

∣∣f (t,x) – f (t, y)
∣∣ ≤ (/)|x – y|,∣∣Ik(x) – Ik(y)

∣∣ ≤ (/)|x – y| and
∣∣I∗k (x) – I∗k (y)

∣∣ ≤ (/)|x – y|,

then (H) and (H) are satisfied with L = (/), L = (/), L = (/).We can show that

� ≈ . < .

Hence, by Theorem ., the three-point impulsive qk-difference boundary value problem
(.) has a unique solution on [, ].

Example . Consider the following nonlinear second-order impulsive qk-difference
equation with three-point boundary condition:

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

D


+k
x(t) = sin(π t)

(t+)
|x(t)|

(+|x(t)|) , t ∈ J = [, ], t �= tk = k
 ,

�x(tk) = |x(tk )|
(+|x(tk )|) , k = , , . . . , ,

D 
+k

x(t+k ) –D 
+k

x(tk) = |x(tk )|
(+|x(tk )|) , k = , , . . . , ,

x() = , x() = x( 
 ).

(.)

Set qk = /( + k) for k = , , , . . . , , m = , T = , η = /, j = , f (t,x) = (sin(π t)|x|)/
((t + )( + |x|)), Ik(x) = |x|/(( + |x|)) and I∗k (x) = |x|/(( + |x|)). Since

∣∣Ik(x) – Ik(y)
∣∣ ≤ (/)|x – y| and

∣∣I∗k (x) – I∗k (y)
∣∣ ≤ (/)|x – y|,

then (H) is satisfiedwith L = (/), L = (/). It is easy to verify that |f (t,x)| ≤ μ(t)≡ ,
Ik(x) ≤ N = / and I∗k (x) ≤ N = / for all t ∈ [, ], x ∈ R, k = , . . . ,m. Thus (H) and
(H) are satisfied. We can show that

jTL +mL +
T(m – j)L

T – η
+ L

m∑
k=

(T – tk) =



< .
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Hence, by Theorem ., the three-point impulsive qk-difference boundary value problem
(.) has at least one solution on [, ].
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